Postharvest Treatments Improve Quality of Cut Peony Flowers
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Vase Life Parameters
2.3. Water Balance Parameters
2.4. Bacterial Levels in Holding Solutions
2.5. Anatomical Studies of Stem Blockages
2.6. Biochemical Analyses
2.7. Oxidative Stress
2.8. Statistical Analysis
3. Results
3.1. Vase Life and Flower Diameter
3.2. Water Balance
3.3. Biochemical Changes
3.4. Oxidative Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holloway, P.S.; Buchholz, K. The state of the Alaska peony industry 2012. AFES. Misc. Pub. 2013, 3, 1–8. [Google Scholar]
- Xue, J.; Tang, Y.; Wang, S.; Yang, R.; Xue, Y.; Wu, C.; Zhang, X. Assessment of vase quality and transcriptional regulation of sucrose transporter and invertase genes in cut peony (Paeonia lactiflora ‘Yang Fei Chu Yu’) treated by exogenous sucrose. Postharvest Biol. Technol. 2018, 143, 92–101. [Google Scholar] [CrossRef]
- Zhao, D.; Cheng, M.; Tang, W.; Liu, D.; Zhou, S.; Meng, J.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 2018, 255, 1001–1013. [Google Scholar] [CrossRef]
- Heuser, C.W.; Evensen, K.B. Cut flower longevity of peony. J. Am. Soc. Hortic. Sci. 1986, 111, 896–899. [Google Scholar]
- Gast, K.; McLaren, J.; Kampjes, R. Identification of bud maturity indicators for fresh-cut peony flowers. Acta Hortic. 2001, 543, 317–325. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Barzilay, A.; Erez, A.; Halevy, A.H. Temperature requirements for floral development of herbaceous peony cv. ‘Sarah Bernhardt’. Sci. Hortic. 2003, 97, 309–320. [Google Scholar] [CrossRef]
- Holloway, P. Peonies as field grown cut flowers in Alaska. Chronica Hortic. 2019, 59, 25–29. [Google Scholar]
- Halevy, A.; Mayak, S. Senescence and postharvest physiology of cut flowers, part 1. Hortic. Rev. 1979, 1, 204–236. [Google Scholar]
- van Doorn, W.G. Water relations of cut flowers. Hortic. Rev. 1997, 18, 1–85. [Google Scholar]
- Mayak, S.; Halevy, A.H. Senescence in Plants; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Pun, U.K.; Ichimura, K. Role of sugars in senescence and biosynthesis of ethylene in cut flowers. JARQ 2003, 37, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Van Doorn, W.G. Is petal senescence due to sugar starvation? Plant Physiol. 2004, 134, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.S.; Jiang, C.Z. Postharvest biology and technology of cut flowers and potted plants. Hort. Rev. 2012, 40, 1–54. [Google Scholar]
- da Silva, J.A.T. The cut flower: Postharvest considerations. J. Biol. Sci. 2003, 3, 406–442. [Google Scholar]
- van Doorn, W.G.; Abadie, P.; Belde, P. Alkylethoxylate surfactants for rehydration of roses and Bouvardia flowers. Postharvest Biol. Technol. 2001, 24, 327–333. [Google Scholar] [CrossRef]
- Seyed, H.; Farokhzad, A.; Ghasemi, C. Using of preservative solutions to improve postharvest life of Rosa Hybrid cv. Black Magic. J. Agric. Technol. 2012, 8, 1801–1810. [Google Scholar]
- Redman, P.B.; Dole, J.M.; Maness, N.O.; Anderson, J.A. Postharvest handling of nine specialty cut flower species. Sci. Hortic. 2002, 92, 293–303. [Google Scholar] [CrossRef]
- Halevy, A.H.; Mayak, S. Senescence and postharvest physiology of cut flowers, part 2. Hortic. Rev. 1981, 3, 59–143. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Furno, F.; Morley, K.S.; Wong, B.; Sharp, B.L.; Arnold, P.L.; Howdle, S.M.; Bayston, R.; Brown, P.D.; Winship, P.D.; Reid, H.J. Silver nanoparticles and polymeric medical devices, a new approach to prevention of infection. J. Antimicrob. Chemother. 2004, 54, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.Z.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Tran, Q.H.; Nguyen, V.Q.; Le, A.T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, A.K.; Suh, J.K. Effect of certain pre-treatment sub-stances on vase life and physiological character in lily (Lilium spp.). Acta Hortic. 2005, 673, 307–314. [Google Scholar] [CrossRef]
- Solgi, M.; Kafi, M.; Taghavi, T.S.; Naderi, R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol. Technol. 2009, 53, 155–158. [Google Scholar] [CrossRef]
- Lü, P.; He, S.; Li, H.; Cao, J.; Xu, H.L. Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. J. Food Agric. Environ. 2010, 8, 1118–1122. [Google Scholar]
- Kader, H.H.A. Effects of nanosilver holding and pulse treatments, in comparison with traditional silver nitrate pulse on water relations and vase life and quality of the cut flowers of Rosa hybrida L. cv. ‘Tineke’. World Appl. Sci. J. 2012, 20, 130–137. [Google Scholar]
- Kazemi, M.; Ameri, A. Postharvest life of cut gerbera flowers as affected by nano-silver and acetylsalicylic acid. Asian J. Biochem. 2012, 7, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Ratnayake, K.; Joyce, D.C.; He, S.G.; Zhang, Z.Q. Effects of three different nano-silver formulations on cut Acacia holosericea vase life. Postharvest Biol. Technol. 2012, 66, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Bahremand, S.; Razmjoo, J.; Farahmand, H. Effects of nano-silver and sucrose applications on cut flower longevity and quality of tuberose (Polianthus tuberosa). Int. J. Hortic. Sci. Technol. 2014, 1, 67–77. [Google Scholar]
- Hashemabadi, D. The role of silver nano-particles and silver thiosulfate on the longevity of cut carnation (Dianthus caryophyllus) flowers. J. Environ. Biol. 2014, 35, 661–666. [Google Scholar]
- Jędrzejuk, A.; Rabiza-Świder, J.; Skutnik, E.; Łukaszewska, A. Some factors affecting longevity of cut lilacs. Postharvest Biol. Technol. 2016, 111, 247–255. [Google Scholar] [CrossRef]
- Naing, A.H.; Win, N.M.; Hang, J.S.; Lim, K.B.; Kim, C.K. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant Sci. 2017, 8, 1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Rochala-Wojciechowska, J. Nanosilver and sucrose delay the senescence of cut snapdragon flowers. Postharvest Biol. Technol. 2020, 165, 111165. [Google Scholar] [CrossRef]
- Skutnik, E.; Jędrzejuk, A.; Rabiza-Świder, J.; Rochala-Wojciechowska, J.; Latkowska, M.; Łukaszewska, A. Nanosilver as a novel biocide for control of senescence in garden cosmos. Sci. Rep. 2020, 10, 10274. [Google Scholar] [CrossRef]
- Eason, J.; Pinkney, T.; Heyes, J.; Brash, D.; Bycroft, B. Effect of storage temperature and harvest bud maturity on bud opening and vasesssssss life of Paeonia lactiflora cultivars. N. Z. J. Crop Hortic. Sci. 2002, 30, 61–67. [Google Scholar] [CrossRef]
- Yu, X.-N.; Guo, P.-P.; Lu, G.-P.; Zhang, Q.-X. Optimum harvesting time of herbaceous peony buds for cutting flowers. J. For. Res. 2011, 22, 137–140. [Google Scholar] [CrossRef]
- He, S.; Joyce, D.C.; Irving, D.E.; Faragher, J.D. Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorescences. Postharvest Biol. Technol. 2006, 41, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 357–380. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar]
- Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 1957, 67, 10–15. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Goth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef]
- van Doorn, W.G.; Woltering, E.J. Physiology and molecular biology of petal senescence. J. Exp. Bot. 2008, 59, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Li, H.; Lin, S.; Xu, M.; Liu, J.; Li, Y.; He, S. Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with nano-silver and sucrose. J. Hortic. Sci. Biotechnol. 2019, 94, 513–521. [Google Scholar] [CrossRef]
- van Doorn, W.G. Vascular occlusion in cut flowers I. General principles and recent advances. Acta Hortic. 1999, 482, 59–64. [Google Scholar] [CrossRef]
- Jędrzejuk, A.; Rochala, J.; Zakrzewski, J.; Rabiza-Świder, J. Identification of xylem occlusions occurring in cut clematis (Clematis L., fam. Ranunculaceae Juss.) stems during their vase life. Sci. World J. 2012, 2012, 749281. [Google Scholar]
- Li, H.; Huang, X.; Li, J.; Liu, J.; Joyce, D.; He, S. Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biol. Technol. 2012, 74, 36–41. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A. The effect of preservatives on water balance in cut clematis flowers. J. Horticul. Sci. Biotechnol. 2017, 92, 270–278. [Google Scholar] [CrossRef]
- Liu, J.; He, S.; Zhang, Z.; Cao, J.; Lv, P.; He, S.; Cheng, G.; Joyce, D.C. Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol. Technol. 2009, 54, 59–62. [Google Scholar] [CrossRef]
- Loubaud, M.; van Doorn, W.G. Wound-induced and bacteria-induced xylem blockage in rose, Astilbe, and Viburnum. Postharvest Biol. Technol. 2004, 32, 281–288. [Google Scholar] [CrossRef]
- van Meeteren, U. Role of air embolism and low water temperature in water balance of cut chrysanthemum flowers. Sci. Hort. 1992, 51, 275–284. [Google Scholar] [CrossRef]
- van Doorn, W.G.; Reid, M.S. Vascular occlusion in stems of cut rose flowers exposed to air. Role of xylem anatomy and rates of transpiration. Physiol. Plant 1995, 93, 624–629. [Google Scholar] [CrossRef]
- van Doorn, W.G. Water relations of cut flowers: An update. Hortic. Rev. 2012, 40, 55–106. [Google Scholar]
- Liu, J.P.; Zhang, Z.Q.; Li, H.M.; Xian, X.J.; Huang, X.M.; He, S.G. Nano-silver treatments alleviated bacterial blockage in cut carnation stems. Acta Hortic. Sin. 2014, 41, 131–138. [Google Scholar]
- Li, H.B.; Li, H.M.; Liu, J.P.; Luo, Z.H.; Joyce, D.C.; He, S.G. Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’ spikes. Postharvest Biol. Technol. 2017, 123, 102–111. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A. The effect of a sugar-containing preservative on senescence-related processes in cut clematis flowers. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Eason, J.R.; de Vré, L.A.; Somerfield, S.D.; Heyes, J.A. Physiological changes associated with Sandersonia aurantiaca flower senescence in response to sugar. Postharvest Biol. Technol. 1997, 12, 43–50. [Google Scholar] [CrossRef]
- Walton, E.F.; Boldingh, H.L.; McLaren, G.F.; Williams, M.H.; Jackman, R. The dynamics of starch and sugar utilization in cut peony (Paeonia lactiflora Pall.) stems during storage and vase life. Postharvest Biol. Technol. 2010, 58, 142–146. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Dole, J. Herbaceous peony (Paeonia): Genetics, physiology and cut flower production. Floricult. Ornam. Biotechnol. 2012, 6, 62–77. [Google Scholar]
- Olley, C.M.; Joyce, D.C.; Irving, D.E. Changes in sugar, protein, respiration, and ethylene in developing and harvested Geraldton waxflower (Chamelaucium uncinatum) flowers. N. Z. J. Crop Hortic. Sci. 1996, 24, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, P.; Rubinstein, B. Characterization of proteolytic activity during senescence in daylilies. Physiol. Plant. 1998, 104, 463–473. [Google Scholar] [CrossRef]
- Pak, C.; van Doorn, W.G. Delay of Iris flower senescence by protease inhibitors. New Phytol. 2005, 165, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Azeez, A.; Sane, A.P.; Bhatnagar, D.; Nath, P. Enhanced expression of serine proteases during floral senescence in Gladiolus. Phytochemistry 2007, 68, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Lerslerwong, L.; Ketsa, S.; van Doorn, W.G. Protein degradation and peptidase activity during petal senescence in Dendrobium cv. Khao Sanan. Postharvest Biol. Technol. 2009, 52, 84–90. [Google Scholar] [CrossRef]
- Kumar, N.; Srivastava, G.C.; Dixit, K. Hormonal regulation of flower senescence in roses (Rosa hybrida L.). Plant Growth Regul. 2008, 55, 65–71. [Google Scholar] [CrossRef]
- Zhang, L.; Becker, D.F. Connecting proline metabolism and signaling pathways in plant senescence. Front. Plant Sci. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Pal, M.; Srivastava, G.C. Proline metabolism in senescing rose petals (Rosa hybrida L. ‘First Red’). J. Hortic. Sci. Biotechnol. 2009, 84, 536–540. [Google Scholar] [CrossRef]
- Yakimova, E.; Atanassova, B.; Kapchina-Toteva, V. Longevity and some metabolic events in postharvest spray-carnation (D. caryophyllus f. spray, Hort) flowers. Bulg. J. Plant Physiol. 1997, 23, 57–65. [Google Scholar]
- Kazemi, M.; Aran, M.; Zamani, S. Extending the vase life of lisianthus (Eustoma grandiflorum Mariachi cv. Blue) with different preservative. Am. J. Plant Physiol. 2011, 6, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Panavas, T.; Rubinstein, B. Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci. 1998, 133, 125–138. [Google Scholar] [CrossRef]
- Attri, L.K.; Nayyar, H.; Bhanwra, R.K.; Pehwal, A. Pollination-induced oxidative stress in floral organs of Cymbidium pendulum (Roxb.) Sw. and Cymbidium aloifolium (L.) Sw. (Orchidaceae): A biochemical investigation. Sci. Hortic. 2008, 116, 311–317. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ali, E.F.; El-Deeb, B. Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Sci. Hortic. 2014, 179, 340–348. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Chatterjee, J.; Datta, S.K. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul. 2007, 53, 107–115. [Google Scholar] [CrossRef]
Cultivar | Vase Life (Days) | ||||
---|---|---|---|---|---|
Water | 8-HQC + S | NS + S | Chrysal Sachet | Florafile 300 | |
Albert Crousse | BC 1 13.1 b 2 | 12.6 ab | 11.0 a | 11.8 a | 13.5 b |
Charles Binder | C 14.6 bc | 13.8 b | 15.6 c | 11.4 a | 13.2 b |
Duchesse de Nemours | A 8.8 a | 9.3 a | 10.3 b | - | - |
Festiva Maxima | A 8.8 a | 9.0 a | 10.2 a | 8.4 a | 9.2 a |
Gayborder June | AB 10.0 b | 8.6 a | 10.3 b | 9.2 a | 9.1 a |
Graziella | D 19.9 ab | 21.9 b | - | 18.0 a | 20.1 b |
Hania | AB 9.7 a | 10.8 ab | 11.2 b | 11.0 ab | 11.2 b |
Jadwiga | B 11.0 a | 11.0 a | 11.0 a | 11.0 a | 11.0 a |
Kabata | B 11.3 a | 9.7 a | 11.3 a | 10.9 a | 10.8 a |
Königin Wilhelmina | AB 10.4 a | 9.8 a | - | 12.3 b | 11.4 a |
Laura Dessert | AB 9.7 a | 10.7 a | 9.5 a | 9.6 a | 10.8 a |
Ursynów | A 8.2 a | 8.7 ab | 10.0 bc | 10.5 c | 9.0 ab |
Vogue | BC 12.6 b | 12.0 ab | - | 11.4 a | 11.8 ab |
Wiesbaden | A 6.9 a | 9.1 b | 9.3 b | - | - |
Cultivar | Flower Diameter (cm) | ||||
---|---|---|---|---|---|
Water | 8-HQC + S | NS + S | Chrysal Sachet | Florafile 300 | |
Albert Crousse | CD 1 10.7 a 2 | 12.9 b | 12.8 b | 11.8 ab | 11.7 ab |
Charles Binder | C 10.3 a | 9.8 a | 9.7 a | 10.7 a | 9.3 a |
Duchesse de Nemours | E 13.7 a | 15.8 ab | 16.5 b | - | - |
Festiva Maxima | BC 9.1 a | 9.7 a | 8.8 a | 7.8 a | 9.2 a |
Gayborder June | CD 11.1 a | 11.8 ab | 10.5 a | 13.0 b | 12.5 ab |
Graziella | A 6.8 a | 10.7 b | - | 6.7 a | 6.6 a |
Kabata | C 10.3 a | 12.0 bc | 13.0 c | 10.8 ab | 9.4 a |
Königin Wilhelmina | CD 10.7 a | 11.1 a | - | 9.0 a | 12.8 b |
Laura Dessert | E 13.7 a | 15.8 b | 16.5 b | - | - |
Ursynów | CD 11.0 a | 14.0 b | 11.2 a | 12.0 a | 11.8 a |
Vogue | AB 7.2 a | 8.7 ab | - | 8.2 ab | 9.4 b |
Wiesbaden | D 11.5 ab | 11.2 ab | 11.7 b | - | - |
Treatments | Water Uptake (g stem−1 day−1) | Transpiration Rate (g stem−1 day−1) | Relative Fresh Weight (%) | Number of Bacteria (CFU mL−1) |
---|---|---|---|---|
water | 16.95 ± 4.05 b 1 | 16.76 ± 3.05 b 1 | 123.32 ± 12.25 a 1 | 2.00·10−5 a 2 |
8-HQC + S | 13.72 ± 3.23 ab | 12.30 ± 2.89 ab | 154.55 ± 14.35 b | 2.90·10−5 b |
NS + S | 11.15 ± 3.92 a | 10.20 ± 3.83 a | 133.37 ± 14.70 a | 2.20·10−5 a |
Cultivar | Treatments | Reducing Sugars (mg g−1DW) | Soluble Proteins (mg g−1DW) | Free Amino Acids (mg g−1DW) | Free Proline (mg g−1DW) |
---|---|---|---|---|---|
Charles Binder | water | 229.58 a 1 | 20.87 a 1 | 28.60 c 1 | 0.53 b 1 |
8-HQC + S | 239.15 a | 21.89 b | 14.04 a | 0.18 a | |
NS + S | 251.75 a | 20.55 a | 18.67 b | 0.24 a | |
Festiva Maxima | water | 202.00 a | 18.96 b | 38.36 c | 0.90 c |
8-HQC + S | 205.58 a | 20.14 c | 15.60 a | 0.23 a | |
NS + S | 261.15 b | 16.32 a | 20.92 b | 0.57 b | |
Gayborder June | water | 213.63 a | 17.89 a | 29.08 c | 0.20 b |
8-HQC + S | 202.76 a | 19.12 b | 19.42 a | 0.15 a | |
NS + S | 204.31 a | 17.82 a | 19.97 b | 0.15 a |
Cultivar | Treatments | Hydrogen Peroxide (µg g−1 DW) | Catalase Activity (mkatals g−1 DW) |
---|---|---|---|
Albert Crousse | water | 114.10 a 1 | 2.84 a 1 |
8-HQC + S | 141.67 b | 3.63 ab | |
NS + S | 140.67 b | 4.54 b | |
Gayborder June | water | 137.20 a | 3.69 b |
8-HQC + S | 128.77 a | 3.15 a | |
NS + S | 151.20 b | 3.21 a | |
Ursynów | water | 103.80 a | 0.80 a |
8-HQC + S | 104.90 a | 0.83 a | |
NS + S | 116.33 b | 0.80 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Łukaszewska, A. Postharvest Treatments Improve Quality of Cut Peony Flowers. Agronomy 2020, 10, 1583. https://doi.org/10.3390/agronomy10101583
Rabiza-Świder J, Skutnik E, Jędrzejuk A, Łukaszewska A. Postharvest Treatments Improve Quality of Cut Peony Flowers. Agronomy. 2020; 10(10):1583. https://doi.org/10.3390/agronomy10101583
Chicago/Turabian StyleRabiza-Świder, Julita, Ewa Skutnik, Agata Jędrzejuk, and Aleksandra Łukaszewska. 2020. "Postharvest Treatments Improve Quality of Cut Peony Flowers" Agronomy 10, no. 10: 1583. https://doi.org/10.3390/agronomy10101583
APA StyleRabiza-Świder, J., Skutnik, E., Jędrzejuk, A., & Łukaszewska, A. (2020). Postharvest Treatments Improve Quality of Cut Peony Flowers. Agronomy, 10(10), 1583. https://doi.org/10.3390/agronomy10101583