Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuczuk, A. The productive-economic results of paprika cultivation in organic farming conditions. J. Res. App. Agric. Eng. 2011, 56, 243–249. [Google Scholar]
- Jakubas, A.; Sękara, A.; Cebula, S.; Kalisz, A. Ocena wzrostu i plonowania polskich odmian papryki słodkiej (Capsicium annuum L) w uprawie polowej. Episteme 2013, 20, 341–356. [Google Scholar]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum Species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef]
- Lee, S.; Kader, A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods. 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chang, T.T.; Guo, S.R.; Xu, Z.G.; Li, J. Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. Acta Horticulturae 2011, 907, 325–330. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.-H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Puternicki, A. Zastosowanie półprzewodnikowych źródeł światła do wspomagania wzrostu roślin. Prace Instytutu Elektrotechniki 2010, 245, 69–86. [Google Scholar]
- Mitchell, C.A.; Both, A.J.; Bourget, M.C.; Burr, J.F.; Kubota, C.; Lopez, R.G.; Morrow, R.C.; Runkle, E.S. LEDs: The future of greenhouse lighting! Chronica Horticulturae 2012, 52, 6–12. [Google Scholar]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2015, 95, 869–887. [Google Scholar] [CrossRef]
- Kalaitzoglou, P.; van Ieperen, W.; Harbinson, J.; van der Meer, M.; Martinakos, S.; Weerheim, K.; Nicole, C.C.S.; Marcelis, L.F.M. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption and fruit production. Front. Plant Sci. 2019, 10, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amalfitano, C.; Del Vacchio, L.; Somma, S.; Cuciniello, A.; Caruso, G. Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of ‘Friariello’ pepper grown in hydroponics. Hort. Sci. 2017, 44, 91–98. [Google Scholar]
- Ciereczko, I. Kontrola metabolizmu sacharozy u roślin w odpowiedzi na zmienne warunki środowiska. Kosmos 2006, 55, 229–241. [Google Scholar]
- Richardson, A.E. Regulating the phosphorus nutrition of plants: Molecular biology meeting agronomic needs. Plant Soil. 2009, 322, 17–24. [Google Scholar] [CrossRef]
- Schröder, J.J.; Cordell, D.; Smit, A.L.; Rosemarin, A. Sustainable Use of Phosphorus; Technical Report 357 for Plant Research International; Wageningen University and Research Centre: Wageningen, The Netherlands, 2010. [Google Scholar]
- Rychter, A.M.; Rao, I.M. Role of phosphorus in photosynthetic carbon metabolism. In Handbook of Photosynthesis, 2nd ed.; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2005; pp. 123–148. [Google Scholar]
- Schachtman, D.P.; Shin, R. Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 2007, 58, 47–69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Loubery, S.; Broger, L.; Lorenzo-Orts, L.; Utz-Pugin, A.; Chang, Y.-T.; Hothorn, M. A genetically validated approach to detect inorganic polyphosphates in plants. BioRxiv 2019. [Google Scholar] [CrossRef]
- Laha, D.; Parvin, N.; Dynowski, M.; Johnen, P.; Mao, H.; Bitters, S.T.; Zheng, N.; Schaaf, G. Inositol polyphosphate binding specificity of the jasmonate receptor complex. Plant Physiol. 2016, 171, 2364–2370. [Google Scholar] [CrossRef] [Green Version]
- Seufferheld, M.; Curzi, M.J. Recent discoveries on the roles of polyphosphates in plants. Plant Mol. Biol. Rep. 2010, 28, 549–559. [Google Scholar] [CrossRef]
- Lorenzo-Orts, L.; Couto, D.; Hothorn, M. Tansley review. Identity and functions of inorganic and inositol polyphosphates in plants. New Phytol. 2019, 225, 637–652. [Google Scholar]
- Torres-Dorante, L.O.; Claasse, N.; Steingrobe, B.; Olfs, H.W. Fertilizer-use efficiency of different inorganic polyphosphate sources: Effects on soil P availability and plant P acquisition during early growth of corn. J. Plant. Nutr. Soil Sci. 2006, 169, 509–515. [Google Scholar] [CrossRef]
- Ma, C.; Xiao, Y.; Puig-Bargés, J.; Shukla, M.K.; Tang, X.; Hou, P.; Li, Y. Using phosphate fertilizer to reduce emitter clogging of drip fertigation systems with high salinity water. J. Environ. Manag. 2020, 263. [Google Scholar] [CrossRef] [PubMed]
- McBeath, T. Chemical Reactions of Polyphosphate Fertilisers in Soils and Solutions. Ph.D. Thesis, University of Adelaide, Adelaide, SA, Australia, 2006; p. 29. [Google Scholar]
- Saure, M.C. Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit—A reappraisal. Sciencia Horticulturae 2014, 174, 151–154. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latimer, G., Jr. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Polish Standard PN-A-04019. Determine of Vitamin C Content Using the Tillman Method; Polish Committee for Standardization: Warsaw, Poland, 1998. [Google Scholar]
- Polish Standard PN-90/A-75101/07. Determine the Content of Total Sugars as well as Sacharose and Monosaccharides Using the Luff-Schoorl Method; Polish Committee for Standardization: Warsaw, Poland, 1990. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Conroy, J.P.; Smillie, R.M.; Kuppers, M.; Bevege, D.I.; Barlow, E.W. Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiate to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 1986, 81, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 2018, 177, 271–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flexas, J.; Briantais, J.-M.; Cerovic, Z.; Medrano, H.; Moya, I. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system. RSE 2000, 73, 283–297. [Google Scholar] [CrossRef]
- Li, Q.; Erel, R. Availability of Polyphosphate Versus Orthophosphate on Alkaline Soil to Lettuce Plants. From Molecular Scale to Ecosystems. In Proceedings of the 6th Symposium on Phosphorus in Soils and Plants (PSPS), Leuven, Belgium, 10–13 September 2018. [Google Scholar]
- Dick, R.P. Hydrolysis and availability to plants of polyphosphates added to soils. Paper 12054. Ph.D. Thesis, Iowa State University Capstones, Ames, IA, USA, 1985. [Google Scholar] [CrossRef]
- Kalaji, M.H. Influence of abiotic stress factors on chlorophyll fluorescence in selected varieties of barley (Hordeum vulgare L.) plants. In Treatises and Monographs; Warsaw University of Life Sciences WULS—SGGW: Warsaw, Poland, 2011; pp. 1–176. [Google Scholar]
- Kalaji, M.; Łoboda, T. Fluorescencja Chlorofilu w Badaniach Stanu Fizjologicznego Roślin, 2nd ed.; Warsaw University of Life Sciences Press: Warsaw, Poland, 2010; pp. 19–21. [Google Scholar]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Pietkiewicz, S.; Kalaji, M.H. Low temperature and hardening effects on photosynthetic apparatus efficiency and survival of forage grass varieties. PSE 2014, 60, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Björkman, O.; Demming, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.W.; McDonald, G.K. Effect of zinc on photosynthesis and yield of wheat under heat stress. In Proceedings of the 10th Australian Agronomy Conference, Hobart, Tasmania, 29 January–1 February 2001. [Google Scholar]
- Horton, P.; Ruban, A.V.; Walters, R.G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 655–684. [Google Scholar] [CrossRef]
- Prost, L.; Jeuffroy, M.H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. ASD 2007, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Errecart, P.M.; Agnusdei, M.G.; Lattanzi, F.A.; Marino, M.A. Leaf nitrogen concentration and chlorophyll meter readings as predictors of tall fescue nitrogen nutrition status. Field Crops Res. 2012, 129, 46–58. [Google Scholar] [CrossRef]
- Giletto, C.M.; Echeverría, H.E. Chlorophyll meter for the evaluation of potato N status. Am. J. Potato Res. 2013, 90, 313–323. [Google Scholar] [CrossRef]
- Michałojć, Z.M.; Horodko, K. Wpływ dokarmiania pozakorzeniowego wapniem na plonowanie i skład chemiczny papryki słodkiej [EN. Effect of calcium foliar nutrition on yield end chemical composition of sweet pepper]. Acta Agrophysica 2006, 7, 671–679. [Google Scholar]
- Selahle, K.M.; Sivakumar, D.; Jifon, J.; Soundy, P. Postharvest responses of red and yellow sweet peppers grown under photo-selective nets. Food Chem. 2015, 173, 951–956. [Google Scholar] [CrossRef]
- Eggink, P.M.; Maliepaard, C.; Tikunov, Y.; Haanstra, J.P.W.; Bovy, A.G.; Visser, R.G.F. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem. 2012, 132, 301–310. [Google Scholar] [CrossRef]
- Eggink, P.M.; Maliepaard, C.; Tikunov, Y.; Haanstra, J.P.W.; Pohu-Flament, L.M.M.; de WitMaljaars, S.C.; Willeboordse-Vos, F.; Bos, S.; Benning-de Waard, C.; de Grauw-van Leeuwen, P.J.; et al. Prediction of sweet pepper (Capsicum annuum) flavor over different harvests. Euphytica 2012, 187, 117–131. [Google Scholar] [CrossRef]
Cultivar | Treatment | |||
---|---|---|---|---|
Control | P-15 | P-30 | ||
Weekly growth of stem (cm) | ‘Aifos’ | 5.23 a | 5.03 a | 4.57 a |
‘Palermo’ | 5.97 a | 4.63 a | 6.70 a | |
Plant height (cm) | ‘Aifos’ | 63.40 b * | 66.07 b | 63.87 b |
‘Palermo’ | 89.10 a | 90.70 a | 98.50 a | |
Number of leaves (No.) | ‘Aifos’ | 24.90 a | 29.47 a | 25.97 a |
‘Palermo’ | 28.87 a | 29.90 a | 33.03 a |
Chlorophyll Fluorescence Parameters | Cultivar | Control | P-15 | P-30 |
---|---|---|---|---|
Fs | ‘Aifos’ | 305 d * | 385 ab | 374 abc |
‘Palermo’ | 312 cd | 401 a | 326 bcd | |
Average | 301 C | 393 A | 350 B | |
Fm’ | ‘Aifos’ | 1289 b | 1608 a | 1468 ab |
‘Palermo’ | 1276 b | 1596 a | 1289 b | |
Average | 1283 B | 1602 A | 1379 B | |
φPSII | ‘Aifos’ | 0.76 a | 0.75 a | 0.74 a |
‘Palermo’ | 0.75 a | 0.75 a | 0.74 a | |
Average | 0.75 A | 0.75 A | 0.74 AB | |
Fv/Fm | ‘Aifos’ | 0.81 a | 0.81 a | 0.81 a |
‘Palermo’ | 0.80 a | 0.79 b | 0.81 a | |
Average | 0.81 A | 0.80 A | 0.79 B | |
PI inst. | ‘Aifos’ | 11.72 a | 10.86 ab | 10.65 abc |
‘Palermo’ | 8.81 cd | 9.53 bcd | 8.20 d | |
Average | 10.27 A | 10.20 A | 9.43 A |
Component | Cultivar | Control | P-15 | P-30 |
---|---|---|---|---|
Dry weight (%) | ‘Aifos’ | 8.01 b * | 8.08 b | 8.05 b |
‘Palermo’ | 10.14 a | 10.60 a | 10.34 a | |
Average | 9.07 A | 9.19 A | 9.34 A | |
TSS (oBrix) | ‘Aifos’ | 7.57 c | 7.42 c | 7.27 c |
‘Palermo’ | 9.45 b | 10.15 a | 9.47 b | |
Average | 8.50 A | 8.78 A | 8.37 A | |
Ascorbic Acid (mg.100 g−1 FW) | ‘Aifos’ | 26.54 a | 22.33 b | 22.07 b |
‘Palermo’ | 19.56 b | 21.00 b | 21.73 b | |
Average | 23.04 A | 21.66 A | 21.89 A | |
TS (g.100 g−1 FW) | ‘Aifos’ | 4.56 c | 3.75 d | 3.94 d |
‘Palermo’ | 6.01 b | 6.30 ab | 6.45 a | |
Average | 5.28 A | 5.03 A | 5.20 A | |
P (mg.kg−1 FW) | ‘Aifos’ | 249.95 a | 249.00 a | 248.35 a |
‘Palermo’ | 247.65 a | 272.5 a | 250.15 a | |
Average | 248.8 A | 260.75 A | 249.25 A | |
(mg.kg−1 FW) | ‘Aifos’ | 56.27 ab | 58.04 a | 56.04 abc |
‘Palermo’ | 50.95 c | 56.48 ab | 52.06 bc | |
Average | 53.61 B | 57.26 A | 54.05 B | |
K (mg.kg−1 FW) | ‘Aifos’ | 2335.85 abc | 2325.4 bc | 2148.45 c |
‘Palermo’ | 2384.63 ab | 2523.2 a | 2335.85 abc | |
Average | 2360.24 A | 2424.3 A | 2242.2 B | |
Ca (mg.kg−1 FW) | ‘Aifos’ | 26.5 a | 22.65 a | 20.00 a |
‘Palermo’ | 19.9 a | 22.00 a | 22.65 a | |
Average | 23.2 A | 22.33 A | 21.33 A |
Attributes of Odor, Texture and Taste | Cultivar | Control | P-15 | P-30 |
---|---|---|---|---|
Odor of fresh pepper | ‘Aifos’ | 5.77 a * | 6.02 a | 5.25 a |
‘Palermo’ | 5.33 a | 5.16 a | 5.36 a | |
Average | 5.53 A | 5.60 A | 5.31 A | |
Skin hardness | ‘Aifos’ | 5.39 ab | 5.72 a | 5.38 ab |
‘Palermo’ | 4.27 b | 4.72 ab | 4.54 ab | |
Average | 4.81 A | 5.24 A | 4.94 A | |
Flesh fibrousness | ‘Aifos’ | 6.27 ab | 6.48 ab | 6.98 a |
‘Palermo’ | 5.88 ab | 5.47 b | 6.10 ab | |
Average | 6.07 A | 5.99 A | 6.52 A | |
Flesh juiciness | ‘Aifos’ | 5.77 a | 6.04 a | 5.81 a |
‘Palermo’ | 5.98 a | 5.37 a | 5.86 a | |
Average | 5.88 A | 5.72 A | 5.83 A | |
Flesh firmness | ‘Aifos’ | 6.81 a | 7.04 a | 6.50 a |
‘Palermo’ | 4.31 a | 3.77 b | 4.58 a | |
Average | 5.51 A | 5.48 A | 5.51 A | |
Typical pepper taste | ‘Aifos’ | 5.99 ab | 6.01 ab | 5.41 b |
‘Palermo’ | 6.51 ab | 6.29 ab | 6.98 a | |
Average | 6.27 A | 6.15 A | 6.23 A | |
Sour taste | ‘Aifos’ | 1.82 a | 1.59 a | 1.74 a |
‘Palermo’ | 1.70 a | 1.74 a | 1.78 a | |
Average | 1.75 A | 1.66 A | 1.76 A | |
Sweet taste | ‘Aifos’ | 3.16 c | 3.74 bc | 3.07 c |
‘Palermo’ | 5.13 ab | 5.32 a | 5.69 a | |
Average | 4.19 A | 4.49 A | 4.43 A | |
Bitter taste | ‘Aifos’ | 1.69 a | 0.78 ab | 1.24 ab |
‘Palermo’ | 0.62 b | 0.76 ab | 0.64 b | |
Average | 1.13 A | 0.77 A | 0.93 A | |
Pungent flavor | ‘Aifos’ | 0.93 a | 0.70 a | 0.98 a |
‘Palermo’ | 0.76 a | 0.99 a | 0.85 a | |
Average | 0.84 A | 0.84 A | 0.91 A | |
Off-flavor | ‘Aifos’ | 0.28 a | 0.21 a | 0.23 a |
‘Palermo’ | 0.28 a | 0.26 a | 0.28 a | |
Average | 0.15 A | 0.11 A | 0.11 A | |
Overall quality | ‘Aifos’ | 6.38 a | 6.69 a | 6.58 a |
‘Palermo’ | 7.07 a | 6.74 a | 7.15 a | |
Average | 6.73 A | 6.86 A | 6.87 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzińska, M. Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting. Agronomy 2020, 10, 1560. https://doi.org/10.3390/agronomy10101560
Sobczak A, Kowalczyk K, Gajc-Wolska J, Kowalczyk W, Niedzińska M. Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting. Agronomy. 2020; 10(10):1560. https://doi.org/10.3390/agronomy10101560
Chicago/Turabian StyleSobczak, Anna, Katarzyna Kowalczyk, Janina Gajc-Wolska, Waldemar Kowalczyk, and Monika Niedzińska. 2020. "Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting" Agronomy 10, no. 10: 1560. https://doi.org/10.3390/agronomy10101560
APA StyleSobczak, A., Kowalczyk, K., Gajc-Wolska, J., Kowalczyk, W., & Niedzińska, M. (2020). Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting. Agronomy, 10(10), 1560. https://doi.org/10.3390/agronomy10101560