Climate Change May Imperil Tea Production in the Four Major Tea Producers According to Climate Prediction Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Its Ecological Significance
2.2. MaxEnt Description
2.3. MaxEnt Modelling
2.4. Estimating Species Occurrence and Climatic Predictors
2.5. Bioclimatic Variables
2.6. Evaluation of Model Accuracy
2.7. Reclassification and Change Detection
3. Results
3.1. Habitat Suitability Model Validation, Parameter Sensitivity
3.2. Key Environmental Factors Influencing Habitat Distribution
3.3. Importance of Bioclimatic Variables in the Habitat Suitability of Camellia Sinensis
3.4. Current Habitat Suitability Distribution
3.5. Future Habitat Suitability Distribution and Change Detection
3.6. Percentage of Suitability Area Loss/Gain for Camellia Sinensis from the Current to the Future Climate Scenarios in the Four Major Tea-Producing Countries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Statista. Consumer Goods & FMCG›Non-Alcoholic Beverages; Statista GmbH: Hamburg, Germany, 2019. [Google Scholar]
- Bhagat, R.; Ahmed, K.Z.; Gupta, N.; Baruah, R.D.; Wijeratne, M.A.; Bore, J.K.; Nyabundi, D.W.; Han, W.; Li, X.; Yan, P.; et al. Report of the Working Group on Climate Change of the FAO Intergovernmental Group on Tea; Technical Report for Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Mukhopadhyay, M.; Mondal, T.K. Cultivation, improvement, and environmental impacts of tea. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Chang, K.; Brattlof, M. Contribution of Tea Production and Exports to Food Security, Rural Development and Smallholder Welfare in Selected Producing Countries; Technical Report for Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.; Robbat, A.; Cash, S.; Xue, D.; Long, C.; Unachukwu, U.; et al. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE 2014, 9, e109126. [Google Scholar]
- De Costa, W.; Mohotti, A.J.; Wijeratne, M.A. Ecophysiology of tea. Braz. J. Plant Physiol. 2007, 19, 299–332. [Google Scholar] [CrossRef]
- Lemmesa, F. Tea Production and Management; Teaching handout; Department of Plant Sciences, Jimma College of Agriculture: Jimma, Ethiopia, 1996; pp. 1–14. [Google Scholar]
- Jayasinghe, H.; Suriyagoda, L.; Karunaratne, A.; Wijeratne, M. Leaf development and expansion in tea [Camellia sinensis (L.) Kuntze] and their relationships with thermal time: A case study. Trop. Agric. Res. 2015, 25, 450. [Google Scholar] [CrossRef] [Green Version]
- Squire, G.R. Weather, physiology and seasonality of tea (Camellia sinensis) yields in Malawi. Exp. Agric. 1979, 15, 321–330. [Google Scholar] [CrossRef]
- Nowogrodzki, A. How climate change might affect tea. Nature 2019, 566, S10–S11. [Google Scholar] [CrossRef] [Green Version]
- Faostat, F. Agriculture Organization of the United Nations Statistics Division; Economic and Social Development Department: Rome, Italy, 2016; Available online: http://faostat3.fao.org/home/E (accessed on 31 December 2016).
- EDB. Tea sector. In Industry Capability Report; Darshana, P., Ed.; Export Agriculture Division, Sri Lanka Export Development Board: Colombo, Sri Lanka, 2014; p. 10. [Google Scholar]
- Gesimba, R.M.; Langat, M.C.; Liu, G.; Wolukau, J.N. The tea industry in Kenya; The challenges and positive developments. Appl. Sci. 2005, 5, 334–336. [Google Scholar]
- Dutta, R. Climate change and its impact on tea in Northeast India. J. Water Clim. Chang. 2014, 5, 625–632. [Google Scholar] [CrossRef]
- Hicks, A. Current status and future development of global tea production and tea products. Au Jt 2009, 12, 251–264. [Google Scholar]
- Jayasinghe, S.L.; Kumar, L.; Hasan, M.K. Relationship between environmental covariates and ceylon tea cultivation in Sri Lanka. Agronomy 2020, 10, 476. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS-Wageningen J. Life Sci. 2016, 77, 71–78. [Google Scholar] [CrossRef]
- Wijeratne, M. Vulnerability of Sri Lanka tea production to global climate change. Water Air Soil Pollut. 1996, 92, 87–94. [Google Scholar]
- Wijeratne, M. Some adaptations of the tea plant to dry environments. In Adapting to Climate Change; Springer: New York, NY, USA, 1996; pp. 174–187. [Google Scholar]
- Han, W.Y.; Huang, J.G.; Li, X.; Li, Z.-X.; Ahammed, G.J.; Yan, P.; Stepp, J.R. Altitudinal effects on the quality of green tea in east China: A climate change perspective. In European Food Research and Technology; Springer: Heidelberg, Germany, 2016; Volume 243, pp. 323–330. [Google Scholar]
- ETP. The Ethical Tea Partnership-Understanding the Difference between ETP and Fairtrade. 2015. Available online: https://www.ethicalteapartnership.org/ (accessed on 11 June 2020).
- Marx, W.; Haunschild, R.; Bornmann, L. Global warming and tea production-the bibliometric view on a newly emerging research topic. Climate 2017, 5, 46. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric. For. Meteorol. 2019, 272, 102–117. [Google Scholar] [CrossRef]
- AVP. Changing Climate’s Challenges to TATA Tea. Assignment: Climate Change Challenge. 2016. Available online: https://digital.hbs.edu/platform-rctom/category/uncategorized/tea/ (accessed on 15 January 2020).
- Boehm, R.; Cash, S.B.; Anderson, B.T.; Ahmed, S.; Griffin, T.; Robbat, A.J.; Stepp, J.R.; Han, W.-Y.; Hazel, M.; Orians, C.M. Association between empirically estimated monsoon dynamics and other weather factors and historical tea yields in China: Results from a yield response model. Climate 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.; Pike, D.A.; Shine, R. Predicting the impacts of climate change on genetic diversity in an endangered lizard species. Clim. Change 2012, 117, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Läderach, P.; Ramirez–Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez–Valle, A.; Jarvis, A. Climate change adaptation of coffee production in space and time. Clim. Chang. 2017, 141, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Tobeña, M.; Prieto, R.; Machete, M.; Silva, M.A. Modeling the potential distribution and richness of cetaceans in the Azores from fisheries observer program data. Front. Mar. Sci. 2016, 3, 202. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Bartling, M.; Bunn, C.; Castro, F.; Walz, H. Identification of Suitable Tea Growing Areas in Malawi under Climate Change Scenarios. Semantic Scholar. 2017. Available online: https://www.semanticscholar.org/ (accessed on 11 June 2020).
- Brouder, P.; Eriksson, R.H. Tourism evolution: On the synergies of tourism studies and evolutionary economic geography. Ann. Tour. Res. 2013, 43, 370–389. [Google Scholar] [CrossRef] [Green Version]
- Leshamta, G.T. Assessing the Suitability of Tea Growing Zones of Kenya under Changing Climate and Modeling Less Regret Agrometeorological Options; Department of Meteorology, University of Nairobi: Nairobi, Kenya, 2017. [Google Scholar]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Kumar, L.; Sandamali, J. Assessment of potential land suitability for tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka using a GIS-based multi-criteria approach. Agriculture 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Chhogyel, N.; Kumar, L.; Bajgai, Y.; Jayasinghe, L.S. Prediction of Bhutan's ecological distribution of rice (Oryza sativa L.) under the impact of climate change through maximum entropy modelling. J. Agric. Sci. 2020, 158, 253–257. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’Ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Mishra, V.; Kumar, D.; Ganguly, A.R.; Sanjay, J.; Mujumdar, M.; Krishnan, R.; Shah, R.D. Reliability of regional and global climate models to simulate precipitation extremes over India. J. Geophys. Res. Atmos. 2014, 119, 9301–9323. [Google Scholar] [CrossRef]
- Sharmila, S.; Joseph, S.; Chattopadhyay, R.; Sahai, A.K.; Goswami, B.N. Asymmetry in space-time characteristics of Indian summer monsoon intraseasonal oscillations during extreme years: Role of seasonal mean state. Int. J. Clim. 2014, 35, 1948–1963. [Google Scholar] [CrossRef]
- Dike, V.N.; Shimizu, M.H.; Diallo, M.; Lin, Z.; Nwofor, O.K.; Chineke, T.C. Modelling present and future African climate using CMIP5 scenarios in HadGEM2-ES. Int. J. Clim. 2014, 35, 1784–1799. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The community climate system model version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Govindasamy, B.; Ravindranath, N.H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 791–802. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Thuiller, W.; Richardson, D.M.; Rouget, M.; Procheş, Ş.; Wilson, J.R.U. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 2006, 87, 1755–1769. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Monographs in Population Biology 49; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Lantz, C.A.; Nebenzahl, E. Behavior and interpretation of the κ statistic: Resolution of the two paradoxes. J. Clin. Epidemiol. 1996, 49, 431–434. [Google Scholar] [CrossRef]
- Phillips, S.J. A Brief Tutorial on Maxent. AT&T Research, Princeton University, and the Center for Biodiversity and Conservation. 2005. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 12 March 2020).
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, T.; Hasan, K.; Haque, A.T.M.S.; Jayasinghe, S.L.; Kumar, L. Sustainability of coastal agriculture under climate change. Sustainability 2019, 11, 7200. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Elzen, M.D.; Lucas, P.L.; Eickhout, B.; Strengers, B.J.; Van Ruijven, B.J.; Wonink, S.; Van Houdt, R. Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Clim. Chang. 2007, 81, 119–159. [Google Scholar] [CrossRef] [Green Version]
- Revadekar, J.V.; Hameed, S.; Collins, D.; Manton, M.; Sheikh, M.; Borgaonkar, H.P.; Kothawale, M.A.; Ahmed, A.U.; Ashraf, J.; Baidya, S.; et al. Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971. Int. J. Climatol. 2013, 33, 199–209. [Google Scholar] [CrossRef]
- Han, W.; Li, X.; Yan, P.; Zhang, L.; Ahammed, G.J. Tea Cultivation under Changing Climatic Conditions. Global Tea Science: Current Status and Future Needs; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 455–472. [Google Scholar]
- Ramírez Villegas, J.; Jarvis, A. Downscaling global circulation model outputs: The delta method decision and policy analysis Working Paper No.1, International Center for Tropical Agriculture (CIAT). Policy Anal. Colomb. 2010, 1, 1–18. [Google Scholar]
- Jayasinghe, H.A.S.L.; Suriyagoda, L.D.B.; Karunarathne, A.S.; Wijeratna, M.A. Modelling shoot growth and yield of Ceylon tea cultivar TRI-2025 (Camellia sinensis (L.) O. Kuntze). J. Agric. Sci. 2018, 156, 200–214. [Google Scholar] [CrossRef]
- Indian Tea Association. India Tea. 2017. Available online: https://www.indiatea.org/ (accessed on 12 June 2020).
- Zhang, X.; Obringer, R.; Wei, C.; Chen, N.; Niyogi, D. Droughts in India from 1981 to 2013 and implications to wheat production. Sci. Rep. 2017, 7, 44552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaduvanshi, A.; Zaroug, M.; Bendapudi, R.; New, M. Impacts of 1.5 °C and 2 °C global warming on regional rainfall and temperature change across India. Environ. Res. Commun. 2019, 1, 125002. [Google Scholar] [CrossRef]
- Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.; Han, W.; Stepp, J.R.; et al. Environmental factors variably impact tea secondary metabolites in the context of climate change. Front. Plant Sci. 2019, 10, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoghue, M.J.; Edwards, E.J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 547–572. [Google Scholar] [CrossRef] [Green Version]
- Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.; Guisan, A. Climatic niche shifts are rare among terrestrial plant invaders. Science 2012, 335, 1344–1348. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Yang, L.; Liu, T.; Wen, X.; Zhang, L.; Chang, Y. Hydrological responses to the future climate change in a data scarce region, northwest China: Application of machine learning models. Water 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
Year | Representative Concentration Pathways (RCPs) | Global Circulation Models (GCM) | Threshold Independent (AUC) | Threshold Dependent | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sri Lanka | Kenya | India | China | Sri Lanka | Kenya | India | China | |||||||||||||||
Training | Test | SD | Training | Test | SD | Training | Test | SD | Training | Test | SD | TSS | k | TSS | k | TSS | k | TSS | k | |||
2050 | RCP2.6 | HadGEM2-ES | 0.93 | 0.92 | 0.01 | 0.99 | 0.98 | 0.003 | 0.98 | 0.98 | 0.004 | 0.92 | 0.92 | 0.01 | 0.83 | 0.45 | 0.91 | 0.47 | 0.93 | 0.48 | 0.84 | 0.45 |
CCSM4 | 0.93 | 0.92 | 0.01 | 0.98 | 0.99 | 0.002 | 0.98 | 0.98 | 0.003 | 0.92 | 0.90 | 0.01 | 0.78 | 0.44 | 0.94 | 0.48 | 0.94 | 0.48 | 0.72 | 0.41 | ||
MIROC5 | 0.93 | 0.92 | 0.01 | 0.99 | 0.99 | 0.003 | 0.98 | 0.98 | 0.004 | 0.93 | 0.88 | 0.02 | 0.80 | 0.44 | 0.97 | 0.49 | 0.91 | 0.47 | 0.71 | 0.41 | ||
RCP6.0 | HadGEM2-ES | 0.93 | 0.93 | 0.01 | 0.99 | 0.99 | 0.002 | 0.98 | 0.97 | 0.006 | 0.93 | 0.89 | 0.02 | 0.82 | 0.45 | 0.95 | 0.48 | 0.85 | 0.46 | 0.68 | 0.40 | |
CCSM4 | 0.93 | 0.92 | 0.01 | 0.99 | 0.99 | 0.003 | 1.00 | 0.98 | 0.005 | 0.92 | 0.90 | 0.01 | 0.79 | 0.44 | 0.88 | 0.46 | 0.92 | 0.47 | 0.74 | 0.42 | ||
MIROC5 | 0.93 | 0.91 | 0.01 | 0.99 | 0.99 | 0.001 | 0.98 | 0.97 | 0.005 | 0.92 | 0.97 | 0.01 | 0.78 | 0.43 | 0.96 | 0.49 | 0.92 | 0.47 | 0.83 | 0.45 | ||
RCP8.5 | HadGEM2-ES | 0.93 | 0.93 | 0.01 | 0.99 | 0.99 | 0.001 | 0.98 | 0.98 | 0.005 | 0.92 | 0.92 | 0.01 | 0.84 | 0.45 | 0.96 | 0.49 | 0.91 | 0.47 | 0.78 | 0.43 | |
CCSM4 | 0.93 | 0.92 | 0.01 | 0.99 | 0.99 | 0.001 | 0.98 | 0.97 | 0.005 | 0.90 | 0.90 | 0.01 | 0.78 | 0.44 | 0.98 | 0.49 | 0.91 | 0.47 | 0.69 | 0.40 | ||
MIROC5 | 0.93 | 0.91 | 0.01 | 0.99 | 0.99 | 0.003 | 0.98 | 0.98 | 0.004 | 0.91 | 0.91 | 0.01 | 0.81 | 0.44 | 0.87 | 0.46 | 0.91 | 0.47 | 0.77 | 0.43 | ||
2070 | RCP2.6 | HadGEM2-ES | 0.94 | 0.92 | 0.01 | 0.99 | 0.99 | 0.003 | 0.98 | 0.98 | 0.005 | 0.92 | 0.90 | 0.01 | 0.82 | 0.45 | 0.90 | 0.47 | 0.91 | 0.47 | 0.71 | 0.42 |
CCSM4 | 0.94 | 0.93 | 0.01 | 0.99 | 0.99 | 0.002 | 0.98 | 0.98 | 0.005 | 0.91 | 0.91 | 0.01 | 0.80 | 0.44 | 0.93 | 0.48 | 0.92 | 0.48 | 0.77 | 0.43 | ||
MIROC5 | 0.93 | 0.91 | 0.01 | 0.99 | 0.99 | 0.005 | 0.98 | 0.98 | 0.005 | 0.92 | 0.91 | 0.01 | 0.78 | 0.43 | 0.85 | 0.45 | 0.92 | 0.47 | 0.70 | 0.41 | ||
HadGEM2-ES | 0.94 | 0.91 | 0.01 | 0.99 | 0.99 | 0.003 | 0.98 | 0.97 | 0.006 | 0.92 | 0.92 | 0.01 | 0.82 | 0.45 | 0.89 | 0.47 | 0.87 | 0.46 | 0.68 | 0.40 | ||
RCP6.0 | CCSM4 | 0.93 | 0.93 | 0.01 | 0.99 | 1.00 | 0.003 | 0.98 | 0.98 | 0.006 | 0.92 | 0.92 | 0.01 | 0.79 | 0.44 | 0.91 | 0.47 | 0.89 | 0.47 | 0.78 | 0.43 | |
MIROC5 | 0.93 | 0.93 | 0.01 | 0.99 | 0.99 | 0.003 | 0.98 | 0.98 | 0.005 | 0.92 | 0.89 | 0.02 | 0.86 | 0.46 | 0.88 | 0.46 | 0.87 | 0.46 | 0.75 | 0.42 | ||
RCP8.5 | HadGEM2-ES | 0.94 | 0.92 | 0.01 | 0.99 | 0.99 | 0.004 | 0.98 | 0.98 | 0.005 | 0.92 | 0.89 | 0.01 | 0.79 | 0.44 | 0.87 | 0.46 | 0.94 | 0.47 | 0.73 | 0.42 | |
CCSM4 | 0.93 | 0.93 | 0.01 | 0.99 | 0.99 | 0.003 | 0.98 | 0.98 | 0.005 | 0.93 | 0.88 | 0.02 | 0.78 | 0.43 | 0.87 | 0.46 | 0.91 | 0.47 | 0.66 | 0.39 | ||
MIROC5 | 0.93 | 0.91 | 0.01 | 0.99 | 0.99 | 0.004 | 0.98 | 0.98 | 0.004 | 0.92 | 0.90 | 0.01 | 0.79 | 0.44 | 0.87 | 0.46 | 0.93 | 0.48 | 0.72 | 0.41 | ||
Current | 0.93 | 0.93 | 0.01 | 0.98 | 0.99 | 0.00 | 0.97 | 0.98 | 0.00 | 0.92 | 0.88 | 0.01 | 0.82 | 0.45 | 0.92 | 0.47 | 0.93 | 0.48 | 0.68 | 0.41 |
Year | RCPs | GCMs | % Permutation Importance to Tea Suitability | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sri Lanka | Kenya | India | China | |||||||||||||||||||
Bio15 | Bio1 | Bio14 | Bio4 | Bio2 | Bio1 | Bio16 | Bio12 | Bio4 | Bio2 | Bio12 | Bio1 | Bio2 | Bio15 | Bio4 | Bio1 | Bio16 | Bio4 | Bio15 | Bio14 | |||
2050 | RCP2.6 | HadGEM2-ES | 46.6 | 30.0 | 8.0 | 6.5 | 3.9 | 47.4 | 2.8 | 26.8 | 9.6 | 6.2 | 43.2 | 26.5 | 14.7 | 4.3 | 2.2 | 43.2 | 38.4 | 6.0 | 8.6 | 3.1 |
CCSM4 | 58.2 | 20.8 | 8.0 | 3.7 | 6.0 | 40.4 | 19.5 | 1.2 | 0.6 | 1.7 | 10.2 | 34.2 | 30.1 | 7.6 | 10.7 | 54.2 | 27.4 | 6.9 | 6.8 | 4.6 | ||
MIROC5 | 56.2 | 24.6 | 13.8 | 0.3 | 4.6 | 28.7 | 41.1 | 8.2 | 0.9 | 12.8 | 28.7 | 28.0 | 15.4 | 15.2 | 8.7 | 48.2 | 39.4 | 7.2 | 3.0 | 0.1 | ||
Average | 53.7 | 25.1 | 9.9 | 3.5 | 4.8 | 38.8 | 21.1 | 12.1 | 3.7 | 6.9 | 27.4 | 29.6 | 20.1 | 9.0 | 7.2 | 48.5 | 35.1 | 6.7 | 6.1 | 2.6 | ||
RCP6.0 | HadGEM2-ES | 62.9 | 18.0 | 7.9 | 4.7 | 3.9 | 55.4 | 1.2 | 9.1 | 8.1 | 15.9 | 53.9 | 20.9 | 6.2 | 6.9 | 5.4 | 57.8 | 28.8 | 3.6 | 8.9 | 0.7 | |
CCSM4 | 50.2 | 28.9 | 14.6 | 1.2 | 4.7 | 45.3 | 19.9 | 12.8 | 8.0 | 9.2 | 12.3 | 38.8 | 27.3 | 5.6 | 11.0 | 46.6 | 37.1 | 5.7 | 5.9 | 1.5 | ||
MIROC5 | 16.4 | 34.6 | 7.8 | 30.6 | 8.8 | 54.3 | 16.0 | 2.5 | 5.9 | 12.3 | 25.2 | 27.1 | 31.3 | 8.3 | 5.6 | 38.9 | 44.3 | 5.5 | 8.3 | 3.1 | ||
Average | 43.2 | 27.2 | 10.1 | 12.2 | 5.8 | 51.7 | 12.4 | 8.1 | 7.3 | 12.5 | 30.5 | 28.9 | 21.6 | 6.9 | 7.3 | 47.8 | 36.7 | 4.9 | 7.7 | 1.8 | ||
RCP8.5 | HadGEM2-ES | 58.0 | 17.0 | 7.4 | 3.5 | 7.3 | 56.9 | 3.1 | 20.8 | 2.0 | 8.2 | 56.1 | 22.8 | 4.1 | 4.7 | 5.0 | 35.0 | 44.8 | 15.9 | 3.0 | 1.3 | |
CCSM4 | 74.2 | 12.6 | 6.2 | 0.3 | 2.2 | 51.7 | 7.3 | 23.6 | 4.9 | 8.1 | 23.5 | 30.7 | 25.2 | 7.6 | 8.4 | 45.4 | 35.1 | 5.0 | 5.6 | 8.0 | ||
MIROC5 | 33.2 | 20.0 | 10.3 | 19.3 | 8.8 | 52.4 | 11.2 | 5.3 | 8.0 | 13.3 | 31.1 | 23.9 | 20.3 | 10.6 | 8.5 | 46.4 | 16.5 | 21.3 | 0.0 | 15.8 | ||
Average | 55.1 | 16.5 | 8.0 | 7.7 | 6.1 | 53.7 | 7.2 | 16.6 | 5.0 | 9.9 | 36.9 | 25.8 | 16.5 | 7.6 | 7.3 | 42.3 | 32.1 | 14.1 | 2.9 | 8.4 | ||
2070 | RCP2.6 | HadGEM2-ES | 64.3 | 16.9 | 8.0 | 2.5 | 3.6 | 54.3 | 22.0 | 4.0 | 5.6 | 10.2 | 49.9 | 28.6 | 7.7 | 5.3 | 3.4 | 53.0 | 36.8 | 4.5 | 5.7 | 0.0 |
CCSM4 | 63.3 | 21.3 | 8.2 | 0.8 | 4.5 | 66.7 | 7.2 | 7.2 | 6.0 | 9.5 | 7.3 | 47.9 | 28.1 | 5.3 | 7.5 | 68.8 | 18.4 | 7.7 | 3.9 | 0.5 | ||
MIROC5 | 62.2 | 14.8 | 8.7 | 3.1 | 3.1 | 48.0 | 15.7 | 11.6 | 6.1 | 3.8 | 21.9 | 32.0 | 27.2 | 10.6 | 4.8 | 26.3 | 26.3 | 23.2 | 3.3 | 7.5 | ||
Average | 63.3 | 17.7 | 8.3 | 2.1 | 3.7 | 56.3 | 15.0 | 7.6 | 5.9 | 7.8 | 26.4 | 36.2 | 21.0 | 7.1 | 5.2 | 49.4 | 27.2 | 11.8 | 4.3 | 2.7 | ||
RCP6.0 | HadGEM2-ES | 75.2 | 10.1 | 5.6 | 1.6 | 4.4 | 43.9 | 6.3 | 14.5 | 9.1 | 8.4 | 54.6 | 23.5 | 6.3 | 5.9 | 3.3 | 43.3 | 30.3 | 11.4 | 11.5 | 1.9 | |
CCSM4 | 56.9 | 19.3 | 9.5 | 0.9 | 5.5 | 72.1 | 1.9 | 14.9 | 2.1 | 5.7 | 12.9 | 37.9 | 30.8 | 6.8 | 8.4 | 36.0 | 39.5 | 7.7 | 9.0 | 6.4 | ||
MIROC5 | 29.1 | 29.0 | 3.5 | 22.7 | 4.0 | 44.7 | 5.3 | 22.0 | 9.6 | 12.9 | 12.9 | 36.1 | 33.4 | 7.4 | 4.3 | 49.1 | 36.1 | 3.9 | 1.6 | 8.9 | ||
Average | 53.7 | 19.5 | 6.2 | 8.4 | 4.6 | 53.6 | 4.5 | 17.1 | 6.9 | 9.0 | 26.8 | 32.5 | 23.5 | 6.7 | 5.3 | 42.8 | 35.3 | 7.7 | 7.4 | 5.7 | ||
RCP8.5 | HadGEM2-ES | 62.9 | 15.5 | 8.8 | 2.0 | 6.1 | 44.7 | 16.2 | 23.1 | 2.2 | 6.8 | 67.5 | 12.8 | 2.1 | 4.1 | 1.9 | 47.6 | 30.9 | 10.5 | 7.2 | 3.8 | |
CCSM4 | 44.4 | 30.7 | 10.7 | 4.7 | 6.8 | 59.9 | 10.4 | 5.9 | 13.3 | 4.3 | 13.1 | 34.2 | 20.3 | 14.7 | 11.4 | 21.1 | 43.0 | 16.2 | 7.6 | 6.7 | ||
MIROC5 | 65.2 | 23.5 | 4.6 | 0.6 | 5.8 | 34.4 | 3.7 | 27.6 | 9.2 | 13.2 | 19.8 | 36.2 | 22.3 | 10.2 | 8.1 | 40.9 | 13.5 | 24.1 | 3.6 | 12.3 | ||
Average | 57.5 | 23.2 | 8.0 | 2.4 | 6.2 | 46.3 | 10.1 | 18.9 | 8.2 | 8.1 | 33.5 | 27.7 | 14.9 | 9.7 | 7.1 | 36.5 | 29.1 | 16.9 | 6.1 | 7.6 | ||
Current Climate | 68.9 | 15.0 | 9.2 | 2.6 | 3.8 | 46.7 | 31.4 | 0.9 | 6.1 | 8.3 | 58.9 | 20.7 | 3.2 | 3.3 | 8.3 | 51.1 | 33.7 | 5.6 | 6.5 | 0.9 |
Country | Year | Average of Three GCMs | Unsuitable | Marginal | Medium | Optimal | ||||
---|---|---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | |||
(a) Sri Lanka | 2050 | RCP2.6 | 50781.8 | 77.5 | 4719.2 | 7.2 | 4550.7 | 6.9 | 5487.4 | 8.3 |
RCP6.0 | 51050.3 | 77.9 | 4445.3 | 6.8 | 4885.5 | 7.4 | 5158.0 | 7.8 | ||
RCP8.5 | 50904.0 | 77.7 | 4678.8 | 7.1 | 4832.1 | 7.4 | 5124.1 | 7.8 | ||
2070 | RCP2.6 | 50853.5 | 77.6 | 4724.0 | 7.2 | 4776.3 | 7.3 | 5185.3 | 7.9 | |
RCP6.0 | 50823.1 | 77.6 | 4857.0 | 7.4 | 4907.2 | 7.5 | 4951.8 | 7.5 | ||
RCP8.5 | 50897.1 | 77.6 | 4722.3 | 7.2 | 4597.5 | 7.0 | 5388.8 | 8.2 | ||
Current | 48594.0 | 74.1 | 5086.0 | 7.8 | 5769.0 | 8.8 | 6090.0 | 9.3 | ||
(b) Kenya | 2050 | RCP2.6 | 220496.3 | 88.6 | 13941.6 | 5.6 | 6800.5 | 2.7 | 7502.1 | 3.0 |
RCP6.0 | 220457.2 | 88.6 | 13871.4 | 5.6 | 6699.8 | 2.7 | 7712.0 | 3.1 | ||
RCP8.5 | 219723.4 | 88.3 | 14530.5 | 5.8 | 6837.6 | 2.7 | 7649.0 | 3.1 | ||
2070 | RCP2.6 | 220247.0 | 88.5 | 13914.7 | 5.6 | 6914.3 | 2.8 | 7664.4 | 3.1 | |
RCP6.0 | 219200.3 | 88.1 | 15404.7 | 6.2 | 6694.7 | 2.7 | 7440.8 | 3.0 | ||
RCP8.5 | 219596.4 | 88.3 | 14642.3 | 5.9 | 6895.8 | 2.8 | 7605.9 | 3.1 | ||
Current | 198806.2 | 79.9 | 28523.1 | 11.5 | 11078.6 | 4.5 | 10,332.5 | 4.2 | ||
(c) India | 2050 | RCP2.6 | 2861118.4 | 87.6 | 179210.2 | 5.5 | 104991.0 | 3.2 | 119,679.5 | 3.7 |
RCP6.0 | 2868920.3 | 87.9 | 170957.0 | 5.2 | 103379.4 | 3.2 | 121,742.4 | 3.7 | ||
RCP8.5 | 2875232.6 | 88.1 | 160488.6 | 4.9 | 104414.5 | 3.2 | 124,863.3 | 3.8 | ||
2070 | RCP2.6 | 2886936.8 | 88.4 | 159060.2 | 4.9 | 108548.3 | 3.3 | 110,453.8 | 3.4 | |
RCP6.0 | 2901247.1 | 88.9 | 142434.1 | 4.4 | 106483.0 | 3.3 | 114,834.8 | 3.5 | ||
RCP8.5 | 2857334.6 | 87.5 | 183818.3 | 5.6 | 111490.4 | 3.4 | 112,355.7 | 3.4 | ||
Current | 2945186.5 | 90.2 | 121331.8 | 3.7 | 131295.0 | 4.0 | 67,185.7 | 2.1 | ||
(d) China | 2050 | RCP2.6 | 5377177.4 | 57.4 | 1102303.9 | 11.8 | 1068413.9 | 11.4 | 1,824,387.9 | 19.5 |
RCP6.0 | 5410695.3 | 57.7 | 1126743.3 | 12.0 | 1011211.8 | 10.8 | 1,823,632.7 | 19.5 | ||
RCP8.5 | 5385041.4 | 57.5 | 1110481.1 | 11.8 | 1047701.7 | 11.2 | 1,829,059.0 | 19.5 | ||
2070 | RCP2.6 | 5356141.0 | 57.1 | 1110356.0 | 11.8 | 1049321.0 | 11.2 | 1,856,465.0 | 19.8 | |
RCP6.0 | 5315201.2 | 56.7 | 1172110.8 | 12.5 | 1091489.1 | 11.6 | 1,793,482.1 | 19.1 | ||
RCP8.5 | 5604752.3 | 59.8 | 951361.0 | 10.2 | 1119706.3 | 11.9 | 1,696,463.5 | 18.1 | ||
Current | 5713983.8 | 61.0 | 850069.6 | 9.1 | 1003218.9 | 10.7 | 1,804,999.1 | 19.3 |
Country | Year | Average of MIROC5, CCSM4 and HadGEM2-ES for RCPs | % of Loss (−) or Gain (+) of Suitability Area (%) | Optimal Climate Suitability Area for Tea (km2) and % of Loss (−) or Gain (+) | |||
---|---|---|---|---|---|---|---|
Unsuitable | Marginal | Medium | Optimal | ||||
(a) Sri Lanka | 2050 | RCP2.6 | 4.5 | −7.2 | −21.1 | −9.9 | 5226 (−14%) |
RCP6.0 | 5.1 | −12.6 | −15.3 | −15.3 | |||
RCP8.5 | 4.8 | −8.0 | −16.2 | −15.9 | |||
2070 | RCP2.6 | 4.6 | −7.1 | −17.2 | −14.9 | 5175 (−15.1) | |
RCP6.0 | 4.6 | −4.5 | −14.9 | −18.7 | |||
RCP8.5 | 4.7 | −7.2 | −20.3 | −11.5 | |||
(b) Kenya | 2050 | RCP2.6 | 10.9 | −51.1 | −38.6 | −27.4 | 7621 (−26.2%) |
RCP6.0 | 10.9 | −51.4 | −39.5 | −25.4 | |||
RCP8.5 | 10.5 | −49.1 | −38.3 | −26.0 | |||
2070 | RCP2.6 | 10.8 | −51.2 | −37.6 | −25.8 | 7570 (−28.6) | |
RCP6.0 | 10.3 | −46.0 | −39.6 | −28.0 | |||
RCP8.5 | 10.5 | −48.7 | −37.8 | −26.4 | |||
(c) India | 2050 | RCP2.6 | -0.3 | 18.6 | −21.6 | 21.5 | 74,999 (15%) |
RCP6.0 | 0.8 | 5.7 | −28.1 | 9.4 | |||
RCP8.5 | 1.1 | −5.0 | −22.8 | 6.3 | |||
2070 | RCP2.6 | 0.1 | 11.3 | −19.6 | 12.4 | 81,358 (25%) | |
RCP6.0 | −0.1 | 14.8 | −24.9 | 28.6 | |||
RCP8.5 | −0.3 | 16.7 | −20.4 | 24.8 | |||
(d) China | 2050 | RCP2.6 | −1.0 | 5.7 | 6.3 | −3.0 | 172,860 (−4.7%) |
RCP6.0 | 0.3 | 7.1 | 3.7 | −6.2 | |||
RCP8.5 | −1.1 | 6.4 | 7.2 | −3.5 | |||
2070 | RCP2.6 | −1.0 | 7.0 | 4.9 | −2.7 | 1,749,517 (−2.6%) | |
RCP6.0 | −1.7 | 8.2 | 6.8 | −2.3 | |||
RCP8.5 | 0.2 | −3.8 | 9.8 | −4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasinghe, S.L.; Kumar, L. Climate Change May Imperil Tea Production in the Four Major Tea Producers According to Climate Prediction Models. Agronomy 2020, 10, 1536. https://doi.org/10.3390/agronomy10101536
Jayasinghe SL, Kumar L. Climate Change May Imperil Tea Production in the Four Major Tea Producers According to Climate Prediction Models. Agronomy. 2020; 10(10):1536. https://doi.org/10.3390/agronomy10101536
Chicago/Turabian StyleJayasinghe, Sadeeka Layomi, and Lalit Kumar. 2020. "Climate Change May Imperil Tea Production in the Four Major Tea Producers According to Climate Prediction Models" Agronomy 10, no. 10: 1536. https://doi.org/10.3390/agronomy10101536
APA StyleJayasinghe, S. L., & Kumar, L. (2020). Climate Change May Imperil Tea Production in the Four Major Tea Producers According to Climate Prediction Models. Agronomy, 10(10), 1536. https://doi.org/10.3390/agronomy10101536