Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analyses of Water, Soil, CU Granules and Plant Tissue Samples
2.3. Calculation of N and Water Balance Sheet and N Use Efficiency
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Effect on the Crop (Yield and Quality)
4.2. N Use Efficiency and Agronomical Implications
4.3. Effect on the Environment (N Leaching)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Long, S.P.; Marshall-Colon, A.; Zhu, X.-G. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Q.; Xu, X.; Su, Y.; Yue, Q.; Gao, B. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J. Taiwan Inst. Chem. Eng. 2016, 60, 564–572. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Martínez-Gaitán, C.; Granados, M.R.; Fernández, M.D.; Gallardo, M.; Thompson, R. Recovery of 15N Labeled Nitrogen Fertilizer by Fertigated and Drip Irrigated Greenhouse Vegetable Crops. Agronomy 2020, 10, 741. [Google Scholar] [CrossRef]
- Thompson, R.; Incrocci, L.; Van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Tei, F.; De Neve, S.; De Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Ti, C.; Luo, Y.; Yan, X. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environ. Sci. Pollut. Res. 2015, 22, 18508–18518. [Google Scholar] [CrossRef]
- Da Costa, T.P.; Westphalen, G.; Nora, F.B.D.; Silva, B.D.Z.; Da Rosa, G.S.; De Zorzi, B. Technical and environmental assessment of coated urea production with a natural polymeric suspension in spouted bed to reduce nitrogen losses. J. Clean. Prod. 2019, 222, 324–334. [Google Scholar] [CrossRef]
- Thomson, A.J.; Giannopoulos, G.; Pretty, J.; Baggs, E.M.; Richardson, D.J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1157–1168. [Google Scholar] [CrossRef]
- Thompson, R.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Bellomo, S.; Parello, F.; Bonfanti, P.; Brusca, L.; Longo, M.; Maugeri, R. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy. Environ. Monit. Assess. 2012, 184, 2845–2855. [Google Scholar] [CrossRef] [PubMed]
- Voogt, W.; Beerling, E.A.M.; Blok, C.; van der Maas, A.A.; van Os, E.A. The road to sustainable water and nutrient management in soil-less culture in Dutch greenhouse horticulture. In Proceedings of the NUTRIHORT: Nutrient Management, Nutrient Legislation and Innovative Techniques in Intensive Horticulture, Ghent, Belgium, 16–18 September 2013; Available online: https://edepot.wur.nl/290253 (accessed on 11 November 2020).
- Brés, W. Estimation of Nutrient Losses from Open Fertigation Systems to Soil during Horticultural Plants Cultivation. Pol. J. Environ. Stud. 2009, 183, 341–345. [Google Scholar]
- Chartzoulakis, K. Water resources management in the Island of Crete, Greece, with emphasis on the agricultural use. Hydrol. Res. 2001, 3, 193–205. [Google Scholar] [CrossRef]
- The European Council. Council Directive 91/676/EEC 12/12/1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Commun. 1991, L375, 1–8. [Google Scholar]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Van Grinsven, H.J.M.; Berge, H.F.M.T.; Dalgaard, T.; Fraters, B.; Durand, P.; Hart, A.; Hofman, G.; Jacobsen, B.H.; Lalor, S.T.J.; Lesschen, J.P.; et al. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 2012, 9, 5143–5160. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S. Effects of Nitrogen and Phosphorus Fertilization on Plant Growth and Nitrate Accumulation in Vegetables. J. Plant Nutr. 2004, 27, 539–556. [Google Scholar] [CrossRef]
- Ahluwalia, A.; Gladwin, M.; Coleman, G.D.; Hord, N.; Howard, G.; Kim-Shapiro, D.B.; Lajous, M.; Larsen, F.J.; Lefer, D.J.; McClure, L.A.; et al. Dietary Nitrate and the Epidemiology of Cardiovascular Disease: Report from a National Heart, Lung, and Blood Institute Workshop. J. Am. Heart Assoc. 2016, 5, e003402. [Google Scholar] [CrossRef]
- Umar, S.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Zhong, W.; Hu, C.; Wang, M. Nitrate and nitrite in vegetables from north China: Content and intake. Food Addit. Contam. 2002, 19, 1125–1129. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) No. 1258/2011 amending Regulation (EC) No. 1881/2006 as regards maximum levels for nitrates in food stuffs. Off. J. Eur. Union 2011, L320, 15–17. [Google Scholar]
- Carson, L.C.; Ozores-Hampton, M. Methods for Determining Nitrogen Release from Controlled-release Fertilizers Used for Vegetable Production. HortTechnology 2012, 22, 20–24. [Google Scholar] [CrossRef]
- Chalk, P.M.; Craswell, E.T.; Polidoro, J.C.; Chen, C. Fate and efficiency of 15Nlabelledslow- and controlled release fertilizers. Nutr. Cycl. Agroecosyst. 2015, 102, 167–178. [Google Scholar] [CrossRef]
- Dubey, A.; Mailapalli, D.R. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environ. Technol. Innov. 2019, 16, 100452. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, H.; Yu, L.; Bao, X.; Simon, G.P.; Petinakis, E.; Chen, L. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 2016, 147, 146–154. [Google Scholar] [CrossRef]
- Guertal, E. Slow-release Nitrogen Fertilizers in Vegetable Production: A Review. HortTechnology 2009, 19, 16–19. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Kempers, A.; Zweers, A. Ammonium determination in soil extracts by the salicylate method. Commun. Soil Sci. Plant Anal. 1986, 17, 715–723. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with NaHCO3, USDA No. 939; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis, 2nd ed.; Page, A., Ed.; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole e Forestali. Decreto Ministeriale del 13/09/1999, Approvazione dei “Metodi Ufficiali di Analisi Chimica del Suolo”; Gazzetta Ufficiale della Repubblica Italiana Suppl. Ordin. n.248: Rome, Italy, 1999. (In Italian)
- Omar, L.; Ahmed, O.H.; Majid, N.M.A. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes. Sci. World J. 2015, 2015, 574201. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.K.; Ie, J.W.M.; Bako, Y. Nitrogen fertilizer response and use efficiency for three cereal crops in Niger Commun. Soil Sci. Plan. 2001, 32, 1465–1482. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Haque, M.E.; Paul, A.K.; Sarker, J.R. Effect of Nitrogen and Boron on the Growth and Yield of Tomato (Lycopersicum esculentum L.). Int. J. Bio-Resour. Stress Manag. 2011, 2, 277–282. [Google Scholar]
- Addae-Kagya, K.; Norman, J.C. The influence of nitrogen levels on local cultivars of eggplant (Solanum integrifolium L.). Acta Hortic. 1977, 2, 397–402. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in processing tomato. Eur. J. Agron. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Hirel, B.; Lemaire, G. From Agronomy and Ecophysiology to Molecular Genetics for Improving Nitrogen Use Efficiency in Crops. J. Crop. Improv. 2006, 15, 213–257. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Hunt, J. Effect of nitrogen fertilizer on the nitrate contents of field vegetables grown in Britain. J. Sci. Food Agric. 1986, 37, 373–383. [Google Scholar] [CrossRef]
- Jiang, H.M.; Zhang, J.; Yang, J.C.; Liu, Z.H.; Song, X.Z.; Jiang, L.H. Effects of models of N application on greenhouse tomato N uptake, utilization and soil NO3−N accumulation. J. Agro-Environ. Sci. 2009, 28, 2623–2630. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200912034.htm (accessed on 10 November 2020). (In Chinese).
- Min, J.; Zhao, X.; Shi, W.M.; Xing, G.X.; Zhu, Z.L. Nitrogen balance and loss in a greenhouse vegetable system in South eastern China. Pedosphere 2011, 21, 464–472. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; Zhang, M.; Wang, R.; Chen, B. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil. Field Crop. Res. 2015, 181, 60–68. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Zheng, L.; Cheng, D.-D.; Liu, M.; Geng, Y.-Q. Controlled Release Urea Improved Nitrogen Use Efficiency, Yield, and Quality of Wheat. Agron. J. 2011, 103, 479–485. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Pal, M. Effect of Nitrogen Levels and Coated Urea on Growth, Yields and Nitrogen Use Efficiency in Aromatic Rice. J. Plant Nutr. 2015, 39, 875–882. [Google Scholar] [CrossRef]
- Taylor, M.; Locascio, S.; Alligood, M. Blossom-end Rot Incidence of Tomato as Affected by Irrigation Quantity, Calcium Source, and Reduced Potassium. HortScience 2004, 39, 1110–1115. [Google Scholar] [CrossRef]
- Yu, Q.; Ye, X.; Chen, Y.; Zhang, Z.; Tian, G. Influences of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen and soil salt-ion leaching. J. Environ. Sci. 2008, 20, 304–308. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; Von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Comm. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Guertal, E.A. Preplant Slow-Release Nitrogen Fertilizers Produce Similar Bell Pepper Yields as Split Applications of Soluble Fertilizer. Semigroup Forum 2000, 92, 388. [Google Scholar] [CrossRef]
- Kiran, J.K.; Khanif, Y.M.; Amminuddin, H.; Anuar, A.R. Effects of Controlled Release Urea on the Yield and Nitrogen Nutrition of Flooded Rice. Commun. Soil Sci. Plant Anal. 2010, 41, 811–819. [Google Scholar] [CrossRef]
- Baroncelli, P.; Landi, S.; Marzialetti, P.; Scavo, N. Uso Razionale delle Risorse nel Florovivaismo: I Fertilizzanti. In Quaderno ARSIA No. 2; ARSIA—Agenzia Regionale per lo Sviluppo e l’Innovazione nel settore Agricolo-forestale: Firenze, Italy, 2004; p. 281. (In Italian) [Google Scholar]
Treatment | Short Description | Total N Dose | Base Fertilization | Top-Dressing (Fertigation) | Total Cost of Fertilizers | Total Cost of N Fertilizers | ||
---|---|---|---|---|---|---|---|---|
kg N/ha (% total N) | ||||||||
kg N/ha | kg N/ha (% Total N) | NH4NO3 | Ca(NO3)2 | KNO3 | €/ha | |||
Experiment 1 | ||||||||
CON1 | Growers’ practice | 360 | 72 (20) as (NH4)2SO4 | 72 (20) | 166 (46) | 50 (14) | 1887.04 | 1216.13 |
DMPP20 | DMPP® 26.0.0 | 360 | 72 (20) as DMPP® | 72 (20) | 166 (46) | 50 (14) | 1874.51 | 1203.60 |
CU20 | CU | 360 | 72 (20) as CU | 72 (20) | 166 (46) | 50 (14) | 1875.47 | 1204.56 |
CU40 | CU | 360 | 144 (40) as CU | 0 | 166 (46) | 50 (14) | 1898.95 | 1228.04 |
CU75-1 | CU | 360 | 270 (75) as CU | 0 | 90 (25) | 0 | 2002.21 | 1049.25 |
Experiment 2 | ||||||||
CON2 | Growers’ practice | 300 | 75 (25) as (NH4)2SO4 | 90 (30) | 75 (25) | 60 (20) | 1624.54 | 1010.04 |
DMPP25 | DMPP® 26.0.0 | 300 | 75 (25) as DMPP | 90 (30) | 75 (25) | 60 (20) | 1611.50 | 997.00 |
CU50 | CU | 300 | 150 (50) as CU | 15 (5) | 75 (25) | 60 (20) | 1636.95 | 1022.45 |
CU75-2 | CU | 300 | 225 (75) as CU | 0 | 75 (25) | 0 | 1606.69 | 653.73 |
Experiment 3 | ||||||||
CON3 | Growers’ practice | 300 | 75 (25) as NH4NO3 | 90 (30) | 75 (25) | 60 (20) | 1624.54 | 1010.04 |
CUred | CU reduced dose | 225 | 150 (67) as CU | 0 | 75 (33) | 0 | 1475.88 | 522.92 |
Parameter | Experiment 1 Spring 2015 | Experiment 2 Autumn 2015 | Experiment 3 Summer/Autumn 2016 |
---|---|---|---|
Growing period | 20 March–7 July 2015 | 21 September 2015–28 January 2016 | 22 August–1 December 2016 |
Daily mean air temperature (°C) | 22.7 ± 5.5 | 16.4 ± 3.9 | 20.4 ± 4.2 |
Daily mean soil temperature (°C) | 22.4 ± 5.4 | 17.3 ± 3.9 | 20.7 ± 4.2 |
Air and soil temperature range (°C) | 15–32 | 11–26 | 14–28 |
Cumulative average daily soil temperature (°C) | 2459.9 ± 96.7 | 2245.8 ± 67.4 | 2079.1 ± 62.3 |
Relative humidity (%) | 62.7 ± 7.7 | 79.6 ± 10.7 | 77.9 ± 11.4 |
Average daily global radiation (MJ/m2·day) | 10.5 ± 3.6 | 2.4 ± 0.7 | 5.0 ± 1.6 |
Cumulative global radiation (MJ/m2) | 1151.7 ± 43.8 | 299.9 ± 9.0 | 506.3 ± 15.2 |
pH | 8.1 ± 0.1 | 6.8 ± 0.1 | 7.0 ± 0.1 |
Electrical Conductivity (mS/cm at 25 °C) | 0.22 ± 0.08 | 0.29 ± 0.06 | 0.39 ± 0.08 |
Nitrate (mg NO3−/kg) | 20 ± 2 | 28 ± 2 | 33 ± 4 |
Ammonium (mg NH4+/kg) | 1.2 ± 0.2 | 7.0 ± 0.2 | 8.0 ± 0.3 |
Exchangeable Potassium (mg K2O/kg) | 140 ± 7 | 136 ± 5 | 129 ± 9 |
Exchangeable Calcium (mg Ca/kg) | 2112 ± 11 | 2258 ± 13 | 2295 ± 13 |
Exchangeable Magnesium (mg Mg/kg) | 80 ± 8 | 110 ± 8 | 91 ± 7 |
Assimilable Phosphorous (mg P2O5/kg) | 76 ± 6 | 77 ± 6 | 70 ± 7 |
Assimilable Iron (mg Fe/kg) | 388 ± 10 | 334 ± 16 | 388 ± 15 |
Assimilable Manganese (mg Mn/kg) | 204 ± 8 | 215 ± 10 | 226 ± 11 |
Assimilable Zinc (mg Zn/kg) | 6.0 ± 0.1 | 4.3 ± 0.5 | 6.2 ± 0.7 |
Assimilable Copper (mg Cu/kg) | 5.9 ± 0.4 | 2.11 ± 0.02 | 3.20 ± 0.02 |
Soluble Boron (mg B/kg) | 0.45 ± 0.04 | 0.21 ± 0.02 | 0.35 ± 0.04 |
Organic matter content (%) | 2.31 ± 0.12 | 1.44 ± 0.10 | 4.15 ± 0.15 |
C/N | 33.6 ± 0.6 | 14.0 ± 0.4 | 17.2 ± 0.2 |
Cationic Exchange Capacity (meq/100 g) | 12.8 ± 1.0 | 11.6 ± 0.5 | 15.4 ± 1.1 |
Clay (%) | 11.6 ± 0.9 | 6.2 ± 0.6 | 7.6 ± 0.8 |
Silt (%) | 20.8 ± 1.2 | 20.5 ± 1.9 | 19.9 ± 1.1 |
Sand (%) | 67.6 ± 2.1 | 73.3 ± 1.1 | 72.5 ± 2.2 |
Sample | Fraction of Total N | Determination | Chemical Form |
---|---|---|---|
Cumulated water drainage | Ureic | Enzyme kit (urease) | Urea |
Nitric | Spectrophotometric assay (nitrosalycilate method) | Nitrate | |
Ammoniacal | Spectrophotometric assay (substituted indophenol method) | Ammonium + Ammonia | |
Soil | Ureic | Enzyme kit (urease) | Urea |
Reduced | Kjeldahl method | Organic + Ammonium + Ammonia | |
Nitric | Spectrophotometric assay (nitrosalycilate method) | Nitrate | |
Mineral | Nitrate + Ammoniacal N | Nitrate + Ammonium + Ammonia | |
Total | Reduced + Nitrate | Organic + Nitrate + Ammonium + Ammonia | |
Coated urea fertilizer | Ureic | Enzyme kit (urease) | Urea |
Ammoniacal | Spectrophotometric assay (substituted indophenol method) | Ammonium + Ammonia | |
Plant tissues | Nitric | Spectrophotometric assay (nitrosalycilate method) | Nitrate |
Reduced | Kjeldahl method | Organic + Ammonium + Ammonia | |
Organic | Reduced − Ammoniacal | N-containing organic compounds including urea | |
Total | Reduced + Nitrate | Organic + Nitrate + Ammonium + Ammonia |
Treatment | Water Supply (L/m2) | Water Drainage (L/m2) | Leaching Fraction (%) | Evapotranspiration (L/m2) |
---|---|---|---|---|
Experiment 1 | ||||
CON1 | 472.5 ± 19.2 | 67.5 ± 2.6 b | 14.3 ± 2.2 b | 405.0 ± 12.7 a |
DMPP20 | 472.7 ± 19.4 | 61.3 ± 2.5 b | 13.0 ± 2.9 b | 411.4 ± 12.5 a |
CU20 | 470.2 ± 20.1 | 66.6 ± 2.7 b | 14.2 ± 2.5 b | 403.5 ± 11.3 a |
CU40 | 475.8 ± 19.1 | 94.6 ± 3.7 a | 19.9 ± 3.4 a | 381.2 ± 11.9 b |
CU75-1 | 475.8 ± 17.7 | 97.8 ± 4.6 a | 20.7 ±3.3 a | 375,6 ± 11.0 b |
Experiment 2 | ||||
CON2 | 171.6 ± 9.3 | 38.4 ± 2.4 b | 22.4 ± 1.8 b | 133.3 ± 3.0 a |
DMPP25 | 173.6 ± 7.2 | 39.8 ± 3.1 b | 22.9 ± 2.1 b | 133.8 ± 2.9 a |
CU50 | 168.7 ± 6.9 | 41.7 ± 2.9 b | 24.7 ± 1.9 ab | 127.0 ± 3.2 ab |
CU75-2 | 171.9 ± 8.2 | 46.7 ± 3.2 a | 27.2 ± 2.1 a | 125.2 ± 2.8 b |
Experiment 3 | ||||
CON3 | 321.4 ± 11.2 | 94.7 ± 4.7 | 29.5 ± 2.1 | 226.7 ± 6.5 |
Cured | 326.3 ± 9.2 | 94.1 ± 5.6 | 28.8 ± 1.9 | 232.2 ± 5.8 |
Treatment | Dry Biomass (g/m2) | N Tissue Concentration (% Dry Biomass) | ||||
---|---|---|---|---|---|---|
Leaves | Stems | Fruits | Leaves | Stems | Fruits | |
Experiment 1 | ||||||
CON1 | 179.4 ± 6.7 b | 156.8 ± 10.1 | 717.0 ± 12.8 c | 2.52 ± 0.03 b | 2.25 ± 0.04 ab | 2.95 ± 0.04 b |
DMPP20 | 191.4 ± 9.4 a | 155.9 ± 9.9 | 762.3 ± 12.5 a | 2.60 ± 0.05 a | 2.23 ± 0.02 b | 3.04 ± 0.04 ab |
CU20 | 194.5 ± 9.7 a | 169.8 ± 9.7 | 714.7 ± 13.1 | 2.63 ± 0.04 a | 2.28 ± 0.03 ab | 3.00 ± 0.03 b |
CU40 | 167.4 ± 5.3 c | 155.3 ± 8.5 | 741.0 ± 15.1 b | 2.62 ± 0.04 a | 2.31 ± 0.03 a | 3.10 ± 0.02 a |
CU75-1 | 162,9 ± 5.5 c | 154.8 ± 7.9 | 759.9 ± 13.2 a | 2.68 ± 0.05 a | 2.24 ± 0.03 b | 3.12 ± 0.03 a |
Experiment 2 | ||||||
CON2 | 206.6 ± 10.6 a | 100.1 ± 6.7 a | 195.8 ± 14.2 b | 3.59 ± 0.03 a | 3.00 ± 0.01 ab | 3.44 ± 0.02 ab |
DMPP25 | 189.5 ± 7.9 b | 87.5 ± 6.5 b | 189.9 ± 12.1 b | 3.51 ± 0.02 a | 3.16 ± 0.02 a | 3.22 ± 0.01 b |
CU50 | 198.4 ± 9.3 ab | 85.9 ± 6.8 b | 216.2 ± 14.6 a | 3.46 ± 0.02 ab | 2.83 ± 0.02 bc | 3.49 ± 0.02 a |
CU75-2 | 190.5 ± 8.4 b | 101.0 ± 7.1 a | 234.1 ± 15.2 a | 3.22 ± 0.01 b | 2.52 ± 0.02 c | 3.60 ± 0.03 a |
Experiment 3 | ||||||
CON3 | 191.9 ± 9.5 | 82.5 ± 6.1 | 197.6 ± 18.1 | 3.72 ± 0.03 a | 2.61 ± 0.02 | 3.62 ± 0.02 |
Cured | 184.0 ± 8.2 | 77.4 ± 5.8 | 214.4 ± 19.2 | 3.20 ± 0.02 b | 2.72 ± 0.03 | 3.59 ± 0.02 |
Fruit Production | Fruit Quality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Fruit Yield (kg/m2) | Fruit Amount (n° Fruits/m2) | Average Fruit Weight (gFW/Fruit) | Fruit Dry Matter Content (%) | pH | EC (dS/m) | Total Soluble Solids (°Brix) | Titratable Acidity (g Citric Acid/100 mL) | ||
Total | Market Quality | Total | Market Quality | |||||||
Experiment 1 | ||||||||||
CON1 | 12.8 ± 0.68 | 9.8 ± 0.9 | 59.0 ± 1.4 b | 39.5 ± 1.6 ab | 247.8 ± 22.1 | 5.60 ± 0.11 | 4.17 ± 0.04 | 5.23 ± 0.20 | 4.65 ± 0.20 | 0.57 ± 0.03 |
DMPP20 | 13.8 ± 0.79 | 10.4 ± 1.1 | 63.2 ± 2.2 ab | 39.2 ± 1.5 ab | 265.6 ± 28.2 | 5.52 ± 0.09 | 4.14 ± 0.03 | 5.14 ± 0.19 | 4.62 ± 0.23 | 0.58 ± 0.04 |
CU20 | 12.7 ± 0.71 | 9.8 ± 0.7 | 59.5 ± 1.8 ab | 38.5 ± 1.6 b | 255.3 ± 20.5 | 5.63 ± 0.15 | 4.14 ± 0.03 | 5.37 ± 0.24 | 4.45 ± 0.21 | 0.57 ± 0.04 |
CU40 | 13.4 ± 0.82 | 10.7 ± 0.8 | 65.7 ± 2.1 a | 43.0 ± 2.9 a | 248.8 ± 20.5 | 5.53 ± 0.10 | 4.16 ± 0.04 | 5.28 ± 0.21 | 4.57 ± 0.25 | 0.58 ± 0.05 |
CU75 | 13.5 ± 0.87 | 10.8 ± 0.9 | 64.6 ± 1.9 a | 42.2 ± 3.1 a | 254.7 ± 21.1 | 5.63 ± 0.14 | 4.15 ± 0.02 | 5.36 ± 0.25 | 4.63 ± 0.22 | 0.59 ± 0.06 |
Experiment 2 | ||||||||||
CON2 | 4.21 ± 0.21 b | 3.80 ± 0.31 b | 33.5 ± 4.1 | 26.3 ± 2.4 b | 144.8 ± 9.7 b | 4.65 ± 0.08 | 4.42 ± 0.03 b | 6.22 ± 0.34 b | 4.10 ± 0.14 b | 0.40 ± 0.03 |
DMPP25 | 4.04 ± 0.23 b | 3.85 ± 0.41 b | 33.8 ± 3.8 | 25.3 ± 2.5 b | 152.5 ± 10.6 ab | 4.70 ± 0.11 | 4.41 ± 0.03 b | 6.87 ± 0.32 ab | 4.40 ± 0.18 ab | 0.45 ± 0.04 |
CU50 | 4.70 ± 0.31 ab | 4.30 ± 0.35 ab | 33.8 ± 3.9 | 27.3 ± 2.9 ab | 155.0 ± 10.3 ab | 4.60 ± 0.09 | 4.40 ± 0.04 b | 6.65 ± 0.34 b | 3.98 ± 0.14 b | 0.42 ± 0.03 |
CU75 | 4.99 ± 0.33 a | 4.70 ± 0.35 a | 37.2 ± 4.2 | 30.0 ± 3.1 a | 156.7 ± 10.1 a | 4.69 ± 0.10 | 4.52 ± 0.04 a | 7.54 ± 0.41 a | 4.50 ± 0.15 a | 0.41 ± 0.04 |
Experiment 3 | ||||||||||
CON3 | 4.39 ± 0.19 | 3.77 ± 0.28 | 38.3 ± 3.9 | 26.3 ± 2.5 | 143.6 ± 10.9 | 4.50 ± 0.13 | 3.90 ± 0.04 | 5.23 ± 0.25 | 4.47 ± 0.09 | 0.73 ± 0.06 |
CUred | 4.64 ± 0.18 | 4.08 ± 0.31 | 36.0 ± 3.7 | 28.8 ± 2.6 | 141.9 ± 11.2 | 4.62 ± 0.15 | 3.86 ± 0.05 | 5.14 ± 0.30 | 4.49 ± 0.07 | 0.65 ± 0.07 |
N Distribution (kg/ha) | Treatments | ||||||
---|---|---|---|---|---|---|---|
Experiment 1 | CON1 | DMPP20 | CU20 | CU40 | CU75-1 | ||
Input | Mineral soil content prior to fertilization (A) | 39.2 ± 1.0 | 39.2 ± 1.0 | 39.2 ± 1.0 | 39.2 ± 1.0 | 39.2 ± 1.0 | |
Supplied by base fertilization (B) | soluble salt | 72.0 ± 1.0 c | |||||
DMPP | 72.0 ± 1.0 c | ||||||
CU | 72.0 ± 1.0 c | 144.0 ± 1.0 b | 270.0 ± 1.0 a | ||||
Supplied by fertigation (C) | 288.2 ± 2.5 a | 287.5 ± 2.8 a | 287.8 ± 3.1 a | 216.3 ± 2.1 a | 90.6 ± 1.1 c | ||
Total N input (I) | 399.4 ± 1.8 | 398.7 ± 2.0 | 399.0 ± 2.2 | 399.5 ± 1.3 | 399.8 ± 3.0 | ||
Output | Mineral soil content after experiment (E) | 40.6 ± 3.3 c | 41.9 ± 4.3 c | 47.3 ± 5.1 c | 62.1 ± 5.8 b | 72.9 ± 6.1 a | |
Residual in CU granules (F) | 7.9 ± 1.5 c | 15.8 ± 1.9 b | 29.7 ± 2.5 a | ||||
Leached (G) | 127.2 ± 8.1 a | 97.8 ± 6.7 b | 97.0 ± 7.1 b | 57.2 ± 5.1 c | 25.4 ± 3.1 d | ||
Plant uptake (H) | 272.4 ± 12.1 b | 290.3 ± 13.5 a | 290.2 ± 13.1 a | 290.1 ± 12.7 a | 296.5 ± 15.1 a | ||
Total N output (O) | 440.2 ± 14.1 a | 430.0 ± 13.7 a,b | 442.4 ± 15.1 a | 425.2 ± 11.5 b | 424.5 ± 12.5 b | ||
N output − N input (∆) | 40.8 | 31.3 | 43.4 | 25.7 | 24.7 | ||
Relative error | 9.27% | 7.28% | 9.81% | 6.04% | 5.82% | ||
Experiment 2 | CON2 | DMPP25 | CU50 | CU75-2 | |||
Input | Mineral soil content prior to fertilization (A) | 14.9 ± 1.0 | 14.9 ± 1.0 | 14.9 ± 1.0 | 14.9 ± 1.0 | ||
Supplied by base fertilization (B) | soluble salt | 75.0 ± 1.0 c | |||||
DMPP | 75.0 ± 1.0 c | ||||||
CU | 150.0 ± 1.0 b | 225.0 ± 1.0 a | |||||
Supplied by fertigation (C) | 224.5 ± 2.7 a | 224.5 ± 2.9 a | 144.1 ± 1.7 b | 74.9 ± 0.3 c | |||
Total N input (I) | 314.4 ± 18.6 | 314.4 ± 18.7 | 309.0 ± 16.1 | 314.8 ± 14.5 | |||
Output | Mineral soil content after experiment (E) | 100.0 ± 9.1 a | 110.8 ± 8.6 a | 85.8 ± 7.1 b | 89.8 ± 6.8 b | ||
Residual in CU granules (F) | 21.0 ± 2.2 b | 31.5 ± 2.4 a | |||||
Leached (G) | 46.0 ± 3.1 a | 42.1 ± 2.9 a | 28.4 ± 1.9 b | 20.0 ± 2.1 c | |||
Plant uptake (H) | 171.4 ± 11.8 a | 155.2 ± 12.4 b | 168.5 ± 11.6 a | 171.1 ± 12.1 a | |||
Total N output (O) | 317.4 ± 20.1 | 308.1 ± 17.2 | 303.7 ± 18.6 | 312.4 ± 21.2 | |||
N output − N input (∆) | 3.0 | −6.3 | −5.3 | −2.4 | |||
Relative error | 0.95% | −2.04% | −1.75% | −0.77% | |||
Experiment 3 | CON3 | CUred | |||||
Input | Mineral soil content prior to fertilization (A) | 20.3 ± 1.0 | 20.3 ± 1.0 | ||||
Supplied by base fertilization (B) | soluble salt | 75.0 ± 1.0 b | |||||
CU | 150.0 ± 1.0 a | ||||||
Supplied by fertigation (C) | 229.0 ± 17.5 a | 79.0 ± 8.1 b | |||||
Total N input (I) | 324.3 ± 22.4 a | 249.3 ± 23.1 b | |||||
Output | Mineral soil content after experiment (E) | 122.9 ± 12.4 a | 87.8 ± 8.8 b | ||||
Residual in CU granules (F) | 16.5 ± 1.8 | ||||||
Leached (G) | 60.8 ± 6.1 a | 21.0 ± 2.2 b | |||||
Plant uptake (H) | 164.6 ± 15.4 a | 156.9 ± 11.2 b | |||||
Total N output (O) | 348.3 ± 21.1 a | 282.2 ± 17.5 b | |||||
N output − N input (∆) | 24.0 | 32.9 | |||||
Relative error | 6.89% | 11.66% |
Fertilization Treatment | AE (g FW/g N) | PFP (g FW/g N) | REC (g N/g N) | PE (g FW/g N) |
---|---|---|---|---|
Experiment 1 | ||||
CON1 | 306.7 ± 15.4 | 355.0 ± 20.3 | 0.54 ± 0.05 b | 568.5 ± 31.9 |
DMPP20 | 333.9 ± 20.1 | 382.2 ± 22.2 | 0.58 ± 0.04 a,b | 576.9 ± 40.2 |
CU20 | 303.1 ± 15.1 | 351.4 ± 21.5 | 0.57 ± 0.03 b | 534.1 ± 35.1 |
CU40 | 323.9 ± 16.2 | 372.2 ± 26.4 | 0.59 ± 0.04 a | 548.9 ± 21.3 |
CU75-1 | 325.3 ± 18.3 | 373.6 ± 25.1 | 0.61 ± 0.05 a | 532.8 ± 19.2 |
Experiment 2 | ||||
CON2 | 102.39 ± 8.6 b | 134.3 ± 10.2 b,c | 0.19 ± 0.02 b,c | 537.7 ± 23.5 |
DMPP25 | 96.97 ± 5.9 b | 128.9 ± 12.3 c | 0.17 ± 0.02 c | 568.2 ± 27.2 |
CU50 | 120.09 ± 12.5 a | 152.6 ± 14.1 a,b | 0.22 ± 0.03 a,b | 544.9 ± 21.1 |
CU75-2 | 125.84 ± 10.6 a | 157.7 ± 12.0 a | 0.24 ± 0.04 a | 515.0 ± 20.9 |
Experiment 3 | ||||
CON3 | 114.8 ± 10.4 b | 144.4 ± 16.1 b | 0.21 ± 0.03 b | 536.9 ± 21.5 |
CUred | 163.3 ± 12.6 a | 202.6 ± 20.1 a | 0.31 ± 0.04 a | 530.5 ± 20.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Incrocci, L.; Maggini, R.; Cei, T.; Carmassi, G.; Botrini, L.; Filippi, F.; Clemens, R.; Terrones, C.; Pardossi, A. Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy 2020, 10, 1827. https://doi.org/10.3390/agronomy10111827
Incrocci L, Maggini R, Cei T, Carmassi G, Botrini L, Filippi F, Clemens R, Terrones C, Pardossi A. Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy. 2020; 10(11):1827. https://doi.org/10.3390/agronomy10111827
Chicago/Turabian StyleIncrocci, Luca, Rita Maggini, Tommaso Cei, Giulia Carmassi, Luca Botrini, Ferruccio Filippi, Ronald Clemens, Cristian Terrones, and Alberto Pardossi. 2020. "Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers" Agronomy 10, no. 11: 1827. https://doi.org/10.3390/agronomy10111827
APA StyleIncrocci, L., Maggini, R., Cei, T., Carmassi, G., Botrini, L., Filippi, F., Clemens, R., Terrones, C., & Pardossi, A. (2020). Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy, 10(11), 1827. https://doi.org/10.3390/agronomy10111827