Preharvest Application of Oxalic Acid Improved Pomegranate Fruit Yield, Quality, and Bioactive Compounds at Harvest in a Concentration-Dependent Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Fruit Growth, Crop Yield, and Respiration Rate
2.3. Physico-Chemical Quality Parameters: Color, Firmness, Total Soluble Solids, Titratable Acidity, Ripening Index, and Individual Sugars and Organic Acids
2.4. Descriptive Sensory Evaluation
2.5. Bioactive Compounds and Total Antioxidant Activity Quantification
2.6. Statistical Analysis
3. Results
3.1. Fruit Growth, Crop Yield, and Respiration Rate
3.2. Physico-Chemical Quality Parameters: Color, Firmness, Total Soluble Solids, Titratable Acidity, Ripening Index, Individual Sugars and Organic Acids, and Sensory Evaluation
3.3. Bioactive Compounds and Total Antioxidant Activity
4. Discussion
4.1. Fruit Growth, Crop Yield, and Respiration Rate
4.2. Physico-Chemical Quality Parameters: Color, Firmness, Total Soluble Solids, Titratable Acidity, Ripening Index, Individual Sugars and Organic Acids, and Sensory Evaluation
4.3. Bioactive Compounds and Total Antioxidant Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mir, M.M.; Umar, I.; Mir, S.A.; Rehman, M.U.; Rather, G.H.; Banday, S.A. Quality evaluation of pomegranate crop—A review. Int. J. Agric. Biol. 2012, 14, 658–667. [Google Scholar]
- Shulman, Y.; Fainberstein, L.; Lavee, S. Pomegranate fruit development and maturation. J. Hortic. Sci. 1984, 59, 265–274. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Aradhya, S. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem. 2005, 93, 319–324. [Google Scholar] [CrossRef]
- Kader, A.A. Postharvest Biology and Technology of Pomegranates. In Pomegranates. Ancient Roots to Modern Medicine; Seeram, N.P., Schulman, R.N., Heber, D., Eds.; CRC Press-Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 229–238. [Google Scholar]
- Mayuoni-Kirshinbaum, L.; Porat, R. The flavor of pomegranate fruit: A review. J. Sci. Food Agric. 2013, 94, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Calhau, C. The bioactivity of pomegranate: Impact on health and disease. Crit. Rev. Food Sci. Nutr. 2011, 51, 626–634. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Serrano, M.; Guillén, F.; Martínez-Romero, D.; Valero, D. Prestorage heat treatment to maintain nutritive and functional properties during postharvest cold storage of pomegranate. J. Agric. Food Chem. 2006, 54, 8495–8500. [Google Scholar] [CrossRef]
- Özgen, M.; Durgaç, C.; Serce, S.; Kaya, C. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem. 2008, 111, 703–706. [Google Scholar] [CrossRef]
- Sreekumar, S.; Sithul, H.; Muraleedharan, P.; Azeez, J.M.; Sreeharshan, S. Pomegranate fruit as a rich source of biologically active compounds. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Calín-Sánchez, Á.; Carbonell-Barrachina, Á.; Hernández, F.; Hernández, F. Changes in quality parameters, proline, antioxidant activity and color of pomegranate (Punica granatum L.) as affected by fruit position within tree, cultivar and ripening stage. Sci. Hortic. 2014, 165, 181–189. [Google Scholar] [CrossRef]
- Melgarejo, P.; Salazar, D.M.; Artés, F. Organic acids and sugars composition of harvested pomegranate fruits. Eur. Food Res. Technol. 2000, 211, 185–190. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Cortés, I.L.; Salazar, D.M.; González-Alvarez, J.; Ramalhosa, E. Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. Eur. Food Res. Technol. 2017, 243, 1799–1814. [Google Scholar] [CrossRef]
- R (UE) 2016/ 83, 2016. ‘Mollar De Elche’ Pomegranate (POD). Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A32016R0083 (accessed on 11 July 2020).
- Cano-Lamadrid, M.; Lech, K.; Michalska-Ciechanowska, A.; Wasilewska, M.; Figiel, A.; Wojdylo, A.; Carbonell-Barrachina, Á. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chem. 2017, 232, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Laribi, A.; Palou, L.; Intrigliolo, D.; Nortes-Tortosa, P.; Rojas-Argudo, C.; Taberner, V.; Bartual, J.; Pérez-Gago, M.B. Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage. Agric. Water Manag. 2013, 125, 61–70. [Google Scholar] [CrossRef]
- Tian, S.; Wan, Y.; Qin, G.; Xu, Y. Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Appl. Microbiol. Biotechnol. 2006, 70, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S. Novel postharvest treatments of fresh produce. Innov. Postharvest Technol. 2017, 68, 35–51. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Serrano, M. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. J. Agric. Food Chem. 2011, 59, 5483–5489. [Google Scholar] [CrossRef] [PubMed]
- Sayyari, M.; Valero, D.; Babalar, M.; Kalantari, S.; Zapata, P.J.; Serrano, M. Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2 °C. J. Agric. Food Chem. 2010, 58, 6804–6808. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Zapata, P.J.; Valero, D.; García-Viguera, C.; Castillo, S.; Serrano, M. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). J. Agric. Food Chem. 2014, 62, 3432–3437. [Google Scholar] [CrossRef]
- Razavi, F.; Hajilou, J. Enhancement of postharvest nutritional quality and antioxidant capacity of peach fruits by preharvest oxalic acid treatment. Sci. Hortic. 2016, 200, 95–101. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, J.; Brecht, J.K.; Jiang, T.; Zheng, X. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chem. 2016, 190, 537–543. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; García-Pastor, M.E.; Zapata, P.J.; Guillén, F.; Serrano, M.; Valero, D.; Gironés-Vilaplana, A. Preharvest application of oxalic acid improves quality and phytochemical content of artichoke (Cynara scolymus L.) at harvest and during storage. Food Chem. 2017, 230, 343–349. [Google Scholar] [CrossRef]
- Anwar, R.; Gull, S.; Nafees, M.; Amin, M.; Hussain, Z.; Khan, A.S.; Malik, A.U. Pre-harvest foliar application of oxalic acid improves strawberry plant growth and fruit quality. J. Hortic. Sci. Technol. 2018, 1, 35–41. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Serrano, M.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Oxalic acid preharvest treatment increases antioxidant systems and improves plum quality at harvest and during postharvest storage. J. Sci. Food Agric. 2019, 99, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayyari, M.; Castillo, S.; Valero, D.; Díaz-Mula, H.M.; Serrano, M. Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biol. Technol. 2011, 60, 136–142. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Guillén, F.; Valero, D.; Serrano, M. The effects of salicylic acid and its derivatives on increasing pomegranate fruit quality and bioactive compounds at harvest and during storage. Front. Plant Sci. 2020, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, P.; Guillamón, J.M.; Amorós, A.; Martínez-Valero, R. Phenological stages of the pomegranate tree (Punka granatum L.). Ann. Appl. Biol. 1997, 130, 135–140. [Google Scholar] [CrossRef]
- Wang, Q.; Lai, T.; Qin, G.; Tian, S. Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant Cell Physiol. 2009, 50, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, S.C.; Oliveira, F.A.; Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Razzaq, K.; Khan, A.S.; Malik, A.U.; Shahid, M.; Ullah, S. Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. LWT Food Sci. Technol. 2015, 63, 152–160. [Google Scholar] [CrossRef]
- Deng, J.; Bi, Y.; Zhang, Z.; Xie, D.; Ge, Y.; Li, W.; Wang, J.; Wang, Y. Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 2015, 106, 53–61. [Google Scholar] [CrossRef]
- Zheng, X.; Ye, L.; Jiang, T.; Jing, G.; Li, J. Limiting the deterioration of mango fruit during storage at room temperature by oxalate treatment. Food Chem. 2012, 130, 279–285. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, D.; Zhang, H.; Jiang, G.; Su, X.; Qu, H.; Jiang, Y.; Duan, X. Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Res. Int. 2011, 44, 1299–1305. [Google Scholar] [CrossRef]
- Pareek, S.; Valero, D.; Serrano, M. Postharvest biology and technology of pomegranate. J. Sci. Food Agric. 2015, 95, 2360–2379. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lamadrid, M.; Galindo, A.; Collado-González, J.; Rodríguez, P.; Cruz, Z.N.; Legua, P.; Burló, F.; Morales, D.; Carbonell-Barrachina, Á.; Hernández, F. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agric. 2018, 98, 3098–3108. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Lü, J.; Jin, M.; Li, H.; Rao, J. Effects of oxalic acid treatment on chilling injury, antioxidant capacity and energy status in harvested kiwifruits under low temperature stress. Acta Hortic. Sin. 2017, 44, 279–287. [Google Scholar] [CrossRef]
- Wang, J.; Mao, L.; Li, X.W.; Lv, Z.; Liu, C.; Huang, Y.Y.; Li, D.D. Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo var. reticulatus Naud.) by regulating enzymes involved in antioxidative pathways. Sci. Hortic. 2018, 241, 201–208. [Google Scholar] [CrossRef]
- Ali, M.; Liu, M.M.; Wang, Z.E.; Li, S.E.; Jiang, T.J.; Zheng, X. Pre-harvest spraying of oxalic acid improves postharvest quality associated with increase in ascorbic acid and regulation of ethanol fermentation in kiwifruit cv. Bruno during storage. J. Integr. Agric. 2019, 18, 2514–2520. [Google Scholar] [CrossRef]
- Kayashima, T.; Katayama, T. Oxalic acid is available as a natural antioxidant in some systems. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2002, 1573, 1–3. [Google Scholar] [CrossRef]
- Panth, N.; Manandhar, B.; Paudel, K.R. Anticancer activity of Punica granatum (Pomegranate): A review. Phytother. Res. 2017, 31, 568–578. [Google Scholar] [CrossRef]
- Kok, D.; Bal, E. Changes on bioactive compounds and electrochemical characteristics of cv. Horoz Karası Table Grape (V. vinifera L.) induced by various doses of preharvest applications of benzoic acid, citric acid and oxalic acid at berry setting and verasion periods. Erwerbs-Obstbau 2019, 61, 17–24. [Google Scholar] [CrossRef]
- Zheng, X.; Tian, S.; Gidley, M.J.; Yue, H.; Li, B. Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biol. Technol. 2007, 45, 281–284. [Google Scholar] [CrossRef]
- Zheng, X.; Tian, S.; Gidley, M.J.; Yue, H.; Li, B.; Xu, Y.; Zhou, Z.-W. Slowing the deterioration of mango fruit during cold storage by pre-storage application of oxalic acid. J. Hortic. Sci. Biotechnol. 2007, 82, 707–714. [Google Scholar] [CrossRef]
2016 Experiment | ||||||
Parameter | ANOVA † | Control | OA 1 mM | OA 5 mM | OA 10 mM | |
Respiration rate (mg CO2 kg−1 h−1) | *** | 23.99 ± 0.32bB | 22.49 ± 0.24b | 19.35 ± 0.47a | 20.36 ± 0.80aA | |
External color | L* | ** | 64.22 ± 0.76bA | 62.05 ± 0.87ab | 60.03 ± 0.95a | 59.80 ± 0.92aA |
a* | * | 32.23 ± 1.16aB | 34.57 ± 1.32ab | 36.56 ± 1.18ab | 37.85 ± 1.24bB | |
h° | * | 44.20 ± 1.52bA | 41.66 ± 1.62ab | 39.38 ± 1.45ab | 38.59 ± 1.41aA | |
Firmness (N mm−1) | * | 16.79 ± 0.74aA | 16.56 ± 0.44a | 17.26 ± 0.32ab | 18.81 ± 0.37bA | |
TSS (g kg−1) | *** | 168.40 ± 0.50aA | 170.40 ± 0.50a | 169.70 ± 0.40a | 181.30 ± 0.80bA | |
TA (g kg−1) | *** | 4.20 ± 0.10aA | 4.60 ± 0.10bc | 4.40 ± 0.10ab | 4.80 ± 0.10cA | |
RI | NS | 40.26 ± 1.22A | 37.06 ± 1.01 | 38.48 ± 1.04 | 37.73 ± 1.21A | |
2017 Experiment | ||||||
Parameter | Student’s t-Test ¥ | Control | OA 1 mM | OA 5 mM | OA 10 mM | |
Respiration rate (mg CO2 kg−1 h−1) | * | 22.44 ± 0.33A | - | - | 19.22 ± 0.25A | |
External color | L* | * | 73.29 ± 0.95B | - | - | 67.54 ± 0.89B |
A* | * | 15.48 ± 1.31A | - | - | 25.44 ± 1.80A | |
h° | * | 67.60 ± 1.85B | - | - | 55.45 ± 2.27B | |
Firmness (N mm−1) | * | 25.69 ± 0.62B | - | - | 27.71 ± 0.76B | |
TSS (g kg−1) | * | 169.10 ± 0.50A | - | - | 180.80 ± 0.70A | |
TA (g kg−1) | * | 4.10 ± 0.10A | - | - | 5.00 ± 0.10A | |
RI | NS | 40.83 ± 1.51A | - | - | 37.11 ± 1.37A |
Parameter | ANOVA † | Control | OA 1 mM | OA 5 mM | OA 10 mM | |
---|---|---|---|---|---|---|
Individual sugars | Sucrose | NS | 0.58 ± 0.01 | 0.54 ± 0.02 | 0.59 ± 0.02 | 0.62 ± 0.01 |
Glucose | * | 61.04 ± 0.59a | 64.71 ± 1.71ab | 64.04 ± 1.69ab | 69.04 ± 0.71b | |
Fructose | NS | 106.48 ± 2.01 | 108.53 ± 1.60 | 107.28 ± 2.42 | 115.51 ± 2.21 | |
Organic acids | Oxalic acid | * | 0.14 ± 0.01a | 0.17 ± 0.01ab | 0.18 ± 0.01ab | 0.21 ± 0.01b |
Citric acid | NS | 0.67 ± 0.05 | 0.66 ± 0.05 | 0.65 ± 0.02 | 0.75 ± 0.06 | |
Malic acid | ** | 3.06 ± 0.10a | 3.39 ± 0.05a | 3.28 ± 0.11a | 3.93 ± 0.05b | |
Ascorbic acid | ** | 0.47 ± 0.02a | 0.50 ± 0.01ab | 0.51 ± 0.01ab | 0.55 ± 0.01b | |
Succinic acid | NS | 1.45 ± 0.19 | 1.59 ± 0.15 | 1.50 ± 0.06 | 1.94 ± 0.04 |
Parameter | ANOVA † | Control | OA 1 mM | OA 5 mM | OA 10 mM |
---|---|---|---|---|---|
2016 Experiment | |||||
Total phenolics | *** | 0.868 ± 0.016aA | 0.852 ± 0.017a | 0.958 ± 0.015b | 0.993 ± 0.023bA |
Total anthocyanins | *** | 0.136 ± 0.006aB | 0.145 ± 0.006a | 0.168 ± 0.007b | 0.198 ± 0.002cB |
TAA | *** | 2.005 ± 0.059aB | 2.276 ± 0.032b | 2.238 ± 0.030b | 2.566 ± 0.037cB |
2017 Experiment | |||||
Parameter | Student t test ¥ | Control | OA 1 mM | OA 5 mM | OA 10 mM |
Total phenolics | * | 0.846 ± 0.017A | - | - | 0.934 ± 0.016A |
Total anthocyanins | * | 0.109 ± 0.004A | - | - | 0.138 ± 0.009A |
TAA | * | 1.750 ± 0.034A | - | - | 1.946 ± 0.056A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Pastor, M.E.; Giménez, M.J.; Valverde, J.M.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Serrano, M.; Valero, D.; Zapata, P.J. Preharvest Application of Oxalic Acid Improved Pomegranate Fruit Yield, Quality, and Bioactive Compounds at Harvest in a Concentration-Dependent Manner. Agronomy 2020, 10, 1522. https://doi.org/10.3390/agronomy10101522
García-Pastor ME, Giménez MJ, Valverde JM, Guillén F, Castillo S, Martínez-Romero D, Serrano M, Valero D, Zapata PJ. Preharvest Application of Oxalic Acid Improved Pomegranate Fruit Yield, Quality, and Bioactive Compounds at Harvest in a Concentration-Dependent Manner. Agronomy. 2020; 10(10):1522. https://doi.org/10.3390/agronomy10101522
Chicago/Turabian StyleGarcía-Pastor, María E., María J. Giménez, Juan M. Valverde, Fabián Guillén, Salvador Castillo, Domingo Martínez-Romero, María Serrano, Daniel Valero, and Pedro J. Zapata. 2020. "Preharvest Application of Oxalic Acid Improved Pomegranate Fruit Yield, Quality, and Bioactive Compounds at Harvest in a Concentration-Dependent Manner" Agronomy 10, no. 10: 1522. https://doi.org/10.3390/agronomy10101522
APA StyleGarcía-Pastor, M. E., Giménez, M. J., Valverde, J. M., Guillén, F., Castillo, S., Martínez-Romero, D., Serrano, M., Valero, D., & Zapata, P. J. (2020). Preharvest Application of Oxalic Acid Improved Pomegranate Fruit Yield, Quality, and Bioactive Compounds at Harvest in a Concentration-Dependent Manner. Agronomy, 10(10), 1522. https://doi.org/10.3390/agronomy10101522