The Strategy for Marker-Assisted Breeding of Anthocyanin-Rich Spring Bread Wheat (Triticum aestivum L.) Cultivars in Western Siberia
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Breeding Strategy
2.2. Molecular Markers
2.3. Morphological Markers
2.4. Sowing, Phenotyping, and Grain Quality Analysis
3. Results
3.1. Marker-Assisted Selection
3.2. Field Screening and Characterization of the Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A



| Breeding Number | Cultivar/BC1F4 Line | Productivity, g/m2 | Protein,% | Gluten,% | Resistance * to | ||
|---|---|---|---|---|---|---|---|
| Powdery Mildew | Stem Rust | Leaf Rust | |||||
| cv Pamyati Aziyeva, check | 374 | 12.65 | 20.31 | MS | 20 MS | 20 MS | |
| cv Duet, check | 380 | 13.61 | 24.75 | MR | 50 S | 10 M | |
| cv Element22, check | 490 | 15.59 | 29.84 | MR | 5 M | 5 M | |
| 235 | (cv Element22 × i:S29PF) | 483 | 15.56 | 23.75 | MR | 30 MS | 10 MS |
| 236 | (cv Element22 × i:S29PF) | 452 | 16.19 | 24.61 | MR | 20 MS | 50 S |
| 237 | (cv Element22 × i:S29PF) | 490 | 16.32 | 26.22 | MR | 40 S | 20 S |
| 238 | (cv Element22 × i:S29PF) | 510 | 16.02 | 25.18 | MR | 5 M | 5 M |
| 239 | (cv Element22 × i:S29PF) | 687 | 14.99 | 23.34 | MR | 5 M | 10 MS |
| 240 | (cv Element22 × i:S29PF) | 522 | 15.46 | 21.85 | MR | 20 MS | 5 M |
| 249 | (cv Element22 × i:S29PF) | 617 | 16.12 | 26.29 | MR | 10 M | 15 M |
| 250 | (cv Element22 × i:S29PF) | 539 | 16.71 | 24.77 | MR | 20 MS | 15 MS |
| 251 | (cv Element22 × i:S29PF) 4 | 574 | 15.13 | 20.27 | MR | 40 S | 10 M |
| 253 | (cv Element22 × i:S29PF) | 593 | 15.54 | 23.95 | MR | 20 MS | 10 MS |
| 254 | (cv Element22 × i:S29PF) | 647 | 15.30 | 23.24 | MR | 10 MS | 10 MS |
| 255 | (cv Element22 × i:S29PF) | 597 | 16.39 | 26.63 | MR | 5 M | 10 MS |
| 256 | (cv Element22 × i:S29PF) | 468 | 14.03 | 32.84 | MR | 30 MS | 5 M |
| 257 | (cv Element22 × i:S29PF) | 304 | 15.62 | 22.24 | MR | 90 S | 0 R |
| 258 | (cv Element22 × i:S29PF) | 367 | 15.75 | 25.54 | MR | 80 S | 40 S |
| 259 | (cv Element22 × i:S29PF) | 409 | 13.18 | 22.17 | MR | 70 S | 5 M |
| 260 | (cv Element22 × i:S29PF) | 650 | 14.87 | 23.81 | MR | 10 M | 10 M |
| 261 | (cv Element22 × i:S29PF) | 513 | 16.32 | 26.22 | MS | 60 S | 5 M |
| 262 | (cv Element22 × i:S29PF) | 457 | 15.85 | 24.17 | MR | 40 S | 5 M |
| 263 | (cv Element22 × i:S29PF) | 499 | 15.26 | 22.38 | MR | 30 MS | 10 MS |
| 264 | (cv Element22 × i:S29PF) | 546 | 19.18 | 22.17 | MS | 50 S | 10 MS |
| 265 | (cv Element22 × i:S29PF) | 515 | 15.40 | 24.03 | MS | 30 S | 5 M |
| 266 | (cv Element22 × i:S29PF) | 570 | 15.34 | 24.45 | MR | 5 M | 5 M |
| 267 | (cv Element22 × i:S29PF) | 548 | 14.21 | 23.20 | MR | 60 S | 5 M |
| 268 | (STRU 0732 × i:S29PF) | 391 | 12.96 | 21.48 | MS | 80 S | 0 R |
| 269 | (STRU 0732 × i:S29PF) | 238 | 12.55 | 18.63 | R | 90 S | 30 MS |
| 270 | (STRU 0732 × i:S29PF) | 304 | 12.49 | 19.41 | MR | 90 S | 0 R |
| 271 | (STRU 0732 × i:S29PF) | 209 | 14.87 | 25.46 | MR | 90 S | 10 M |
| 272 | (STRU 0732 × i:S29PF) | 852 | 16.73 | 23.44 | R | 90 S | 5 M |
| 273 | (STRU 0732 × i:S29PF) | 162 | 14.20 | 26.15 | MR | 90 S | 5 M |
| 274 | (BW49880 × i:S29PF) | 370 | 15.97 | 26.13 | MR | 20 MS | 10 MS |
| 275 | (BW49880 × i:S29PF) | 440 | 16.19 | 26.62 | MR | 10 MS | 0 R |
| 279 | (BW49880 × i:S29P) | 357 | 17.46 | 28.98 | 5 | 10 M | 0 R |
| 281 | (BW49880 × i:S29PF) | 417 | 18.05 | 29.29 | MR | 5 M | 5 M |
| 294 | (cv Aina × i:S29PF) | 400 | 13.26 | 20.14 | MR | 80 S | 0 R |
| 295 | (cv Aina × i:S29PF) | 391 | 14.29 | 21.16 | MR | 90 S | 0 R |
| 296 | (cv Aina × i:S29PF) | 379 | 14.57 | 22.39 | MR | 90 S | 0 R |
| 297 | (cv Aina × i:S29PF) | 522 | 14.38 | 21.57 | MS | 60 S | 5 MS |
| 298 | (cv Aina × i:S29PF) | 461 | 14.03 | 21.33 | MS | 40 S | 15 S |
| 299 | (cv Aina × i:S29P) | 400 | 13.24 | 19.99 | MS | 90 S | 5 MS |
| 300 | (cv Aina × i:S29P) | 261 | 13.72 | 21.17 | MS | 80 S | 10 MS |
| 301 | (cv Aina × i:S29P) | 417 | 13.75 | 20.85 | MS | 80 S | 5 MS |
| 302 | (cv Aina × i:S29P) | 235 | 14.26 | 21.18 | MS | 90 S | 5 MS |
| 303 | (cv Aina × i:S29P) | 327 | 13.90 | 20.61 | MS | 90 S | 0 R |
| 304 | (cv Aina × i:S29P) | 391 | 14.26 | 23.20 | MR | 90 S | 0 R |
| 305 | (cv Aina × i:S29P) | 348 | 13.71 | 20.98 | MS | 90 S | 0 R |
| 306 | (cv Tobol’skaya × i:S29PF) | 346 | 13.08 | 19.73 | MR | 90 S | 0 R |
| 307 | (cv Tobol’skaya × i:S29PF) | 318 | 12.22 | 20.48 | MS | 90 S | 0 R |
| 310 | (cv Tobol’skaya × i:S29PF) | 330 | 13.26 | 19.68 | MR | 90 S | 0 R |
| 311 | (cv Tobol’skaya × i:S29PF) | 357 | 14.07 | 21.42 | MR | 90 S | 40 S |
| 312 | (cv Tobol’skaya × i:S29PF) | 330 | 12.88 | 20.45 | MS | 90 S | 40 S |
| 313 | (cv Tobol’skaya × i:S29PF) | 228 | 13.60 | 19.92 | MS | 90 S | 0 R |
| 314 | (cv Tobol’skaya × i:S29PF) | 323 | 13.25 | 20.11 | MR | 90 S | 0 R |
| 315 | (cv Tobol’skaya × i:S29PF) | 209 | 14.10 | 24.37 | MS | 90 S | 0 R |
| 316 | (cv Tobol’skaya × i:S29PF) | 296 | 12.89 | 20.96 | MS | 90 S | 0 R |
| 317 | (cv Tobol’skaya × i:S29 PF) | 174 | 14.48 | 23.86 | S | 90 S | 0 R |
| 318 | (cv Tobol’skaya × i:S29PF) | 278 | 13.60 | 21.04 | MS | 90 S | 0 R |
| 319 | (cv Tobol’skaya × i:S29PF) | 287 | 14.38 | 24.89 | MS | 30 MS | 0 R |


References
- Weststrate, J.A.; van Poppe, G.; Verschuren, P.M. Functional foods, trends and future. Br. J. Nutr. 2002, 88, S233–S235. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Tattini, M.; Gould, K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot. 2015, 119, 4–17. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; Huang, C. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. Eur. J. Pharmacol. 2019, 858, 172500. [Google Scholar] [CrossRef]
- Törrönen, R.; Kolehmainen, M.; Sarkkinen, E.; Poutanen, K.; Mykkänen, H.; Niskanen, L. Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. J. Nutr. 2013, 143, 430–436. [Google Scholar] [CrossRef]
- Tikhonova, M.A.; Amstislavskaya, T.G.; Akopyan, A.A.; Ovsyukova, M.V.; Tenditnik, M.V.; Khlestkina, E.K. Effects of diets rich in plant polyphenols in mouse models of neurodegenerative disorders. In Proceedings of the 12th International Multiconference: Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2020), Novosibirsk, Russia, 6–10 July 2020; p. 292. [Google Scholar] [CrossRef]
- Tenditnik, M.V.; Tikhonova, M.A.; Litvinova, E.A.; Popova, N.A.; Amstislavskaya, T.G.; Khlestkina, E.K. Effects of anthocyanin-rich grain diet on growth and metastasis of Lewis lung carcinoma in mice. In Proceedings of the 12th International Multiconference: Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2020), Novosibirsk, Russia, 6–10 July 2020; p. 359. [Google Scholar] [CrossRef]
- Gamel, T.H.; Abdel-Aal, E.S.M.; Tucker, A.J.; Pare, S.M.; Faughnan, K.; O’Brien, C.D.; Wright, A.J. Consumption of whole purple and regular wheat modestly improves metabolic markers in adults with elevated high-sensitivity C-reactive protein: A randomised, single-blind parallel-arm study. Br. J. Nutr. 2020, 1–11. [Google Scholar] [CrossRef]
- Zeven, A.C. Wheats with purple and blue grains: A review. Euphytica 1991, 56, 243–258. [Google Scholar] [CrossRef]
- Badaeva, E.D.; Shishkina, A.A.; Goncharov, N.P.; Zuev, E.V.; Lysenko, N.S.; Mitrofanova, O.P.; Dragovich, A.Y.; Kudriavtsev, A.M. Evolution of Triticum aethiopicum Jakubz. from the position of chromosome analysis. Russ. J. Genet. 2018, 54, 629–642. [Google Scholar] [CrossRef]
- Belay, G.; Tesemma, T.; Bechere, E.; Mitiku, D. Natural and human selection for purple-grain tetraploid wheats in the Ethiopian highlands. Gen. Res. Crop Evol. 1995, 42, 387–391. [Google Scholar] [CrossRef]
- Copp, L.G.L. Purple grain in hexaploid wheat. Wheat Inf. Serv. 1965, 20, 18. [Google Scholar]
- Jensen, N.F. Registration of Charcoal wheat germplasm. Crop Sci. 1977, 17, 983. [Google Scholar] [CrossRef]
- Morin, C. Crop Development Breeds Patience for USask Wheat Researcher. 2019. Available online: https://agbio.usask.ca/news/2019/12/news-crop-development-breeds-patience-for-usask-wheat-researcher.php (accessed on 20 August 2020).
- Griffin, W.B. Outcrossing in New Zealand wheats measured by occurrence of purple grain. New Zealand J. Agric. Res. 1987, 30, 287–290. [Google Scholar] [CrossRef]
- Syed Jaafar, S.N.; Baron, J.; Siebenhandl-Ehn, S.; Rosenau, T.; Böhmdorfer, S.; Grausgruber, H. Increased anthocyanin content in purple pericarp× blue aleurone wheat crosses. Plant Breed. 2013, 132, 546–552. [Google Scholar] [CrossRef]
- King, C. New Possibilities with Purple Wheat. 5 May 2017. Available online: https://www.topcropmanager.com/new-possibilities-with-purple-wheat-20050/ (accessed on 20 September 2020).
- Li, W.; Pickard, M.D.; Beta, T. Evaluation of antioxidant activity and electronic taste and aroma properties of antho-beers from purple wheat grain. J. Agric. Food Chem. 2007, 55, 8958–8966. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Garcia, J.A.A.; Correa, V.G.; Vieira, T.F.; Bracht, A.; Peralta, R.M. Pigments and vitamins from plants as functional ingredients: Current trends and perspectives. Adv. Food Nutr. Res. 2019, 90, 259–303. [Google Scholar] [CrossRef]
- Bartl, P.; Albreht, A.; Skrt, M.; Tremlová, B.; Ošťádalová, M.; Šmejkal, K.; Ulrih, N.P. Anthocyanins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015, 66, 514–519. [Google Scholar] [CrossRef]
- Khlestkina, E.K.; Usenko, N.I.; Gordeeva, E.I.; Stabrovskaya, O.I.; Sharfunova, I.B.; Otmakhova, Y.S. Evaluation of wheat products with high flavonoid content: Justification of importance of marker-assisted development and production of flavonoid-rich wheat cultivars. Vavilov. J. Genet. Breed. 2017, 21, 545–553. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gabarcorta, G.; Caponio, F.; Blanco, A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Usenko, N.I.; Khlestkina, E.K.; Asavasanti, S.; Gordeeva, E.I.; Yudina, R.S.; Otmakhova, Y.S. Possibilities of enriching food products with anthocyanins by using new forms of cereals. Foods Raw Mater. 2018, 6, 128–135. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; De Simone, V.; De Leonardis, A.M.; Giovanniello, V.; Del Nobile, M.A.; Padalino, L.; De Vita, P. Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chem. 2016, 100, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Gamel, T.H.; Wright, A.J.; Pickard, M.; Abdel-Aal, E.S.M. Characterization of anthocyanin-containing purple wheat prototype products as functional foods with potential health benefits. Cereal Chem. 2020, 97, 34–38. [Google Scholar] [CrossRef]
- Burešová, I.; Trojan, V.; Helis, M. Characteristics of flour and dough from purple and blue wheat grain. Potravin. Slovak J. Food Sci. 2019, 13, 163–166. [Google Scholar] [CrossRef]
- Morgounov, A.; Karaduman, Y.; Akin, B.; Aydogan, S.; Baenziger, P.S.; Bhatta, M.; Guzman, C. Yield and quality in purple-grained wheat isogenic lines. Agronomy 2020, 10, 86. [Google Scholar] [CrossRef]
- Khlestkina, E.K.; Shoeva, O.Y.; Gordeeva, E.I. Flavonoid biosynthesis genes in wheat. Russ. J. Genet. Appl. Res. 2015, 5, 268–278. [Google Scholar] [CrossRef]
- Shoeva, O.; Gordeeva, E.; Khlestkina, E. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules 2014, 19, 20266–20279. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, T.; Nan, W.; Jeewani, D.C.; Niu, Y.; Li, C.; Wang, Y.; Shi, X.; Wang, C.; Wang, J.; et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Botany 2018, 69, 2555–2567. [Google Scholar] [CrossRef]
- Himi, E.; Taketa, S. Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol. Genet. Genom. 2015, 290, 1287–1298. [Google Scholar] [CrossRef]
- Gordeeva, E.I.; Glagoleva, A.Y.; Kukoeva, T.V.; Khlestkina, E.K.; Shoeva, O.Y. Purple-grained barley (Hordeum vulgare L.): Marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant. Biol. 2019, 19, 49–57. [Google Scholar] [CrossRef]
- Arbuzova, V.S.; Maystrenko, O.I.; Popova, O.M. Development of near-isogenic lines of the common wheat cultivar ‘Saratovskaya 29’. Cereal Res. Commun. 1998, 26, 39–46. [Google Scholar] [CrossRef]
- Tereshchenko, O.; Gordeeva, E.; Arbuzova, V.; Börner, A.; Khlestkina, E. The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Com. 2012, 40, 334–341. [Google Scholar] [CrossRef]
- Chatrath, R.; Gupta, V.; Parkash, O.; Singh, G.P. Evaluation of biofortified spring wheat genotypes for yield and micronutrients. J. Appl. Nat. Sci. 2018, 10, 210–215. [Google Scholar] [CrossRef]
- Ghimire, S.; Thapa, D.B.; Paudel, A.; Adhikari, N.R. Variability study of biofortified bread wheat genotypes for grain Zinc and Iron concentration, yield and yield associated traits at Khumaltar, Lalitpur, Nepal. Int. J. Appl. Sci. Biotechnol. 2019, 7, 184–194. [Google Scholar] [CrossRef][Green Version]
- Röder, M.S.; Korzun, V.; Wendehake, K.; Plaschke, J.; Tixier, M.H.; Leroy, P.; Ganal, M.W. A microsatellite map of wheat. Genetics 1998, 149, 2007–2023. [Google Scholar]
- Ganal, M.W.; Röder, M.S. Microsatellite and SNP markers in wheat breeding. In Genomics-Assisted Crop Improvement; Springer: Dordrecht, Germany, 2007; pp. 1–24. [Google Scholar]
- Gordeeva, E.I.; Shoeva, O.Y.; Khlestkina, E.K. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica 2015, 203, 469–476. [Google Scholar] [CrossRef]
- Plaschke, J.; Ganal, M.W.; Röder, M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995, 91, 1001–1007. [Google Scholar] [CrossRef]
- Koyshybaev, M.; Shamanin, V.P.; Morgunov, A.I. Screening of Wheat for Resistance to Major Diseases; FAO-SEK: Ankara, Turkey, 2014. (In Russian) [Google Scholar]
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Martinek, P.; Jirsa, O.; Vaculova, K.; Chrpova, J.; Watanabe, N.; Buresova, V.; Kopecky, D.; Stiasna, K.; Vyhnanek, T.; Trojan, V. Use of wheat gene resources with different colour in breeding. Proc. Tag. Pflanz. 2014, 64, 1–4. [Google Scholar]
- Zykin, V.A.; Shamanin, V.P.; Belan, I.A. Ecology of Wheat: Monograph; Publishing house Omsk state Agrarian University: Omsk, Russia, 2000; p. 124. (In Russian) [Google Scholar]
- Likhenko, I.E.; Sovetov, V.V.; Anosov, S.I.; Likhenko, N.N. Formation of grain yield of Siberian cultivars of spring soft wheat under conditions of continental climate of Western Siberia. Res. Tech. Adv. Agribus. Sector 2014, 1, 27–30. (In Russian) [Google Scholar]
- Shamanin, V.P.; Pototskaya, I.V.; Shepelev, S.S.; Pozherukova, V.E.; Salina, Е.А.; Skolotneva, Е.S.; Morgounov, A.I. Stem rust in Western Siberia–race composition and effective resistance genes. Vavilov. J. Genet. Breed. 2020, 24, 131–138. [Google Scholar] [CrossRef]
- Khlestkina, E.K. Molecular markers in genetic studies and breeding. Russ. J. Genet. Appl. Res. 2014, 4, 236–244. [Google Scholar] [CrossRef]
- Luna-Vital, D.; Cortez, R.; Ongkowijoyo, P.; de Mejia, E.G. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model. Food Res. Int. 2018, 105, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhu, X.; Li, Y.; Wang, C. Analysis of the ph-dependent fe (iii) ion chelating activity of anthocyanin extracted from black soybean [Glycine max (L.) Merr.] coats. J. Agric. Food Chem. 2018, 66, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Shamanin, V.; Salina, E.; Wanyera, R.; Zelenskiy, Y.; Olivera, P.; Morgounov, A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica 2016, 212, 287–296. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Njau, P.; Wanyera, R.; Ward, R.W. Will stem rust destroy the world’s wheat crop? Adv. Agron. 2008, 98, 271–309. [Google Scholar]
- Babiker, E.; Ibrahim, A.M.; Yen, Y.; Stein, J. Identification of a microsatellite marker associated with stem rust resistance gene ‘sr35’ in wheat. Aust. J. Crop. Sci. 2009, 3, 195–200. [Google Scholar]
- Gupta, S.K.; Charpe, A.; Koul, S.; Haque, Q.M.R.; Prabhu, K.V. Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 2006, 150, 233–240. [Google Scholar] [CrossRef]
- Jin, Y.; Szabo, L.J.; Pretorius, Z.A.; Singh, R.P.; Ward, R.; Fetch, T. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp tritici. Plant Dis. 2008, 92, 923–926. [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Shaydayuk, E.L.; Shamanin, V.P.; Akhmetova, A.K.; Tyunin, V.A.; Shreider, E.R.; Morgunov, A.I. Genetic structure of Russian and Kazakhstani leaf rust causative agent Puccinia triticina Erikss. populations as assessed by virulence profiles and SSR markers. Agric. Biol. 2018, 53, 85–95. [Google Scholar] [CrossRef]
- Spielmeyer, W.; Sharp, P.J.; Lagudah, E.S. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop. Sci. 2003, 43, 333–336. [Google Scholar]
- Aktar-Uz-Zaman, M.; Tuhina-Khatun, M.; Hanafi, M.M.; Sahebi, M. Genetic analysis of rust resistance genes in global wheat cultivars: An overview. Biotechnol. Biotechnol. Equip. 2017, 31, 431–445. [Google Scholar] [CrossRef]
- Huerta-Espino, J.; Singh, R.; Crespo-Herrera, L.A.; Villaseñor-Mir, H.E.; Rodriguez-Garcia, M.F.; Dreisigacker, S.; Lagudah, E. Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico. Front. Plant Sci. 2020, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Huerta-Espino, J.; Bhavani, S.; Herrera-Foessel, S.A.; Singh, D.; Singh, P.K.; Crossa, J. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 2011, 179, 175–186. [Google Scholar] [CrossRef]

| Cultivar/Line | Seed Coat Color | Pedigree | Characterization | Origin |
|---|---|---|---|---|
| cv Element 22 | Red | GRANIT/SARATOVSKAYA 29/3/ERYTHROSPERMUM 59//TSELINNAYA 20/TERTSIYA | Mid-late ripening, resistance genes: Sr35 (3AL), Lr26, Sr31, Yr9, Pm8 (1BS) | P.A. Stolypin Omsk State Agrarian University, Russia |
| cv Aina | Red | TSELINNAYA YUBILIENAYA/2*PASTOR/3/BABAX/LR43//BABAX | Medium ripening, resistance genes: Lr24/Sr24 (3DL) | Karabalyk Agricultural Experimental Station, Kazakhstan |
| cv Tobol’skaya | White | LUTESCENS 123-S/OMSKAYA20 | Mid-late ripening, high drought tolerance, good grain quality, resistance to head smut | Altai Research Institute of Agriculture, and “Kurgansemena” Ltd. |
| BW 49880 | White | VILLA JUAREZ F2009/SOLALA//WBLL1*2/BRAMBLING | Medium early ripening, complex resistance to stem and leaf rust, zinc biofortified grain | Breeding line with high Zn concentration (CIMMYT, INT), successfully used in many breeding programs [37,38]. |
| STRU 0732-84k 071 | Red | - | Medium ripening, good grain quality, short-stemmed | Breeding line was kindly provided by Andreas Jacobi (Strube D&S GmbH, Söllingen, Germany) |
| Chr | GWM Markers |
|---|---|
| 2A | Xgwm 0294, 0312, 0445, 0817, 0328, 4204 |
| 7D | Xgwm 0437, 1044, 0111, 0676, 0044, 1002 |
| No. | Crossing Combinations | Total Number of the F2 Seeds Planted for Coleoptile Color Test | Number of F2 Seedlings with Dark-Red Coleoptile, Planted for SSR-Genotyping and Crossing | Number of F2 Plants Genotyped with SSR-Markers to Select Pp-D1Pp-D1Pp3Pp3 Genotypes | Number of F2 Genotypes Pp-D1Pp-D1Pp3Pp3 Used in Crosses with Recipient |
|---|---|---|---|---|---|
| 1 | cv Aina × i:S29PF | 14 | 10 | 10 | 3 |
| 2 | cv Aina × i:S29P | 8 | 4 | 4 | 1 |
| 3 | BW49880 × i:S29PF | 80 | 50 | 24 | 7 |
| 4 | BW49880 × i:S29P | 80 | 50 | 24 | 6 |
| 5 | cv Element22 × i:S29PF | 80 | 50 | 24 | 3 |
| 6 | cv Element22 × i:S29P | 80 | 50 | 24 | 3 |
| 7 | cv Tobol’skaya × i:S29PF | 18 | 13 | 13 | 4 |
| 8 | cv Tobol’skaya × i:S29P | 80 | 50 | 24 | 7 |
| 9 | STRU 0732-84k 071 × i:S29PF | 80 | 50 | 24 | 6 |
| 10 | STRU 0732-84k 071 × i:S29P | 80 | 50 | 24 | 5 |
| Breeding Number | Cultivar/BC1F4 Line | Grain Weight, g/m2 | Exceeding the Check ± g/m2 | Vegetation Period, Days | Heading Date | Resistance * to | ||
|---|---|---|---|---|---|---|---|---|
| Powdery Mildew | Stem Rust | Leaf Rust | ||||||
| Medium Early | ||||||||
| cv Pamyati Aziyeva, check | 374 | 72 | 10 July | MS | 20 MS | 20 MS | ||
| 275 | (BW49880 × i:S29PF) | 440 | +66 | 72 | 10 July | MR | 10 MS | 0 R |
| 281 | (BW49880 × i:S29PF) | 417 | +43 | 76 | 10 July | MR | 5 M | 5 M |
| Mid-Season | ||||||||
| cv Duet, check | 380 | 78 | 13 July | MR | 50 S | 10 M | ||
| 297 | (cv Aina × i:S29PF) | 522 | +142 | 79 | 10 July | MS | 60 S | 5 MS |
| 298 | (cv Aina × i:S29PF) | 461 | +81 | 79 | 10 July | MS | 40 S | 15 S |
| 301 | (cv Aina × i:S29P) | 417 | +37 | 78 | 12 July | MS | 80 S | 5 MS |
| Mid-Late | ||||||||
| cv Element22, check | 490 | 85 | 15 July | MR | 5 M | 5 M | ||
| 239 | (cv Element22 × i:S29PF) | 687 | +197 | 84 | 14 July | MR | 5 M | 10 MS |
| 240 | (cv Element22 × i:S29PF) | 522 | +32 | 84 | 12 July | MR | 20 MS | 5 M |
| 249 | (cv Element22 × i:S29PF) | 617 | +127 | 86 | 11 July | MR | 10 M | 15 M |
| 250 | (cv Element22 × i:S29PF) | 539 | +49 | 86 | 15 July | MR | 20 MS | 15 MS |
| 251 | (cv Element22 × i:S29PF) | 584 | +94 | 86 | 13 July | MR | 40 S | 10 M |
| 253 | (cv Element22 × i:S29PF) | 593 | +103 | 85 | 15 July | MR | 20 MS | 10 MS |
| 254 | (cv Element22 × i:S29PF) | 647 | +157 | 85 | 13 July | MR | 10 MS | 10 MS |
| 255 | (cv Element22 × i:S29PF) | 597 | +107 | 84 | 17 July | MR | 5 M | 10 MS |
| 260 | (cv Element22 × i:S29PF) | 650 | +160 | 84 | 12 July | MR | 10 M | 10 M |
| 264 | (cv Element22 × i:S29PF) | 546 | +56 | 84 | 11 July | MS | 50 S | 10 MS |
| 266 | (cv Element22 × i:S29PF) | 570 | +80 | 85 | 12 July | MR | 5 M | 5 M |
| 267 | (cv Element22 × i:S29PF) | 548 | +58 | 85 | 13 July | MR | 60 S | 5 M |
| HCP0,05 | 28.5 | |||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordeeva, E.; Shamanin, V.; Shoeva, O.; Kukoeva, T.; Morgounov, A.; Khlestkina, E. The Strategy for Marker-Assisted Breeding of Anthocyanin-Rich Spring Bread Wheat (Triticum aestivum L.) Cultivars in Western Siberia. Agronomy 2020, 10, 1603. https://doi.org/10.3390/agronomy10101603
Gordeeva E, Shamanin V, Shoeva O, Kukoeva T, Morgounov A, Khlestkina E. The Strategy for Marker-Assisted Breeding of Anthocyanin-Rich Spring Bread Wheat (Triticum aestivum L.) Cultivars in Western Siberia. Agronomy. 2020; 10(10):1603. https://doi.org/10.3390/agronomy10101603
Chicago/Turabian StyleGordeeva, Elena, Vladimir Shamanin, Olesya Shoeva, Tatyana Kukoeva, Alexey Morgounov, and Elena Khlestkina. 2020. "The Strategy for Marker-Assisted Breeding of Anthocyanin-Rich Spring Bread Wheat (Triticum aestivum L.) Cultivars in Western Siberia" Agronomy 10, no. 10: 1603. https://doi.org/10.3390/agronomy10101603
APA StyleGordeeva, E., Shamanin, V., Shoeva, O., Kukoeva, T., Morgounov, A., & Khlestkina, E. (2020). The Strategy for Marker-Assisted Breeding of Anthocyanin-Rich Spring Bread Wheat (Triticum aestivum L.) Cultivars in Western Siberia. Agronomy, 10(10), 1603. https://doi.org/10.3390/agronomy10101603

