A Review for Southern Highbush Blueberry Alternative Production Systems
Abstract
:1. Introduction
2. Protected Environments
2.1. High Tunnel Production
2.2. Greenhouse and Plant Factory (Growth Chamber) Production
3. High-Density Planting Production
4. Evergreen Production
5. Container-Based Production
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brazelton, C.; Fain, C.; Aragon, L.; Bauer, N. IBO 2019 State of the Blueberry Industry Report. International Blueberry Organization. 2019. Available online: https://www.internationalblueberry.org/downloads/online-visualization/ (accessed on 9 October 2020).
- Banados, M.P. Expanding blueberry production into non-traditional production areas: Northern Chile and Argentina, Mexico and Spain. Acta Hortic. 2009, 810, 439–444. [Google Scholar] [CrossRef]
- Finn, C.E.; Hancock, J.F.; Olmstead, J.W.; Brazelton, D.M. Welcome to the party! blueberry breeding mixes private and public with traditional and molecular to create a vibrant new cocktail. Acta Hortic. 2014, 1017, 51–62. [Google Scholar] [CrossRef]
- Rematales, J.B.; Hancock, J.F. Blueberries, 2nd ed.; CABI Publishing: Wallingford, UK, 2018; ISBN 9781780647272. [Google Scholar]
- Demchak, K. Small fruit production in high tunnels. Horttechnology 2009, 19, 44–49. [Google Scholar] [CrossRef]
- Kadir, S.; Carey, E.; Ennahli, S. Influence of high tunnel and field conditions on strawberry growth and development. HortScience 2006, 41, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Thompson, E.; Strik, B.C.; Finn, C.E.; Zhao, Y.; Clark, J.R. High tunnel versus open field: Management of primocane-fruiting blackberry using pruning and tipping to increase yield and extend the fruiting season. HortScience 2009, 44, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, C.; Pritts, M.; Demchak, K.; Hanson, E. High Tunnel Raspberries and Blackberries; Cornell University Department of Horticulture: Ithaca, NY, USA, 2012; Volume 17, pp. 13–16. [Google Scholar]
- Lamont, W.J.; Orzolek, M.D.; Holcomb, E.J.; Demchak, K.; Burkhart, E.; White, L.; Dye, B. Production system for horticultural crops grown in the Penn State High Tunnel. Horttechnology 2003, 13, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.A. High tunnel tree fruit production: The final frontier? Horttechnology 2009, 19, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Tamada, T.; Ozeki, M. Evaluation of blueberry types and cultivars for early market production in Japan using unheated plastic house culture. Int. J. Fruit Sci. 2012, 12, 83–91. [Google Scholar] [CrossRef]
- Ciordia, M.; Díaz, M.B.; García, J.C. Blueberry culture both in pots and under Italian-type tunnels. Acta Hortic. 2002, 123–127. [Google Scholar] [CrossRef]
- Baptista, M.C.; Oliveira, P.B.; Lopes-Da-Fonseca, L.; Oliveira, C.M. Early ripening of southern highbush blueberries under mild winter conditions. Acta Hortic. 2006, 715, 191–196. [Google Scholar] [CrossRef]
- Ogden, A.B.; van Iersel, M.W. Southern highbush blueberry production in high tunnels: Temperatures, development, yield, and fruit quality during the establishment years. HortScience 2009, 44, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Reiss, E.; Both, A.J.; Garrison, S.; Kline, W.; Sudal, J. Season extension for tomato production using high tunnels. Acta Hortic. 2004, 659, 153–160. [Google Scholar] [CrossRef]
- Santos, B.M.; Salame-Donoso, T.P. Performance of southern highbush blueberry cultivars under high tunnels in Florida. Horttechnology 2012, 22, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Gough, R.E. The Highbush Blueberry and Its Management; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Barrau, C.; De Los Santos, B.; Calvo, D.; Medina, J.J.; Molina, J.M.; Romero, F. Low chilling blueberries (Vaccinium spp.) studies in Huelva (Andalusia, SW Spain): Present and future. Acta Hortic. 2004, 649, 305–308. [Google Scholar] [CrossRef]
- Li, T.; Bi, G. Container production of southern highbush blueberries using high tunnels. HortScience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Darnell, R.L.; Williamson, J.G. Feasibility of blueberry production in warm climates. Acta Hortic. 1997, 446, 251–256. [Google Scholar] [CrossRef]
- Williamson, J.G.; Darnell, R.L.; Krewer, G.; NeSmith, S. Effect of GA3 bloom sprays on fruit set and yield of rabbiteye blueberry. HortScience 1995, 30, 853. [Google Scholar] [CrossRef]
- Moon, J.W., Jr.; Hancock, J.F., Jr.; Draper, A.D.; Flore, J.A. Genotypic differences in the effect of temperature on CO2 assimilation and water use efficiency in blueberry. J. Am. Soc. Hortic. Sci. 1987, 112, 170–173. [Google Scholar]
- Krewer, G.; Ruter, J. Fertilizing highbush blueberries in pine bark beds (Bulletin 1291). Univ. Georg. Coop. Estension 2009. Available online: https://athenaeum.libs.uga.edu/bitstream/handle/10724/12290/B1291.pdf?sequence=1&isAllowed=y (accessed on 9 October 2020).
- Williamson, J.G.; Lyrene, P.M.; Olmstead, J.W. Protecting blueberries from freezes in Florida. Univ. Fla. Inst. Food Agric. Sci. 2012, 1–7. [Google Scholar]
- Abou-Shaara, H.F.; Owayss, A.A.; Ibrahim, Y.Y.; Basuny, N.K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Soc. 2017, 64, 455–463. [Google Scholar] [CrossRef]
- Chavez, D.J.; Lyrene, P.M. Interspecific crosses and backcrosses between diploid vaccinium darrowii and tetraploid southern highbush blueberry. J. Am. Soc. Hortic. Sci. 2009, 134, 273–280. [Google Scholar] [CrossRef]
- Taber, S.K.; Olmstead, J.W. Impact of cross- and self-pollination on fruit set, fruit size, seed number, and harvest timing among 13 southern highbush blueberry cultivars. Horttechnology 2016, 26, 213–219. [Google Scholar] [CrossRef] [Green Version]
- NeSmith, D.S. Use of plant growth regulators in blueberry production in the southeastern U.S. Int. J. Fruit Sci. 2005, 5, 41–54. [Google Scholar] [CrossRef]
- Cho, H.Y.; Kadowaki, M.; Che, J.; Takahashi, S.; Horiuchi, N.; Ogiwara, I. Influence of light quality on flowering characteristics, potential for year-round fruit production and fruit quality of blueberry in a plant factory. Fruits 2019, 74, 3–10. [Google Scholar] [CrossRef]
- Aung, T.; Muramatsu, Y.; Horiuchi, N.; Che, J.; Mochizuki, Y.; Ogiwara, I. Plant growth and fruit quality of blueberry in a controlled room under artificial light. J. Jpn. Soc. Hortic. Sci. 2014, 83, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Spann, T.M.; Williamson, J.G.; Darnell, R.L. Photoperiodic effects on vegetative and reproductive growth of Vaccinium darrowi and V. corymbosum interspecific hybrids. HortScience 2003, 38, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Spiers, J.M. Substrate temperatures influence root and shoot growth of southern highbush and rabbiteye blueberries. HortScience 1995, 30, 1029–1030. [Google Scholar] [CrossRef] [Green Version]
- Motomura, S.; Cho, A.; Hamasaki, R.; Akahoshi, K.; Kawabata, A.; Kawabata, A.; Nakamoto, S. Evaluation of pot size for greenhouse production of ‘Misty’ southern highbush blueberry in Volcano, Hawai’i. Fruit Nut. Beverage Crop. 2016, 1–4. [Google Scholar]
- Kameari, N.; Horiuchi, N.; Suzuki, S.; Koike, H.; Ogiwara, I. Photosynthetic characteristics of highbush blueberry and rabbiteye blueberry in phytotron. Hortic. Res. 2010, 9, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Spann, T.M.; Williamson, J.G.; Darnell, R.L. Photoperiod and temperature effects on growth and carbohydrate storage in southern highbush blueberry interspecific hybrid. J. Am. Soc. Hortic. Sci. 2004, 129, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Gaskell, M. Yield and fruit quality of southern highbush blueberries at varying planting density and row spacing. Acta Hortic. 2009, 810, 489–494. [Google Scholar] [CrossRef]
- Strik, B.; Buller, G. Improving yield and machine harvest efficiency of “Bluecrop” through high density planting and trellising. Acta Hortic. 2002, 227–231. [Google Scholar] [CrossRef]
- Bryla, D.R.; Strik, B.C. Effects of cultivar and plant spacing on the seasonal water requirements of highbush blueberry. J. Am. Soc. Hortic. Sci. 2007, 132, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Lyrene, P.M.; Williamson, J.G. High-density blueberry plantings in Florida. Acta Hortic. 1997, 446, 265–270. [Google Scholar] [CrossRef]
- Singerman, A.; Burani-Arouca, M.; Williamson, J.G.; England, G.K. Establishment and production costs for southern highbush blueberry orchards in Florida: Enterprise budget and profitability analysis. Univ. Fla. Inst. Food Agric. Sci. 2019, 1–14. [Google Scholar]
- Fonsah, E.G.; Massonnat, J.; Wiggins, L.; Krewer, G.; Stanaland, D.; Smith, J.E. Southern highbush blueberry marketing and economics. Univ. Georg. Ext. 2016, 1413, 1–10. [Google Scholar]
- Moore, J.N.; Brown, M.V.; Bordelon, B.P. Yield and fruit size of “Bluecrop” and “Blueray” highbush blueberries at three plant spacings. HortScience 1993, 28, 1162–1163. [Google Scholar] [CrossRef] [Green Version]
- Strik, B.; Buller, G. The impact of early cropping on subsequent growth and yield of highbush blueberry in the establishment years at two planting densities is cultivar dependant. HortScience 2005, 40, 1998–2001. [Google Scholar] [CrossRef] [Green Version]
- Norden, D.E.; Straughn, A. Blueberry Plant Named “Patrecia”. Application Number 14/998937, 7 March 2017. [Google Scholar]
- Lyrene, P.M. Blueberry Plant Called “Abundance”. Application Number 10/871999, 25 April 2006. [Google Scholar]
- Muneer, S.; Kim, J.H.; Park, J.G.; Shin, M.H.; Cha, G.H.; Kim, H.L.; Ban, T.; Kumarihami, H.M.P.C.; Kim, S.H.; Jeong, G.; et al. Reflective plastic film mulches enhance light intensity, floral induction, and bioactive compounds in ‘O’Neal’ southern highbush blueberry. Sci. Hortic. (Amsterdam) 2019, 246, 448–452. [Google Scholar] [CrossRef]
- Coventry, J.M.; Fisher, K.H.; Strommer, J.N.; Reynolds, A.G. Reflective mulch to enhance berry quality in Ontario wine grapes. Acta Hortic. 2005, 689, 95–102. [Google Scholar] [CrossRef]
- Decoteau, D.R.; Kasperbauer, M.J.; Daniels, D.D.; Hunt, P.G. Plastic mulch color effects on reflected light and tomato plant growth. Sci. Hortic. (Amsterdam) 1988, 34, 169–175. [Google Scholar] [CrossRef]
- Li, T.; Heuvelink, E.; Dueck, T.A.; Janse, J.; Gort, G.; Marcelis, L.F.M. Enhancement of crop photosynthesis by diffuse light: Quantifying the contributing factors. Ann. Bot. 2014, 114, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulitz, T.C.; Belanger, R.R. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 2001, 39, 103–133. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.A.; Flor, N.C.; Harmon, P.F. Florida blueberry leaf disease guide. Univ. Fla. Inst. Food Agric. Sci. 2019, 2019. [Google Scholar] [CrossRef]
- Blomgren, T.; Frisch, T. High tunnels. Univ. Vermont Cent. Sustain. Agric. 2007, 107–116. [Google Scholar] [CrossRef]
- VanEe, G.; Ledebuhr, R.; Hanson, E.; Hancock, J.; Ramsdell, D.C. Canopy development and spray deposition in highbush blueberry. Horttechnology 2000, 10, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Lyrene, P.M. Value of various taxa in breeding tetraploid blueberries in Florida. Euphytica 1997, 94, 15–22. [Google Scholar] [CrossRef]
- Swain, P.A.W.; Darnell, R.L. Production systems influence source limitations to growth in “Sharpblue” southern highbush blueberry. J. Am. Soc. Hortic. Sci. 2002, 127, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Reeder, R.K.; Darnell, R.L.; Obreza, T.A. Establishment of an evergreen high density blueberry planting in southwest Florida. Proc. Fla. State Hort. Soc. 1994, 107, 326–328. [Google Scholar]
- Lyrene, P. Breeding southern highbush blueberries. Plant Breed. Rev. 2008, 30, 353–414. [Google Scholar] [CrossRef]
- Wright, G. Performance of southern highbush and rabbiteye blueberries on the corindi plateau N.S.W. Australia. Acta Hortic. 1993, 141–146. [Google Scholar] [CrossRef]
- Hummer, K.; Zee, F.; Strauss, A.; Keith, L.; Nishijima, W. Evergreen production of southern highbush blueberries in Hawai’i. J. Am. Pomol. Soc. 2007, 61, 188–195. [Google Scholar]
- Brazelton, C. World blueberry acreage & production. N. Am. Blueberry Counc. 2013, 76. [Google Scholar]
- Maatala, N.; Bekkar, Y.; El Hassnaoui, O.; Lebailly, P. Technical and economic efficiency of irrigation water use for the farms of blueberry and raspberry in the loukkos area in Morocco. Int. J. Agric. Econ. 2020, 5, 1–8. [Google Scholar] [CrossRef]
- Phillips, D.; Williamson, J.G. Nutrition and fertilization practices for southern highbush blueberry in Florida. Univ. Fla. Inst. Food Agric. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Swain, P.A.W.; Darnell, R.L. Differences in phenology and reserve carbohydrate concentrations between dormant and nondormant production systems in southern highbush blueberry. J. Am. Soc. Hortic. Sci. 2001, 126, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Lyrene, P.M. Early defoliation reduces flower bud counts on rabbiteye blueberry. HortScience 1992, 27, 783–785. [Google Scholar] [CrossRef]
- Reeder, R.K.; Obreza, T.A.; Darnell, R.L. Establishment of a non-dormant blueberry (Vaccinium corymbosum hybrid) production system in a warm winter climate. J. Hortic. Sci. Biotechnol. 1998, 73, 655–663. [Google Scholar] [CrossRef]
- Darnell, R.L. Photoperiod, carbon partitioning, and reproductive development in rabbiteye blueberry. J. Am. Soc. Hortic. Sci. 1991, 116, 856–860. [Google Scholar] [CrossRef] [Green Version]
- Maust, B.E.; Williamson, J.G.; Darnell, R.L. Flower bud density affects vegetative and fruit development in field-grown southern highbush blueberry. HortScience 1999, 34, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.H.; Li, K.T. Dormant season fertigation promotes photosynthesis, growth, and flowering of ‘Blueshower’ rabbiteye blueberry in warm climates. Hortic. Environ. Biotechnol. 2015, 56, 756–761. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Bryla, D.R.; Strik, B.C. Potential of deficit irrigation, irrigation cutoffs, and crop thinning to maintain yield and fruit quality with less water in northern highbush blueberry. HortScience 2017, 52, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Sales, B.K.; Bryla, D.R.; Trippe, K.M.; Weiland, J.E.; Scagel, C.F.; Strik, B.C.; Sullivan, D.M. Amending sandy soil with biochar promotes plant growth and root colonization by mycorrhizal fungi in highbush blueberry. HortScience 2020, 55, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Williamson, J.G.; Lyrene, P.M.; Olmstead, J.W. Florida’s commercial blueberry industry. H2742. Gainesv. Univ. Fla. Inst. Food Agric. Sci. 2018, 1–4. [Google Scholar]
- Voogt, W.; Van Dijk, P.; Douven, F.; Van Der Maas, R. Development of a soilless growing system for blueberries (vaccinium corymbosum): Nutrient demand and nutrient solution. Acta Hortic. 2014, 1017, 215–221. [Google Scholar] [CrossRef]
- Olympios, C.M. Overview of soilless culture: Advantages, constraints and perspectives for its use in Mediterranean countries. Cah. Options Méditerranéennes 1999, 31, 307–324. [Google Scholar]
- Whidden, A. Commercial blueberry production methods in Hillsborough County. Proc. Fla. State Hort. Soc. 2008, 121, 36–37. [Google Scholar]
- Wilber, W.L.; Williamson, J.G. Effects of fertilizer rate on growth and fruiting of containerized southern highbush blueberry. HortScience 2008, 43, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Yaeger, T.; Fare, D.; Lea-Cox, J.; Ruter, J.; Bilderback, T.; Gilliam, C. Best Management Practices: Guide for Producing Container-Grown Plants; Southern Nursery Association: Marietta, GA, USA, 2007; pp. 1–7. [Google Scholar]
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant. Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Cantliffe, D.J. Pre- and postharvest practices for improved vegetable transplant quality. Horttechnology 1993, 3, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Passioura, J.B. Viewpoint: The perils of pot experiments. Funct. Plant. Biol. 2006, 33, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.S.; Altland, J.E. Container height and douglas fir bark texture affect substrate physical properties. HortScience 2008, 43, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; van Iersel, M.W.; Kim, J. Plant root growth affects FDR soil moisture sensor calibration. Sci. Hortic. (Amsterdam) 2019, 252, 208–211. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Nam, M.W.; Choi, D.H.; Lee, H.I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant. 2016, 38. [Google Scholar] [CrossRef]
- Nunez, G.H.; Harmon, C.L.; Olmstead, J.W.; Darnell, R.L. Root-level inoculation with iron-reducing microorganisms does not enhance iron uptake by southern highbush blueberry plants. Rhizosphere 2016, 2, 24–33. [Google Scholar] [CrossRef]
- Poonnachit, U.; Darnell, R. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Ann. Bot. 2004, 93, 399–405. [Google Scholar] [CrossRef]
- Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A.; Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A. Substrates and their analysis. Hydroponic Prod. Vegtables Ornamentals 2002, 25–105. [Google Scholar]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R. Suitability of sphagnum moss, coir, and douglas fir bark as soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B.C. Influence of perlite in peat- and coir-based media on vegetative growth and mineral nutrition of highbush blueberry. HortScience 2020, 55, 1–6. [Google Scholar] [CrossRef]
- Odneal, M.B.; Kaps, M.L. Fresh and aged pine bark as soil amendments for establishment of highbush blueberry. HortScience 1990, 25, 1228–1229. [Google Scholar] [CrossRef] [Green Version]
- Scagel, C.F. Growth and nutrient use of ericaceous plants grown in media amended with sphagnum moss peat or coir dust. HortScience 2003, 38, 46–54. [Google Scholar] [CrossRef]
- Ameri, A.; Tehranifar, A.; Davarynejad, G.H.; Shoor, M. The effects of substrate and cultivar in quality of strawberry. J. Biol. Environ. Sci. 2012, 6, 181–188. [Google Scholar]
- Hanna, H.Y. Influence of cultivar, growing media, and cluster pruning on greenhouse tomato yield and fruit quality. Horttechnology 2009, 19, 395–399. [Google Scholar] [CrossRef]
- Murray, J.D.; Lea-Cox, J.D.; Ross, D.S. Time domain reflectometry accurately monitors and controls irrigation water applications in soilless substrates. Acta Hortic. 2004, 633, 75–82. [Google Scholar] [CrossRef]
- Lemay, I.; Caron, J.; Dorais, M.; Pepin, S. Defining irrigation set points based on substrate properties for variable irrigation and constant matric potential devices in greenhouse tomato. HortScience 2012, 47, 1141–1152. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.R.; Konduru, S.; Stamps, R.H. Source variation in physical and chemical properties of coconut coir dust. HortScience 1996, 31, 965–967. [Google Scholar] [CrossRef] [Green Version]
- Asănică, A. Estimation of the economic efficiency of blueberry according to the production system. Sciendo 2018, 1, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Grieshop, M.; Gut, L.; Wise, J.; Smith, P.O.; Sundin, G.; Miller, S.; Flore, J.; Lang, G.; Perry, R. Development of solid set delivery systems for high density apples. N. Y. Fruit Q. 2015, 32, 16–20. [Google Scholar]
- Million, J.B.; Yeager, T.H. Testing an automated irrigation system based on leaching fraction testing and weather in a container nursery. Horttechnology 2019, 29, 114–121. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Nunez, G.H.; Silva, M.N.d.; Phillips, D.A.; Munoz, P.R. A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy 2020, 10, 1531. https://doi.org/10.3390/agronomy10101531
Fang Y, Nunez GH, Silva MNd, Phillips DA, Munoz PR. A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy. 2020; 10(10):1531. https://doi.org/10.3390/agronomy10101531
Chicago/Turabian StyleFang, Yang, Gerardo H. Nunez, Mariana Neves da Silva, Douglas A. Phillips, and Patricio R. Munoz. 2020. "A Review for Southern Highbush Blueberry Alternative Production Systems" Agronomy 10, no. 10: 1531. https://doi.org/10.3390/agronomy10101531
APA StyleFang, Y., Nunez, G. H., Silva, M. N. d., Phillips, D. A., & Munoz, P. R. (2020). A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy, 10(10), 1531. https://doi.org/10.3390/agronomy10101531