Severe Drought in the Spring of 2020 in Poland—More of the Same?
Abstract
:1. Introduction
2. Materials and Methods
- Moderate drought: −1.0 ≥ SPEI > −1.5;
- Severe drought: −1.5 ≥ SPEI > −2.0;
- Extreme drought: −2.0 ≥ SPEI.
3. Results
3.1. Severity of Drought Events Based on SPEI
3.1.1. SPEI 12
3.1.2. SPEI 24
3.1.3. SPEI 30
3.1.4. Extreme Values of the SPEI 12, 24 and 30 in 2020
3.1.5. Trend Detection in Annual ET0 and Precipitation Total for Three Stations: Poznań, Kalisz and Warszawa
3.1.6. Trend Detection in SPEI 12, 24 and 30
3.2. Soil Moisture Changes Based on GLDAS-2.1 Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Hari, V.; Rakovec, O.; Markonis, Y.; Martin, H.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łabędzki, L. Actions and measures for mitigation drought and water scarcity in agriculture. J. Water Land Dev. 2016, 29, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Łabędzki, L. Droughts in Poland–Their impacts on agriculture and mitigation measures. In Climate Change and Agriculture in Poland–Impacts, Mitigation and Adaptation Measures; Leśny, J., Ed.; Acta Agrophysica: Lublin, Poland, 2009; Volume 169, pp. 97–107. [Google Scholar]
- Jiménez-Donaire, M.D.P.; Tarquis, A.; Giráldez, J.V. Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain. Nat. Hazards Earth Syst. Sci. 2020, 20, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.P.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020, 6, eaba2724. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, V. Drought in Europe Summer 2018: Crisis management in an Orderly Chaos. Available online: https://www.farm-europe.eu/blog-en/drought-in-europe-summer-2018-crisismanagement-in-an-orderly-chaos/ (accessed on 23 September 2020).
- Gu, L.; Chen, J.; Yin, J.; Sullivan, S.C.; Wang, H.-M.; Guo, S.; Zhang, L.; Kim, J.-S. Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates. Hydrol. Earth Syst. Sci. 2020, 24, 451–472. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 2004, 31, 2022–2026. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Van Lanen, H.A.J.; Laaha, G.; Kingston, D.G.; Gauster, T.; Ionita, M.; Vidal, J.-P.; Vlnas, R.; Tallaksen, L.M.; Stahl, K.; Hannaford, J.; et al. Hydrology needed to manage droughts: The 2015 European case. Hydrol. Process. 2016, 30, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Somorowska, U. Changes in drought conditions in Poland over the past 60 years evaluated by the Standardized Precipitation-Evapotranspiration Index. Acta Geophys. 2016, 64, 2530. [Google Scholar] [CrossRef] [Green Version]
- IMGW-PIB. Available online: https://klimat.imgw.pl/pl/climate-maps/# (accessed on 23 September 2020).
- Copernicus Climate Change Service/ECMWF. Available online: https://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-season-ever-recorded-europe-0 (accessed on 23 September 2020).
- IMGW-PIB. Available online: https://klimat.imgw.pl/pl/biuletyn-monitoring/#2020/02 (accessed on 23 September 2020).
- Krasiński, W. Threat Assessment in the National Crisis Management Plans in Poland after 2010. War Stud. Univ. Sci. Q. 2019, 4, 117. [Google Scholar] [CrossRef]
- Ministry of Environment, Pożar w Biebrzańskim Parku Narodowym–Podsumowanie Oraz Dalsze Działania, (Fire in the Biebrza National Park–Summary and Further Actions). Available online: https://www.gov.pl/web/srodowisko/pozar-w-biebrzanskim-parku-narodowym---podsumowanie-i-dalsze-dzialania (accessed on 23 September 2020).
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Piniewski, M.; Marcinkowski, P.; O’Keeffe, J.; Szcześniak, M.; Nieróbca, A.; Kozyra, J.; Kundzewicz, Z.W.; Okruszko, T. Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland. Theor. Appl. Climatol. 2020, 140, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J.; Jakusik, E. (Eds.) Warunki Klimatyczne i Oceanograficzne w Polsce i na Bałtyku Południowym–Spodziewane Zmiany i Wytyczne Do Opracowania Strategii Adaptacyjnych w Gospodarce Krajowej (Climatic and Oceanographic Conditions in Poland and in the Southern Baltic–Expected Changes and Guidelines for the Development of Adaptation Strategies in the National Economy); T.1; IMGW-PIB: Warszawa, Poland, 2012. (In Polish) [Google Scholar]
- Central Statistical Office. GUS Environment 2019; Central Statistical Office: Warsaw, Poland, 2019. Available online: www.stat.gov.pl (accessed on 23 September 2020).
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in precipitation totals in Poland. Geografie 2019, 124, 237–264. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index—SPEI. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Begueria, S.; Vicente-Serrano, S.M.; Angulo-Martinez, M. A multiscalar global drought dataset: The SPEIBASE A new gridded product for the analysis of drought variability and impacts. B. Am. Meteorol. Soc. 2010, 91, 1351–1354. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J. Moisture conditions in Poland in view of the SPEI index. Woda-Śr.-Obsz. Wiej. 2012, 12, 329–340. (In Polish) [Google Scholar]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Westra, S.; Maier, H.R. An R package for modelling actual, potential and reference evapotranspiration. Environ. Model. Softw. 2016, 78, 216–224. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage; Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. 6541. [Google Scholar]
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier: New York, NY, USA, 1994. [Google Scholar]
- NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary (accessed on 23 September 2020).
- Global Drought Monitor. Available online: https://spei.csic.es/https://spei.csic.es/ (accessed on 15 October 2020).
- Shukla, P.; Skea, R.; Buendia, J.E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. (Eds.) IPCC Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; 2019; in press; Available online: https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/ (accessed on 8 August 2019).
- Toll, V.; Post, P. Daily temperature and precipitation extremes in the Baltic Sea region derived from the BaltAn65+ reanalysis. Theor. Appl. Climatol. 2018, 132, 647–662. [Google Scholar] [CrossRef]
- Tomczyk, A.M. Atmospheric circulation during heat waves in Eastern Europe. Geografie 2017, 122, 121–146. [Google Scholar] [CrossRef]
- Graczyk, D.; Pińskwar, I.; Kundzewicz, Z.W.; Hov, Ø.; Førland, E.J.; Szwed, M.; Choryński, A. The heat goes on–changes in indices of hot extremes in Poland. Theor. Appl. Climatol. 2017, 129, 459. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J. Heat waves in Poland in the period 1951–2015: Trends, patterns and driving factors. Meteorol. Hydrol. Water Manag. 2018, 6, 37–45. [Google Scholar] [CrossRef]
- Taskinen, A.; Söderholm, K. Operational correction of daily precipitation measurements in Finland. Boreal. Env. Res. 2016, 21, 1–24. [Google Scholar]
- Szwed, M.; Pińskwar, I.; Kundzewicz, Z.W.; Graczyk, D.; Mezghani, A. Changes of snow cover in Poland. Acta Geophys. 2017, 65, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Rulfová, Z.; Kyselý, J. Trends of convective and stratiform precipitation in the Czech Republic, 1982–2010. Adv. Meteorol. 2014, 647938. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2019, 135, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Javadian, M.; Behrangi, A.; Smith, W.K.; Fisher, J.B. Global Trends in evapotranspiration dominated by increases across Large Cropland Regions. Remote Sens. 2020, 12, 1221. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Mohanty, M.; Bandyopadhyay, K.K.; Painuli, D.K.; Ghosh, P.K.; Misra, A.K.; Hai, K.M. Water transmission characteristics of a Vertisol and water use efficiency of rainfed soybean (Glycine max (L.) Merr.) under subsoiling and manuring. Soil Till. Res. 2007, 93, 420–428. [Google Scholar] [CrossRef]
- Lordan, J.; Pascual, M.; Villar, J.M.; Fonseca, F.; Papió, J.; Montilla, V.; Rufat, J. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard. Span. J. Agric. Res. 2015, 13, e0904. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
Station | Duration of Drought Event (Months)/Ranking | Duration of Drought Events Max–Min/Number | Cumulative Deficit Below −0.5/Ranking | Minimum Value/Ranking | Data of Minimum Value Occurrence |
---|---|---|---|---|---|
Szczecin | 23 */1 | 23–16/5 | −36.26/1 | −2.30/1 | 19 April |
Toruń | 21 */3 | 13–24/6 | −31.91/3 | −1.98/2 | 18 November |
Białystok | - | - | - | - | - |
Gorzów Wielkopolski | 18/4 | 23–13/6 | −26.96/2 | −2.13/2 | 19 April |
Poznań | 23 */2 | 24–23/2 | −42.30/1 | −2.23/1 | 19 June |
Warszawa | 24 */2 | 26–5/7 | −39.60/1 | −2.10/1 | 20 May |
Siedlce | 12 */4 | 21–8/7 | −15.32/4 | −1.66/5 | 20 January |
Terespol | 24 */1 (2) | 24–8/7 | −34.55/1 | −1.85/3 | 19 December |
Zielona Góra | 23 */2 | 47–15/5 | −38.24/2 | −2.18/1 | 19 April |
Wrocław | 26 */1 | 26–10/5 | −43.04/1 | −2.24/1 | 19 July |
Kalisz | 23 */2 (2) | 40–12/7 | −35.10/2 | −1.77/3 | 19 June |
Łódź | 21 */4 | 31–14/5 | −31.78/3 | −2.16/1 | 20 March |
Lublin | 23 */1 | 23–6/8 | −36.18/1 | −2.32/1 | 19 April |
Włodawa | 21 */2 | 25–8/8 | −29.52/2 | −1.93/7 | 20 January |
Station | Duration of Drought Event (Months)/Ranking | Duration of Drought Events Max–Min/Number | Cumulative Deficit Below −0.5/Ranking | Minimum Value/Ranking | Data of Minimum Value Occurrence |
---|---|---|---|---|---|
Szczecin | 12 */6 | 45–12/6 | −23.01/4 | −2.11/1 | 20 April |
Toruń | 12 */6 | 29–12/6 | −21.20/5 | −2.14/2 | 20 April |
Białystok | - | - | - | - | - |
Gorzów Wielkopolski | 12 */4 | 59–12/4 | −19.78/4 | −1.92/2 | 20 May |
Poznań | 23 */2 | 35–23/2 | −38.67/2 | −2.29/1 | 19 December |
Warszawa | 15 */4 | 25–14/5 | −28.41/3 | −2.49/1 | 20 February |
Siedlce | 12 */4 | 64–12/4 | −16.66/3 | −1.78/3 | 20 April |
Terespol | 16 */3 | 52–15/4 | −27.05/3 | −2.27/1 | 20 April |
Zielona Góra | 20 */4 | 54–13/5 | -28.95/3 | −2.12/1 | 20 January |
Wrocław | 25 */3 | 38–25/3 | −41.18/1 | −2.34/1 | 20 April |
Kalisz | 20 */5 | 41–20/5 | −27.72/4 | −2.05/1 | 20 April |
Łódź | 12 */4 | 39–12/4 | −19.34/4 | −1.99/2 | 20 April |
Lublin | 23 */2 | 33–12/4 | −37.95/2 | −2.39/1 | 20 April |
Włodawa | 16 */2 | 48–6/6 | −23.89/2 | −2.03/2 | 19 December |
Station | Duration of Drought Event (Months)/Ranking | Duration of Drought Events Max–Min/Number | Cumulative Deficit Below −0.5/Ranking | Minimum Value/Ranking | Data of Minimum Value Occurrence |
---|---|---|---|---|---|
Szczecin | 11 */5 | 39−11/5 | -14.75/5 | −2.13/1 | 20 May |
Toruń | 10 */6 | 27−10/6 | -12.87/6 | −2.13/2 | 20 April |
Białystok | - | - | - | - | - |
Gorzów Wielkopolski | 7 */4 | 60−7/4 | −9.37/4 | −1.86/2 | 20 May |
Poznań | 22 */3 | 49−22/3 | −35.13/3 | −2.26/1 | 20 May-20 |
Warszawa | 12 */6 | 36−12/6 | −22.87/6 | −2.61/1 | 20 April |
Siedlce | 11 */3 | 63−11/3 | −11.86/3 | −1.86/2 | 20 April |
Terespol | 14 */3 | 59−14/3 | −22.26/3 | −2.20/1 | 20 April |
Zielona Góra | 14 */3 | 49−14/3 | −20.60/3 | −2.06/1 | 20 May |
Wrocław | 24 */4 | 66−24/4 | −38.15/2 | −2.44/1 | 20 April |
Kalisz | 14 */4 | 53−14/4 | −20.73/4 | −2.13/1 | 20 April |
Łódź | 10 */5 | 47−10/5 | −12.47/5 | −2.13/1 | 20 April |
Lublin | 22 */2 | 32−22/2 | −35.25/2 | −2.51/1 | 20 April |
Włodawa | 14 */3 | 49−14/3 | −20.47/3 | −2.14/2 | 20 April |
Station | SPEI 12 | SPEI 24 | SPEI 30 | |||
---|---|---|---|---|---|---|
Value ≤ −2.0 | Record | Value ≤ −2.0 | Record | Value ≤ −2.0 | Record | |
Szczecin | - | - | J F M A M | J F M A M | _ _ _ _ M | J F M A M |
Toruń | - | - | J F M A _ | J _ M A _ | _ _ _ A M | _ _ _ A M |
Białystok | - | - | - | - | - | - |
Gorzów Wielkopolski | - | - | - | J _ _ A _ | - | - |
Poznań | - | _ _ _ _ M | J F M A M | J F M A M | J F M A M | J F M A M |
Warszawa | J F M _ M | J F M A M | J F M A M | J F M A M | _ _ M A M | J F M A M |
Siedlce | - | - | - | - | - | _ _ _ A M |
Terespol | - | J F M A M | J F M A _ | _ _ M A M | _ _ M A M | J F M A M |
Zielona Góra | - | - | J F M A M | J F M A M | _ _ _ A M | J F M A M |
Wrocław | - | _ _ _ A M | J F M A M | J F M A M | J F M A M | J F M A M |
Kalisz | - | _ _ _ A _ | _ _ _ A _ | J F M A M | _ _ _ A M | J F M A M |
Łódź | J F M A _ | J F M A _ | - | J F M A M | _ _ _ A M | _ _ M A M |
Lublin | - | - | J F M A _ | J F M A M | J _ M A M | J _ M A M |
Włodawa | - | - | - | _ _ _ A _ | _ _ _ A M | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pińskwar, I.; Choryński, A.; Kundzewicz, Z.W. Severe Drought in the Spring of 2020 in Poland—More of the Same? Agronomy 2020, 10, 1646. https://doi.org/10.3390/agronomy10111646
Pińskwar I, Choryński A, Kundzewicz ZW. Severe Drought in the Spring of 2020 in Poland—More of the Same? Agronomy. 2020; 10(11):1646. https://doi.org/10.3390/agronomy10111646
Chicago/Turabian StylePińskwar, Iwona, Adam Choryński, and Zbigniew W. Kundzewicz. 2020. "Severe Drought in the Spring of 2020 in Poland—More of the Same?" Agronomy 10, no. 11: 1646. https://doi.org/10.3390/agronomy10111646
APA StylePińskwar, I., Choryński, A., & Kundzewicz, Z. W. (2020). Severe Drought in the Spring of 2020 in Poland—More of the Same? Agronomy, 10(11), 1646. https://doi.org/10.3390/agronomy10111646