Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Methods
2.2.1. Soil Sampling
2.2.2. Roots, Leaves and Beans Sampling
2.3. Lab Analyses
2.3.1. Soil Characterization
2.3.2. Cd Analysis
2.4. Data Analyses
- -
- Plant Cd denote the Cd concentrations in roots, leaves, testa and cotyledon
- -
- Soil Cd denote the respective concentrations.
- -
- Up plants Cd denote the Cd concentrations in leaves, testa and cotyledon
3. Results and Discussion
3.1. Sampled Sites and Soil Characteristics
3.2. Cd Concentrations in Soil–Plant Systems in Cacao Crops in Bagua
3.3. Uptake and Allocation of Cd to Different Organs of Cocoa Trees
3.4. Correlation of Soil and Plant Cd with Site Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- INDECOPI. Cacao Amazonas Peru: Resolución N° 014866-2016/DSD-INDECOPI; INDECOPI: Lima, Perú, 2016. [Google Scholar]
- World Health Organization. Exposure to Cadmium: A Major Public Health Concern; World Health Organization: Geneva, Switzerland, 2010; pp. 3–6. [Google Scholar]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Staessen, J.A.; Roels, H.A.; Munters, E.; Cuypers, A.; Richart, T.; Ruttens, A.; Smeets, K.; Clijsters, H.; Vangronsveld, J. Cadmium exposure in the population: From health risks to strategies of prevention. BioMetals 2010, 23, 769–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åkesson, A.; Barregard, L.; Bergdahl, I.A.; Nordberg, G.F.; Nordberg, M.; Skerfving, S. Commentary Non-renal effects and the risk assessment of environmental. Environ. Health Perspect. 2014, 122, 431–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazantzis, G. Cadmium, Osteoporosis and calcium metabolism. BioMetals 2004, 17, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Heavy Metals in Soils; Blackie Academic & Professional: London, UK, 2013. [Google Scholar]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor and Francis Group: London, UK, 2011. [Google Scholar]
- He, Q.B.; Singh, B.R. Crop uptake of cadmium from phosphorus fertilizers: I. yield and cadmium content. Water Air Soil Pollut. 1994, 74, 251–265. [Google Scholar] [CrossRef]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Castillo, L.; Aromatisi, A.; Milne, L.; Búllon Castillo, A.; Muñoz-Rojas, M. Soil, site, and management factors affecting cadmium concentrations in cacao-growing soils. Agronomy 2020, 10, 806. [Google Scholar] [CrossRef]
- Gramlich, A.; Tandy, S.; Andres, C.; Chincheros Paniagua, J.; Armengot, L.; Schneider, M.; Schulin, R. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Sci. Total Environ. 2017, 580, 677–686. [Google Scholar] [CrossRef]
- Gramlich, A.; Tandy, S.; Gauggel, C.; López, M.; Perla, D.; Gonzalez, V.; Schulin, R. Soil cadmium uptake by cocoa in honduras. Sci. Total Environ. 2018, 612, 370–378. [Google Scholar] [CrossRef]
- Manton, W.I. Nonnutritive constituents in chocolate and cocoa. In Chocolate in Health and Nutrition; Humana Press: Totowa, NJ, USA, 2013; pp. 73–87. [Google Scholar] [CrossRef]
- Mounicou, S.; Szpunar, J.; Andrey, D.; Blake, C.; Lobinski, R. Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Addit. Contam. 2003, 20, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Chavez, E.; He, Z.L.; Stoffella, P.J.; Mylavarapu, R.S.; Li, Y.C.; Moyano, B.; Baligar, V.C. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern ecuador. Sci. Total Environ. 2015, 533, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Gardini, E.; Arévalo-Hernández, C.O.; Baligar, V.C.; He, Z.L. Heavy metal accumulation in leaves and beans of cacao (theobroma cacao L.) in major cacao growing regions in peru. Sci. Total Environ. 2017, 605–606, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.; Lennon, A.M.; Eudoxie, G.; Umaharan, P. Genetic Variation in Bioaccumulation and Partitioning of Cadmium in Theobroma cacao L. Sci. Total Environ. 2018, 640–641, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Huamaní-Yupanqui, H.A.; Huauya-Rojas, M.Á.; Mansilla-Minaya, L.G.; Florida-Rofner, N.; Neira-Trujillo, G.M. Presencia de metales pesados en cultivo de cacao (Theobroma cacao L.) orgánico. Acta Agron. 2012, 61, 339–344. [Google Scholar]
- The European Comission. Commission regulation (EU) No 488/2014 of 12 May 2014 amending regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 2014, 488, 75–79. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and proposed modification on the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis, 2nd ed.; Parallel Press: Madison, WI, USA, 1985. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- US EPA. SW-846 Test Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; US EPA: Washington, DC, USA, 1996. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf (accessed on 12 June 2020).
- Rodríguez, F.; Limachi, L.; Reátegui, F.; Escobedo, R.; Ramírez, J.; Encarnación, F.; Maco, J.; Guzmán, W.; Castro, W.; Lizardo, M.; et al. Zonificación Ecológica y Económica de Amazonas; IIAP-Gobierno Regional Amazonas, Ed.; IIAP: Amazonas, 2010. [Google Scholar]
- McLaughlin, M.J.; Maier, N.A.; Rayment, G.E.; Sparrow, L.A.; Berg, G.; McKay, A.; Milham, P.; Merry, R.H.; Smart, M.K. Cadmium in Australian potato tubers and soils. J. Environ. Qual. 1997, 26, 1644–1649. [Google Scholar] [CrossRef]
- Arévalo-Gardini, E.; Obando-Cerpa, M.E.; Zúñiga-Cernades, L.B.; Arévalo-Hernández, C.O.; Baligar, V.; He, Z. Metales pesados en suelos de plantaciones de cacao (Theobroma cacao L.) en tres regiones del perù. Ecol. Apl. 2016, 15, 81. [Google Scholar] [CrossRef]
- The Council of the European Communities. Council Directive 86/278/EEC, on the protection of the environment, and in particular of the soil when, sewage sludge is used in agriculture. Off. J. Eur. Comm. 1986, 181, 6–12. [Google Scholar]
- McGrath, S.P.; Chang, A.C.; Page, A.L.; Witter, E. Land application of sewage sludge: Scientific perspectives of heavy metal loading limits in Europe and the United States. Environ. Rev. 1994, 2, 108–118. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; US EPA: Washington, DC, USA, 2002.
- D.Lgs 152/2006. Decreto legislativo 3 April 2006, n. 152. norme in materia ambientale. In Gazzetta Ufficiale n. 88 del 14-4-2006, Suppl. Ordinario n. 96; 2006. Available online: https://www.isprambiente.gov.it/it/garante_aia_ilva/normativa/normativa-ambientale/Dlgs_152_06_TestoUnicoAmbientale.pdf (accessed on 12 June 2020).
- Carlon, C.; D’Alessandro, M.; Swartjes, F. Derivation methods of soil screening values in Europe. In A Review and Evaluation of National Procedures towards Harmonization; Carlon, C., Ed.; European Commission, Joint Research Centre: Ispra, Varese, Italy, 2007. [Google Scholar]
- Finnish Ministry of the Environment. Government Decree on the Assessment of Soil Contamination and Remediation Needs, 214/2007; Finnish Government: Helsinki, Finland, 2007. [Google Scholar]
- Chinese Ministry of Environmental Protection & Ministry of Land and Resources. Report on the National Soil Contamination Survey; 2014. Available online: www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm (accessed on 25 May 2020). (In Chinese)
- Ministerio del Ambiente Perú. Decreto supremo N° 011-2017-MINAM: Aprueban Estándares de Calidad Ambiental (ECA) para Suelo. El Peruano 2017, 192, 12–15. [Google Scholar]
- Ramtahal, G.; Chang Yen, I.; Ahmad, N.; Bekele, I.; Bekele, F.; Maharaj, K.; Wilson, L.; Harrynanan, L. Prediction of Soil cadmium bioavailability to cacao (Theobroma cacao L.) using single-step extraction procedures. Commun. Soil Sci. Plant Anal. 2015, 46, 2585–2594. [Google Scholar] [CrossRef]
- Peer, W.A.; Baxter, I.R.; Richards, E.L.; Freeman, J.L.; Murphy, A.S. Phytoremediation and Hyperaccumulator Plants. In Molecular Biology of Metal Homeostasis and Detoxification From Microbes to Man; Topics in Current Genetics; Tamás, M.J., Martinoia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- He, S.; He, Z.; Yang, X.; Stoffella, P.J.; Baligar, V.C. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium- contaminated soils. In Advances in Agronomy; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 134, pp. 135–225. [Google Scholar] [CrossRef]
- Krishnamurti, G.S.; Megharaj, M.; Naidu, R. Bioavailability of cadmium-organic complexes to soil alga–an exception to the free ion model. J. Agric. Food Chem. 2004, 52, 3894–3899. [Google Scholar] [CrossRef]
- Anju, M.; Banerjee, D.K. Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environ. Monit. Assess. 2011, 176, 67–85. [Google Scholar] [CrossRef]
- Kosolsaksakul, P.; Farmer, J.G.; Oliver, I.W.; Graham, M.C. Geochemical associations and availability of cadmium (Cd) in a paddy field system, Northwestern Thailand. Environ. Pollut. 2014, 187, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Sungur, A.; Soylak, M.; Ozcan, H. Investigation of heavy metal mobility and availability by the bcr sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chem. Speciat. Bioavailab. 2014, 26, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Maddela, N.R.; Kakarla, D.; García, L.C.; Chakraborty, S.; Venkateswarlu, K.; Megharaj, M. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Sci. Total Environ. 2020, 720, 137645. [Google Scholar] [CrossRef]
- Zug, K.L.M.; Huamaní Yupanqui, H.A.; Meyberg, F.; Cierjacks, J.S.; Cierjacks, A. Cadmium accumulation in peruvian cacao (theobroma cacao L.) and opportunities for mitigation. Water Air Soil Pollut. 2019, 230, 72. [Google Scholar] [CrossRef]
- McLaughlin, M. Heavy metals in agriculture with a focus on Cd. In Ecuador Soil Congress; CSIRO Land and Water Fertilizer Technology Research Centre, Waite Research Institute, University of Adelaide: Adelaide, Australia, 2016. [Google Scholar]
- Zacchini, M.; Pietrini, F.; Scarascia Mugnozza, G.; Iori, V.; Pietrosanti, L.; Massacci, A. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 2009, 197, 23–34. [Google Scholar] [CrossRef]
- Dai, H.; Yang, Z. Variation in Cd accumulation among radish cultivars and identification of low-Cd cultivars. Environ. Sci. Pollut. Res. 2017, 24, 15116–15124. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Mao, Y.; Cheng, W.; Wu, F.; Zhang, G. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ. Pollut. 2008, 153, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-S.; Sun, B.-Y.; Kan, S.-H.; Zhang, Y.-Z.; Deng, S.-H.; Yang, G. Copper toxicity and accumulation in potted seedlings of three apple rootstock: Implications for safe fruit production on copper-polluted soils. J. Plant Nutr. 2011, 34, 1268–1277. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Copper Effects on Prunus persica in Two Different Grafting Combinations (P. persica × P. amygdalus and P. cerasifera). J. Plant Nutr. 2010, 33, 1338–1352. [Google Scholar] [CrossRef]
- Ullah, I.; Wang, Y.; Eide, D.J.; Dunwell, J.M. Evolution, and functional analysis of natural resistance-associated macrophage proteins (NRAMPs) from theobroma cacao and their role in cadmium accumulation. Sci. Rep. 2018, 8, 14412. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Cien. Saude Colet. 2011, 16, 2587–2602. [Google Scholar] [CrossRef]
- Ramtahal, G.; Yen, I.C.; Bekele, I.; Bekele, F.; Wilson, L.; Maharaj, K.; Harrynanan, L. Relationships between cadmium in tissues of cacao trees and soils in plantations of trinidad and tobago. Food Nutr. Sci. 2016, 7, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.L.; Zhao, F.J.; Mcgrath, S.P.; Nicholson, F.A.; Chambers, B.J. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual. 2004, 33, 532–541. [Google Scholar] [CrossRef]
- Kirkham, M.B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 2006, 137, 19–32. [Google Scholar] [CrossRef]
- Degryse, F.; Broos, K.; Smolders, E.; Merckx, R. Soil solution concentration of Cd and Zn canbe predicted with a CaCl 2 soil extract. Eur. J. Soil Sci. 2003, 54, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shan, X.; Zhang, S.; Wen, B. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 2004, 55, 811–822. [Google Scholar] [CrossRef] [PubMed]
Altitude | Soil pH | Carbon Content | Soil Organic Matter | Soil Nitrogen | Sand Content | Silt Content | Clay Content | Soil Cd Content | Root Cd Content | Leaf Cd Content | Cotyledon Cd Content | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd Soil | 0.291 * | 0.198 | 0.198 | 0.198 | 0.034 | 0.133 | −0.012 | |||||
Cd root | 0.349 ** | −0.314 * | 0.057 | 0.057 | 0.057 | −0.259 | 0.184 | 0.131 | −0.432 ** | |||
Cd Leaf | 0.136 | −0.258 | 0.206 | 0.206 | 0.206 | −0.293 * | 0.236 | 0.106 | −0.187 | 0.415 ** | ||
Cd Testa | 0.139 | −0.249 | 0.138 | 0.138 | 0.138 | −0.225 | 0.15 | 0.077 | 0.121 | 0.399 ** | 0.526 ** | |
Cd Cotyledon | −0.028 | −0.284 * | −0.136 | −0.136 | −0.136 | −0.291 * | 0.248 | 0.124 | −0.258 | 0.288 * | 0.684 ** | 0.548 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, M.; Rubio, K.; Epquin, M.; Marlo, G.; Leiva, S. Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru. Agronomy 2020, 10, 1551. https://doi.org/10.3390/agronomy10101551
Oliva M, Rubio K, Epquin M, Marlo G, Leiva S. Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru. Agronomy. 2020; 10(10):1551. https://doi.org/10.3390/agronomy10101551
Chicago/Turabian StyleOliva, Manuel, Karol Rubio, Melissa Epquin, Gladys Marlo, and Santos Leiva. 2020. "Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru" Agronomy 10, no. 10: 1551. https://doi.org/10.3390/agronomy10101551
APA StyleOliva, M., Rubio, K., Epquin, M., Marlo, G., & Leiva, S. (2020). Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru. Agronomy, 10(10), 1551. https://doi.org/10.3390/agronomy10101551