Extending the CSM-CERES-Beet Model to Simulate Impact of Observed Leaf Disease Damage on Sugar Beet Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Description and Data Collection
2.2. Leaf Disease Damage Coupling Points
3. Results
3.1. Calibration Results
3.2. Evaluation Results
3.3. Model-Based Yield Losses Evaluation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eurostat, Agricultural Production—Crops. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_crops#cite_note-3 (accessed on 5 October 2020).
- Wolf, P.F.J.; Verreet, J.A. An integrated pest management system in Germany for the control of fungal leaf diseases in sugar beet. The IPM sugar beet model. Plant Dis. 2002, 86, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shane, W.; Teng, P. Impact of Cercospora leaf spot on root weight, sugar yield, and purity of Beta vulgaris. Plant Dis. 1992, 76, 812–820. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.; Singh, U.; Gijsman, A.; Ritchie, J.T. DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Röll, G.; Batchelor, W.D.; Castro, A.C.; Simón, M.R.; Graeff-Hönninger, S. Development and Evaluation of a Leaf Disease Damage Extension in Cropsim-CERES Wheat. Agronomy 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, W.D.; Suresh, L.M.; Zhen, X.; Beyene, Y.; Wilson, M.; Kruseman, G.; Prasanna, B. Simulation of Maize Lethal Necrosis (MLN) Damage Using the CERES-Maize Model. Agronomy 2020, 10, 710. [Google Scholar] [CrossRef]
- Bourgeois, G. Interrelationships between Late Leafspot Disease and Florunner Peanut: A Modelling Approach. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1989. [Google Scholar]
- Boote, K.J.; Jones, J.W.; Mishoe, J.W.; Wilkerson, G.G. Modelling growth and yield of groundnut. In Agrometeorology of Groundnut Proceedings of the International Symposium, ICRISAT Sahelian Centre, Niamey, Niger, 21–26 August 1985; Sivakumar, M.V.K., Virmani, S.M., Eds.; ICRISAT: Patancheru, India, 1986; pp. 243–254. [Google Scholar]
- Nokes, S.E.; Young, J.H. Simulation of the temporal spread of leafspot and the effect on peanut growth. Trans. ASAE 1991, 34, 653–662. [Google Scholar] [CrossRef]
- Batchelor, W.D.; Jones, J.W.; Boote, K.J.; Pinnschmidt, H.O. Extending the use of crop models to study pest damage. Trans. ASAE 1993, 36, 551–558. [Google Scholar] [CrossRef]
- Leviel, B. Evaluation of Risks and Monitoring of Nitrogen Fluxes at the Crop Level on the Romanian and Bulgarian Plain. Application to Maize, Wheat, Rapeseed and Sugar-Beet. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2000. [Google Scholar]
- Leviel, B.; Crivineanu, C.; Gabrielle, B. CERES-Beet, a model for the production and environmental impact of sugar beet. In Proceedings of the Joint Colloquium on Sugar Beet Growing and Modelling, Lille, France, 12 September 2003; pp. 143–152. [Google Scholar]
- Anar, M.J.; Lin, Z.; Teboh, J.; Ostlie, M. Modeling energy beets using the Decision Support System for Agrotechnology Transfer. Trans. ASABE 2015, RRV15-048. [Google Scholar] [CrossRef]
- Baey, C.; Didier, A.; Lemaire, S.; Maupas, F.; Cournède, P.H. Parameterization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass. Ecol. Modell. 2014, 290, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Shelia, V.; Boote, K.J.; Singh, U.; White, J.W.; Hunt, L.A.; Ogoshi, R.; Lizaso, J.I.; Koo, J.; et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (www.DSSAT.net); DSSAT Foundation: Gainesville, FL, USA, 2019. [Google Scholar]
- Anar, M.J.; Lin, Z.; Hoogenboom, G.; Shelia, V.; Batchelor, W.D.; Teboh, J.M.; Ostlie, M.; Schatz, B.G.; Khan, M. Modeling Growth, Development and Yield of Sugarbeet using DSSAT. Agric. Syst. 2019, 169, 58–70. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; p. 194. [Google Scholar]
- López-Cedrón, X.F.; Boote, J.K.; Piñeiro, J.; Sau, F. Improving the CERES-Maize Model Ability to Simulate Water Deficit Impact on Maize Production and Yield Components. Agron. J. 2008, 100, 296–307. [Google Scholar] [CrossRef]
- Memic, E.; Graeff, S.; Batchelor, W. Extending the CERES-Beet model to simulate leaf disease in sugar beet. In Precision Agriculture ’19 Proceedings of the European Conference on Precision Agriculture, Montpellier, France, 8 July 2019; John, V.S., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- ICUMSA: Methods Book. Method GS6-3: The determination of the polarisation of sugar beet by the macerator or cold aqueous digestion method using aluminium sulphate as clarifying agent-official. In Internation-al Commission for Uniform Methods of Sugar Analysis; Elsevier: Berlin, Germany, 2003. [Google Scholar]
- Jones, F.G.W.; Dunning, R.A.; Hamphries, K.P. The effect of defoliation and loss of stand upon yield of sugar beets. Ann. Appl. Biol. 1955, 43, 63–70. [Google Scholar] [CrossRef]
- Yang, M.; Yang, J.Y.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
- Rossi, V.; Battilani, P. CERCOPRI: A forecasting model for primary infections of Cercospora leaf spot of sugar beet. Bull. OEPP 1991, 21, 527–531. [Google Scholar] [CrossRef]
- Rossberg, D.; Racca, P.; Joerg, E.; Kleinhenz, B. Erste Erfahrung mit dem Modell CERCBET 1 (First application of CERCBEET 1 model). Nachr Dtsch Pflanzenschutzd 2000, 52, 153–159. [Google Scholar]
- Racca, P.; Jörg, E.; Mittler, S.; Petersen, J. CERCBET 3—A forecaster for epidemic development of Cercospora beticola. In Proceedings of the 67th IIRB Congress, Brüssel, Belgium, 11–12 February 2004. [Google Scholar]
- Windels, C.E.; Lamey, H.A.; Hilde, D.; Widner, J.; Knudsen, T.A. Cercospora leaf spot model for sugar beet: In practice by an industry. Plant Dis. 1998, 82, 716–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, S.; Petersen, J.; Jörg, E.; Racca, P. Integrierte Bekämpfung von Blattkrankheiten bei Zuckerrüben (Integrated treatment of leaf disease in sugar beet). In Proceedings of the 67th IIRB Congress, Brüssel, Belgium, 11–12 February 2004. [Google Scholar]
- Bock, C.H.; Barbedo, J.G.A.; Del Ponte, E.M.; Chiang, K.S.; Bohnenkamp, D.; Mahlein, A.K. From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy. Phytopathol. Res. 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Leucker, M.; Wahabzada, M.; Kersting, K.; Peter, M.; Beyer, W.; Steiner, U.; Mahlein, A.K.; Oerke, E.C. Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance. Funct. Plant Biol. 2017, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
Year | DAP | Cercospora Leaf Spot Leaf Area Disease Progress (%) | ||
---|---|---|---|---|
2016 | 0% fungicide | 50% fungicide | 100% fungicide | |
63 | 0 | 0 | 0 | |
83 | 3 | 3 | 1 | |
103 | 13 | 20 | 20 | |
125 | 22 | 21 | 24 | |
138 | 47 | 25 | 22 | |
152 | 48 | 33 | 33 | |
177 | 48 | 33 | 33 | |
2017 | 0% inoculum | 100% inoculum | ||
106 | 0 | 0 | ||
127 | 18 | 46 | ||
140 | 56 | 74 | ||
169 | 92 | 100 | ||
184 | 92 | 100 | ||
2018 | 0% inoculum | 100% inoculum | ||
106 | 0 | 0 | ||
119 | 1 | 7 | ||
126 | 46 | 52 | ||
133 | 49 | 57 | ||
147 | 75 | 79 | ||
154 | 100 | 100 | ||
169 | 100 | 100 |
No. | PID 1 | Method Name | DM 2 | CP 3 | Coeff. 4 |
---|---|---|---|---|---|
1 | PCLA 5 | Observed % defoliation | 3 | LAD | 2.0 |
Definition | Units | BTS940 | |
---|---|---|---|
P1 | Growing Degree Days from the seedling emergence to the end of juvenile phase (juvenile group of leaves, depending on the cultivar up to 15–20 leaves) | °C-d | 760.0 |
P2 | Photo period sensitivity | hr−1 | 0.0 |
P5 | Thermal time from leaf growth to physiological maturity | °C-d | 700.0 |
G2 | Leaf expansion rate during leaf growth stage | cm2 cm−2 d−1 | 420.0 |
G3 | Maximum root growth rate | gm−2 d−1 | 27.5 |
PHINT | Phyllochron interval, the interval in thermal time between successive leaf tip appearances | °C-d | 43.0 |
Year | Variable | Treatment | R2 | RMSE | d Stat. | Total Obs. 1 |
---|---|---|---|---|---|---|
2016 | LAI | 100% fungicide | 0.87 | 0.52 | 0.95 | 14 |
Top weight | 100% fungicide | 0.82 | 686 | 0.94 | 7 | |
Storage root | 100% fungicide | 0.95 | 1696 | 0.99 | 9 |
Year | Variable | Treatment | R2 | RMSE (kg ha−1) | d Stat. | Total Obs. 1 |
---|---|---|---|---|---|---|
2016 | LAI | 0% fungicide | 0.85 | 0.63 | 0.92 | 14 |
LAI | 50% fungicide | 0.80 | 0.63 | 0.91 | 14 | |
Top weight | 0% fungicide | 0.85 | 565 | 0.95 | 7 | |
Top weight | 50% fungicide | 0.74 | 751 | 0.92 | 7 | |
Storage root | 0% fungicide | 0.94 | 2270 | 0.97 | 9 | |
Storage root | 50% fungicide | 0.94 | 2362 | 0.97 | 9 |
Year | Variable | Treatment | R2 | RMSE (kg ha−1) | d Stat. | Total Obs. 1 |
---|---|---|---|---|---|---|
2017 | LAI | 0% inoculum | 0.54 | 0.85 | 0.63 | 8 |
LAI | 100% inoculum | 0.81 | 0.72 | 0.83 | 8 | |
Top weight | 0% inoculum | 0.80 | 747 | 0.74 | 4 | |
Top weight | 100% inoculum | 0.96 | 402 | 0.96 | 4 | |
Storage root | 0% inoculum | 0.93 | 2399 | 0.98 | 4 | |
Storage root | 100% inoculum | 0.87 | 3124 | 0.96 | 4 |
Year | Variable | Treatment | R2 | RMSE (kg ha−1) | d Stat. | Total Obs. 1 |
---|---|---|---|---|---|---|
2018 | LAI | 0% inoculum | 0.76 | 0.57 | 0.87 | 9 |
LAI | 100% inoculum | 0.70 | 0.64 | 0.84 | 9 | |
Top weight | 0% inoculum | 0.92 | 812 | 0.78 | 6 | |
Top weight | 100% inoculum | 0.81 | 953 | 0.71 | 6 | |
Storage root | 0% inoculum | 0.97 | 3045 | 0.94 | 6 | |
Storage root | 100% inoculum | 0.99 | 3486 | 0.93 | 6 |
DAY | SRW kg ha−1 | SY kg ha−1 | Sc (%) | SRW kg ha−1 | SY kg ha−1 | Sc (%) | SRW kg ha−1 | SY kg ha−1 | Sc (%) | |
---|---|---|---|---|---|---|---|---|---|---|
2016 | 0% fungicide | 50% fungicide | 100% fungicide | |||||||
138 | 15,241 | 10,171 | 67 | 16,153 | 10,625 | 66 | 18,319 | 12,438 | 68 | |
152 | 16,768 | 11,343 | 68 | 15,005 | 9906 | 66 | 18,091 | 12,366 | 68 | |
160 | 18,024 | 12,072 | 67 | 18,180 | 12,231 | 67 | 22,184 | 14,911 | 67 | |
Avg. | 67 | 66 | 68 | |||||||
2017 | 0% inoculum | 100% inoculum | ||||||||
114 | 11,820 | 8233 | 70 | 10,461 | 7109 | 68 | ||||
140 | 16,538 | 10,970 | 66 | 19,270 | 13,384 | 69 | ||||
169 | 27,956 | 20,166 | 72 | 27,915 | 19,944 | 71 | ||||
Avg. | 69 | 69 | ||||||||
2018 | 0% inoculum | 100% inoculum | ||||||||
119 | 17,115 | 11,839 | 69 | 15,736 | 10,937 | 70 | ||||
147 | 17,748 | 12,842 | 72 | 21,111 | 13,941 | 66 | ||||
161 | 21,308 | 14,890 | 70 | 21,462 | 15,533 | 72 | ||||
Avg. | 70 | 69 |
Simulated Storage Root (DM) (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|
DAY | ‘No Dis’ | ‘Dis’ | SRW Loss | ‘Dis’ | SRW Loss | ‘Dis’ | SRW Loss | |
2016 | 0% fungicide | 50% fungicide | 100% fungicide | |||||
63 | 478 | 478 | 0 | 478 | 0 | 478 | 0 | |
83 | 3738 | 3728 | 10 | 3728 | 10 | 3735 | 3 | |
103 | 8867 | 8776 | 91 | 8741 | 126 | 8759 | 108 | |
125 | 15,565 | 15,269 | 296 | 15,202 | 363 | 15,207 | 358 | |
138 | 17,983 | 17,636 | 347 | 17,645 | 338 | 17,655 | 328 | |
152 | 20,802 | 20,221 | 581 | 20,291 | 511 | 20,307 | 495 | |
177 | 22,506 | 21,232 | 1274 | 21,424 | 1082 | 21,440 | 1066 | |
2017 | 0% inoculum | 100% inoculum | ||||||
106 | 2742 | 2742 | 0 | 2742 | 0 | |||
127 | 9792 | 9787 | 5 | 9779 | 13 | |||
140 | 12,577 | 12,529 | 48 | 12,456 | 121 | |||
169 | 21,108 | 20,481 | 627 | 20,145 | 963 | |||
184 | 28,518 | 26,068 | 2450 | 25,489 | 3029 | |||
2018 | 0% inoculum | 100% inoculum | ||||||
106 | 10,971 | 10,971 | 0 | 10,971 | 0 | |||
119 | 12,654 | 12,651 | 3 | 12,632 | 22 | |||
126 | 13,171 | 13,082 | 89 | 13,047 | 124 | |||
133 | 14,418 | 14,187 | 231 | 14,133 | 285 | |||
147 | 16,506 | 15,939 | 567 | 15,841 | 665 | |||
154 | 16,506 | 15,939 | 567 | 15,841 | 665 | |||
169 | 16,506 | 15,939 | 567 | 15,841 | 665 |
Year | DAY | Treatments | SRW Loss (DM) (kg ha−1) | SY Loss (kg ha−1) |
---|---|---|---|---|
2016 | 177 | 0% fungicide | 1274 | 866 |
50% fungicide | 1082 | 735 | ||
100% fungicide | 1066 | 725 | ||
2017 | 184 | 0% inoculum | 2450 | 1666 |
100% inoculum | 3029 | 2060 | ||
2018 | 169 | 0% inoculum | 567 | 386 |
100% inoculum | 665 | 452 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memic, E.; Graeff-Hönninger, S.; Hensel, O.; Batchelor, W.D. Extending the CSM-CERES-Beet Model to Simulate Impact of Observed Leaf Disease Damage on Sugar Beet Yield. Agronomy 2020, 10, 1930. https://doi.org/10.3390/agronomy10121930
Memic E, Graeff-Hönninger S, Hensel O, Batchelor WD. Extending the CSM-CERES-Beet Model to Simulate Impact of Observed Leaf Disease Damage on Sugar Beet Yield. Agronomy. 2020; 10(12):1930. https://doi.org/10.3390/agronomy10121930
Chicago/Turabian StyleMemic, Emir, Simone Graeff-Hönninger, Oliver Hensel, and William D. Batchelor. 2020. "Extending the CSM-CERES-Beet Model to Simulate Impact of Observed Leaf Disease Damage on Sugar Beet Yield" Agronomy 10, no. 12: 1930. https://doi.org/10.3390/agronomy10121930
APA StyleMemic, E., Graeff-Hönninger, S., Hensel, O., & Batchelor, W. D. (2020). Extending the CSM-CERES-Beet Model to Simulate Impact of Observed Leaf Disease Damage on Sugar Beet Yield. Agronomy, 10(12), 1930. https://doi.org/10.3390/agronomy10121930