A Novel Graft between Pac Choi (Brassica rapa var. chinensis) and Daikon Radish (Raphanus sativus var. longipinnatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup of the Pilot Experiment
2.2. Setup of the Follow-Up Experiment
2.3. Plant Growth Measurements
2.4. Gas Exchange Measurements
2.5. Yield Components and Biomass Accumulation at Harvest
2.6. Mineral Nutrient Contents in Leaf and Root Tissues
2.7. Statistical Analyses
3. Results and Discussion
3.1. Graft Survival Rate
3.2. Plant Growth Parameters
3.3. Gas-Exchange Parameters
3.4. Leaf and Taproot Harvest and Biomass Partition
3.5. Mineral Nutrient Contents in Pac Choi Leaves and Daikon Radish Roots of Grafted Plants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Guan, W.; Zhao, X.; Hassell, R.; Thies, J. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 2012, 47, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Komives, E.A.; Schroeder, J.I. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol. 2006, 141, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Gurusamy, V.; Bett, K.E.; Vandenberg, A. Grafting as a tool in common bean breeding. Can. J. Plant Sci. 2010, 90, 299–304. [Google Scholar] [CrossRef]
- Temperini, O.; Calabrese, N.; Temperini, A.; Rouphael, Y.; Tesi, R.; Lenzi, A.; Carito, A.; Colla, G. Grafting artichoke onto cardoon rootstocks: Graft compatibility, yield and Verticillium wilt incidence. Sci. Hortic. 2013, 149, 22–27. [Google Scholar] [CrossRef]
- Oda, M.; Tsuji, K.; Nagaoka, M. Inter-generic, inter-specific and inter-varietal grafting in Cruciferae. Acta Hortic. 1990, 319, 425–430. [Google Scholar] [CrossRef]
- Oda, M.; Nakajima, T. Adhesive grafting of Chinese cabbage on turnip. HortScience 1992, 27, 1136. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Chang, W.C.; Wang, S.T.; Lin, S.I. Development of a grafting method and healing conditions to improve cabbage head quality. HortTechnology 2019, 29, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.W.; Tai, P.Y.; Chen, Y.; Li, W.H. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol. Phylogenet. Evol. 2002, 23, 268–275. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Funayama, T.; Kamibayashi, M.; Konnai, M.; Bang, S.W.; Kaneko, Y. Synthetic Brassica rapa-Raphanus sativus amphidiploid lines developed by reciprocal hybridization. Plant Breed. 2000, 119, 357–359. [Google Scholar]
- Lange, W.; Toxopeus, H.; Lubberts, J.H.; Dolstra, O.; Harrewijn, J.L. The development of Raparadish (x Brassicoraphanus, 2n = 38), a new crop in agriculture. Euphytica 1989, 40, 1–14. [Google Scholar]
- Tonosaki, K.; Michiba, K.; Bang, S.W.; Kitashiba, H.; Kaneko, Y.; Nishio, T. Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus. Theor. Appl. Genet. 2013, 126, 837–846. [Google Scholar]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Intern. 2004, 11, 36–42. [Google Scholar]
- Chen, X.; Wang, J.; Shi, Y.; Zhao, M.Q.; Chi, G.Y. Effects of cadmium on growth and photosynthetic activities in pak choi and mustard. Bot. Stud. 2011, 52, 41–46. [Google Scholar]
- He, Y.; Zhu, Z.; Yang, J.; Ni, X.; Zhu, B. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Exp. Bot. 2009, 66, 270–278. [Google Scholar]
- Gago, J.; de Menezes Daloso, D.; Figueroa, C.M.; Flexas, J.; Fernie, A.R.; Nikoloski, Z. Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach. Plant Physiol. 2016, 171, 265–279. [Google Scholar]
- Bumgarner, N.R.; Kleinhenz, M.D. Grafting Guide: A Pictorial Guide to the Cleft and Splice Graft Methods as Applied to Tomato and Pepper; The Ohio State University: Columbus, OH, USA, 2013; Available online: https://web.extension.illinois.edu/smallfarm/downloads/50570.pdf (accessed on 19 September 2020).
- Garner, R.J.; Bradley, S. The Grafter’s Handbook; Mitchell Beazley: London, UK, 2013. [Google Scholar]
- Melnyk, C.W. Plant grafting: Insights into tissue regeneration. Regeneration 2017, 4, 3–14. [Google Scholar]
- Hayashida, T.; Shibato, Y.; Hamachi, Y.; Yamato, Y.; Yamazaki, H.; Miura, H. Effect of light quality with different red/far-red photon flux density ratio on elongation of pak-choi (Brassica chinensis) seedlings grown under high temperatures. J. Jpn. Soc. Hortic. Sci. 2001, 70, 774–776. [Google Scholar]
- Kwack, Y.; Kim, K.K.; Hwang, H.; Chun, C. Growth and quality of sprouts of six vegetables cultivated under different light intensity and quality. Hortic. Environ. Biotechnol. 2015, 56, 437–443. [Google Scholar]
- Liu, M.; Bassetti, N.; Petrasch, S.; Zhang, N.; Bucher, J.; Shen, S.; Zhao, J.; Bonnema, G. What makes turnips: Anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development. Hortic. Res. 2019, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Luo, L.; Gao, Z.; Liu, Y.; Chen, Q.; Kong, X.; Yang, Y. Grafting induces flowering time and tuber formation changes in Brassica species involving FT signaling. Plant. Biol. 2019, 21, 1031–1038. [Google Scholar] [PubMed]
- Tsuro, M.; Suwabe, K.; Kubo, N.; Matsumoto, S.; Hirai, M. Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed. Sci. 2008, 58, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Zaki, H.E.M.; Takahata, Y.; Yokoi, S. Analysis of the morphological and anatomical characteristics of roots in three radish (Raphanus sativus) cultivars that differ in root shape. J. Hortic. Sci. Biotechnol. 2012, 87, 172–178. [Google Scholar]
- Bihmidine, S.; Hunter Iii, C.T.; Johns, C.E.; Koch, K.E.; Braun, D.M. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Front. Plant Sci. 2013, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel, C.G. Stomata and trichrome performances of four radish Raphanus sativus L. var. sativus cultivars grown in controlled cabinet under varying temperatures and irrigation levels. Intl. J. Farm. Alli. Sci. 2016, 5, 46–65. [Google Scholar]
- Ehleringer, J.; Björkman, O.; Mooney, H.A. Leaf pubescence: Effects on absorptance and photosynthesis in a desert shrub. Science 1976, 191, 376–377. [Google Scholar]
- Choinski, J.S., Jr.; Wise, R.R. Leaf growth development in relation to gas exchange in Quercus marilandica Muenchh. J. Plant Physiol. 1999, 154, 302–309. [Google Scholar] [CrossRef]
- Hauser, M.T. Molecular basis of natural variation and environmental control of trichome patterning. Front. Plant Sci. 2014, 5, 1–7. [Google Scholar]
- Thomson, G.E. Role of harvest technique and injuries in water loss from stored pak choi (Brassica rapa subsp. chinensis) heads. N. Z. J. Crop Hortic. 2005, 33, 111–115. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Lawson, T.; Oxborough, K.; Baker, N.R.; Andrews, T.J.; Raines, C.A. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J. Exp. Bot. 2004, 55, 1157–1166. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 2008, 59, 3317–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenkranz, H.; Vogel, R.; Greiner, S.; Rausch, T. In wounded sugar beet (Beta vulgaris L.) taproot, hexose accumulation correlates with the induction of a vacuolar invertase isoform. J. Exp. Bot. 2001, 52, 2381–2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.I.; Turner, J.G. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE 2008, 3, e3699. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; van Lammeren, A.A.M.; Vermeer, E.; Vreugdenhil, D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 1998, 117, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, L.E.P.; Carvalho, R.F.; Zsögön, A.; Bermúdez-Zambrano, O.D.; Robles, W.G.R.; Tavares, S. Grafting of tomato mutants onto potato rootstocks: An approach to study leaf-derived signaling on tuberization. Plant Sci. 2005, 169, 680–688. [Google Scholar] [CrossRef]
- Zhang, G.; Mao, Z.; Wang, Q.; Song, J.; Nie, X.; Wang, T.; Zhang, H.; Guo, H. Comprehensive transcriptome profiling and phenotyping of rootstock and scion in a tomato/potato heterografting system. Physiol. Plant 2019, 166, 833–847. [Google Scholar] [CrossRef]
- Wang, G.L.; Xiong, F.; Que, F.; Xu, Z.S.; Wang, F.; Xiong, A.S. Morphological characteristics, anatomical structure, and gene expression: Novel insights into gibberellin biosynthesis and perception during carrot growth and development. Hortic. Res. 2015, 2, 15028. [Google Scholar] [CrossRef] [Green Version]
- Jabir, O.; Mohammed, B.; Benard Kinuthia, K.; Almahadi Faroug, M.; Nureldin Awad, F.; Muleke, E.M.; Ahmadzai, Z.; Liu, L. Effects of gibberellin and gibberellin biosynthesis inhibitor (paclobutrazol) applications on radish (Raphanus sativus) taproot expansion and the presence of authentic hormones. Int. J. Agric. Biol. 2017, 19, 779–786. [Google Scholar] [CrossRef]
- Sugiura, D.; Betsuyaku, E.; Terashima, I. Manipulation of the hypocotyl sink activity by reciprocal grafting of two Raphanus sativus varieties: Its effects on morphological and physiological traits of source leaves and whole-plant growth. Plant Cell Environ. 2015, 38, 2629–2640. [Google Scholar] [CrossRef] [Green Version]
- Chapin Iii, F.S.; Schulze, E.D.; Mooney, H.A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 1990, 21, 423–447. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [PubMed]
- Yu, R.; Xu, L.; Zhang, W.; Wang, Y.; Luo, X.; Wang, R.; Zhu, X.; Xie, Y.; Karanja, B.; Liu, L. De novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.). Front. Plant Sci. 2016, 7, 585. [Google Scholar] [PubMed] [Green Version]
- Sugiura, D.; Watanabe, C.K.A.; Betsuyaku, E.; Terashima, I. Sink-source balance and down-regulation of photosynthesis in Raphanus sativus: Effects of grafting, N and CO2. Plant Cell Physiol. 2017, 58, 2043–2056. [Google Scholar] [PubMed]
Treatment z | Relative Chlorophyll Content (SPAD) | Canopy (cm2 Plant−1) | ||
---|---|---|---|---|
33 DAG | 41 DAG | 33 DAG | 41 DAG | |
BK | 37.2 ± 0.8 a y | 40.6 ± 0.7 a | - | - |
BK/BK | 36.7 ± 0.8 ab | 40.3 ± 0.7 a | - | - |
MQ | 34.1 ± 0.8 c | 40.7 ± 0.7 a | 54.26 ± 2.71 a | 78.32 ± 3.35 a |
MQ/MQ | 34.6 ± 0.8 bc | 42.1 ± 0.7 a | 58.90 ± 2.71 a | 76.90 ± 3.35 a |
MQ/BK | 33.3 ± 0.8 c | 40.0 ± 0.7 a | 52.32 ± 2.71 a | 75.42 ± 3.35 a |
p value | 0.006 | 0.194 | 0.150 | 0.813 |
Treatment z | Leaf Number (no. Plant−1) | Leaf Area (mm2 Plant−1) | Taproot Length (cm) | Taproot Diameter (mm) |
---|---|---|---|---|
2016 | ||||
BK | 18.9 ± 2.3 b y | - | 10.9 ± 0.5 a | 68.55 ± 3.98 a |
MQ | 26.6 ± 2.4 ab | - | - | - |
MQ/BK | 28.1 ± 2.4 a | - | 8.2 ± 0.5 b | 51.92 ± 3.56 b |
p value | 0.020 | 0.005 | 0.017 | |
2019 | ||||
BK | 15.7 ± 0.6 b | 2521.73 ± 60.62 a | 9.2 ± 0.5 a | 45.24 ± 0.71 a |
BK/BK | 14.7 ± 0.5 b | 2401.06 ± 60.62 ab | 8.4 ± 0.5 a | 42.20 ± 0.71 b |
MQ | 20.4 ± 0.6 a | 2423.26 ± 60.62 ab | - | - |
MQ/MQ | 19.5 ± 0.6 a | 2311.67 ± 60.62 b | - | - |
MQ/BK | 19.8 ± 0.6 a | 2080.12 ± 60.62 c | 6.8 ± 0.5 b | 34.94 ± 0.71 c |
p value | <0.001 | 0.002 | 0.005 | <0.001 |
Treatment y | E (mmol H2O m−2 s−1) | A (µmol CO2 m−2 s−1) | Ci (μmol CO2 mol−1 air) | Gs (mol m−2 s−1) | iWUE (µmol CO2 mmol−1 H2O) z | |||||
---|---|---|---|---|---|---|---|---|---|---|
34 DAG | 46 DAG | 34 DAG | 46 DAG | 34 DAG | 46 DAG | 34 DAG | 46 DAG | 34 DAG | 46 DAG | |
BK | 4.81 ± 0.71 a x | 2.80 ± 0.79 b | 21.41 ± 0.75 a | 17.22 ± 0.89 b | 298.14 ± 11.10 b | 251.33 ± 10.59 b | 0.28 ± 0.05 a | 0.15 ± 0.05 b | 4.92 ± 0.56 a | 7.26 ± 0.54 a |
BK/BK | 4.68 ± 0.71 a | 4.18 ± 0.79 b | 19.66 ± 0.75 ab | 18.93 ± 0.89 ab | 305.43 ± 11.10 b | 273.09 ± 10.59 b | 0.27 ± 0.05 a | 0.25 ± 0.05 b | 4.55 ± 0.56 ab | 6.27 ± 0.54 a |
MQ | 4.95 ± 0.71 a | 6.61 ± 0.79 a | 16.10 ± 0.75 c | 14.06 ± 0.89 c | 330.36 ± 11.10 a | 345.22 ± 10.59 a | 0.32 ± 0.05 a | 0.41 ± 0.05 a | 3.59 ± 0.56 bc | 2.49 ± 0.54 b |
MQ/MQ | 5.51 ± 0.71 a | 6.33 ± 0.79 a | 14.41 ± 0.75 c | 14.31 ± 0.89 c | 331.63 ± 11.10 a | 346.80 ± 10.59 a | 0.33 ± 0.05 a | 0.40 ± 0.05 a | 3.20 ± 0.56 c | 2.51 ± 0.54 b |
MQ/BK | 4.35 ± 0.71 a | 7.47 ± 0.79 a | 18.44 ± 0.75 b | 20.76 ± 0.89 a | 299.39 ± 11.10 b | 336.66 ± 10.59 a | 0.25 ± 0.05 a | 0.45 ± 0.05 a | 4.88 ± 0.56 a | 2.94 ± 0.54 b |
p value | 0.564 | <0.001 | <0.001 | <0.001 | 0.011 | <0.001 | 0.362 | 0.001 | 0.024 | <0.001 |
Treatment z | Above-Ground FW (g Plant−1) | Below-Ground FW (g Plant−1) | Above-Ground DW (g Plant−1) | Below-Ground DW (g Plant−1) | Total FW (g Plant−1) | Total DW (g Plant−1) |
---|---|---|---|---|---|---|
2016 | ||||||
BK | 240.07 ± 54.58 b y | 332.15 ± 33.23 a | 20.41 ± 2.52 a | 19.84 ± 1.56 a | 572.21 ± 67.48 a | 41.08 ± 4.00 a |
MQ | 602.76 ± 48.82 a | - | 25.50 ± 2.25 a | - | - | - |
MQ/BK | 490.63 ± 48.82 a | 110.44 ± 29.72 b | 24.42 ± 2.25 a | 7.60 ± 1.20 b | 601.07 ± 60.36 a | 32.02 ± 3.10 a |
p value | 0.001 | <0.001 | 0.331 | <0.001 | 0.792 | 0.142 |
2019 | ||||||
BK | 171.64 ± 6.62 d | 103.47 ± 5.25 a | 12.85 ± 0.25 a | 6.58 ± 0.33 a | 275.17 ± 4.44 b | 19.45 ± 0.41 a |
BK/BK | 162.27 ± 6.62 d | 77.55 ± 4.57 b | 12.34 ± 0.25 a | 5.33 ± 0.30 b | 239.91 ± 4.44 c | 17.67 ± 0.41 b |
MQ | 329.83 ± 6.62 a | - | 10.09 ± 0.25 b | - | - | - |
MQ/MQ | 293.51 ± 6.62 b | - | 8.98 ± 0.25 c | - | - | - |
MQ/BK | 269.08 ± 6.62 c | 43.59 ± 3.45 c | 9.43 ± 0.25 bc | 2.24 ± 0.20 c | 312.93 ± 4.44 a | 11.68 ± 0.41 c |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment z | N (mg g−1) | P (mg g−1) | K (mg g−1) | Mg (mg g−1) | Ca (mg g−1) | S (mg g−1) | B (μg g−1) | Zn (μg g−1) | Mn (μg g−1) | Fe (μg g−1) | Cu (μg g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | |||||||||||
MQ | 51.5 ± 0.9 ab y | 10.3 ± 0.3 a | 92.1 ± 1.7 b | 6.4 ± 0.2 a | 30.2 ± 1.0 a | 15.4 ± 0.4 a | 44.6 ± 1.6 a | 77.5 ± 3.5 b | 180.4 ± 7.1 a | 103.5 ± 6.8 a | 0.7 ± 0.1 a |
MQ/MQ | 53.7 ± 0.9 a | 10.5 ± 0.3 a | 96.1 ± 1.7 a | 6.7 ± 0.2 a | 31.3 ± 1.0 a | 15.4 ± 0.4 a | 45.9 ± 1.6 a | 76.7 ± 3.5 b | 195.3 ± 7.1 a | 101.7 ± 6.8 a | 0.7 ± 0.1 a |
MQ/BK | 48.4 ± 0.9 b | 9.7 ± 0.3 a | 73.1 ± 1.7 c | 6.4 ± 0.2 a | 32.0 ± 1.0 a | 8.5 ± 0.4 b | 45.6 ± 1.6 a | 106.5 ± 3.5 a | 180.8 ± 7.1 a | 120.1 ± 6.8 a | 1.1 ± 0.1 a |
p value | 0.008 | 0.147 | <0.001 | 0.352 | 0.437 | <0.001 | 0.835 | <0.001 | 0.175 | 0.070 | 0.057 |
Taproot | |||||||||||
BK | 28.2 ± 0.7 b | 7.6 ± 0.3 a | 51.1 ± 2.4 b | 1.5 ± 0.1 b | 3.3 ± 0.2 b | 10.3 ± 0.3 a | 20.7 ± 0.9 b | 63.2 ± 3.8 b | 27.0 ± 1.5 a | 105.2 ± 17.9 a | 0.9 ± 0.2 a |
BK/BK | 28.2 ± 0.7 b | 7.4 ± 0.3 a | 49.7 ± 2.4 b | 1.4 ± 0.1 b | 3.3 ± 0.2 b | 10.6 ± 0.3 a | 20.2 ± 0.9 b | 65.0 ± 3.8 b | 23.4 ± 1.5 a | 92.2 ± 16.8 a | 1.0 ± 0.2 a |
MQ/BK | 32.2 ± 0.7 a | 8.1 ± 0.3 a | 65.7 ± 2.4 a | 2.2 ± 0.1 a | 4.6 ± 0.2 a | 5.9 ± 0.3 b | 27.8 ± 0.9 a | 104.3 ± 3.8 a | 25.5 ± 1.5 a | 90.9 ± 16.7 a | 1.1 ± 0.2 a |
p value | 0.008 | 0.128 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.201 | 0.664 | 0.677 |
Treatment z | N (mg Plant−1) | P (mg Plant−1) | K (mg Plant−1) | Mg (mg Plant−1) | Ca (mg Plant−1) | S (mg Plant−1) | B (μg Plant−1) | Zn (μg Plant−1) | Mn (μg Plant−1) | Fe (μg Plant−1) | Cu (μg Plant−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | |||||||||||
MQ | 519.6 ± 13.3 a y | 104.2 ± 3.8 a | 929.3 ± 25.1 a | 64.6 ± 1.9 a | 304.6 ± 10.8 a | 155.0 ± 5.2 a | 450.0 ± 21.1 a | 781.9 ± 37.5 b | 1819.5 ± 84.7 a | 1043.8 ± 69.4 a | 6.9 ± 1.2 a |
MQ/MQ | 481.6 ± 13.3 ab | 93.8 ± 3.8 a | 862.5 ± 25.1 a | 59.9 ± 1.9 a | 280.7 ± 10.8 a | 138.1 ± 5.2 b | 412.9 ± 21.1 a | 688.1 ± 37.5 c | 1753.8 ± 84.7 a | 911.5 ± 69.4 a | 6.4 ± 1.2 a |
MQ/BK | 456.2 ± 13.3 b | 91.3 ± 3.8 a | 690.4 ± 25.1 b | 60.1 ± 1.9 a | 300.7 ± 10.8 a | 79.7 ± 5.2 c | 429.8 ± 21.1 a | 1003.4 ± 37.5 a | 1707.4 ± 84.7 a | 1133.1 ± 69.4 a | 10.5 ± 1.2 a |
p value | 0.025 | 0.103 | <0.001 | 0.123 | 0.172 | <0.001 | 0.487 | <0.001 | 0.636 | 0.081 | 0.081 |
Taproot | |||||||||||
BK | 185.3 ± 5.7 a | 49.9 ± 1.5 a | 333.8 ± 11.5 a | 9.9 ± 0.3 a | 21.8 ± 0.5 a | 67.4 ± 2.4 a | 135.3 ± 4.1 a | 414.8 ± 15.9 a | 178.4 ± 10.0 a | 723.3 ± 106.9 a | 6.0 ± 1.2 a |
BK/BK | 150.2 ± 5.7 b | 39.3 ± 1.5 b | 264.5 ± 11.5 b | 7.7 ± 0.3 b | 17.3 ± 0.5 b | 56.4 ± 2.4 b | 107.5 ± 4.1 b | 346.6 ± 15.9 b | 124.4 ± 10.0 b | 503.8 ± 106.9 ab | 5.5 ± 1.2 a |
MQ/BK | 72.1 ± 5.7 c | 18.3 ± 1.5 c | 148.2 ± 11.5 c | 4.8 ± 0.3 c | 10.2 ± 0.5 c | 13.2 ± 2.4 c | 62.9 ± 4.1 c | 235.2 ± 15.9 c | 57.8 ± 10.0 c | 207.3 ± 106.9 b | 2.5 ± 1.2 a |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.027 | 0.120 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, T.; Ray, Z.T.; Butcher, K.E.; Black, Z.E.; Zhao, X.; Brecht, J.K. A Novel Graft between Pac Choi (Brassica rapa var. chinensis) and Daikon Radish (Raphanus sativus var. longipinnatus). Agronomy 2020, 10, 1464. https://doi.org/10.3390/agronomy10101464
Gong T, Ray ZT, Butcher KE, Black ZE, Zhao X, Brecht JK. A Novel Graft between Pac Choi (Brassica rapa var. chinensis) and Daikon Radish (Raphanus sativus var. longipinnatus). Agronomy. 2020; 10(10):1464. https://doi.org/10.3390/agronomy10101464
Chicago/Turabian StyleGong, Tian, Zachary T. Ray, Kylee E. Butcher, Zachary E. Black, Xin Zhao, and Jeffrey K. Brecht. 2020. "A Novel Graft between Pac Choi (Brassica rapa var. chinensis) and Daikon Radish (Raphanus sativus var. longipinnatus)" Agronomy 10, no. 10: 1464. https://doi.org/10.3390/agronomy10101464
APA StyleGong, T., Ray, Z. T., Butcher, K. E., Black, Z. E., Zhao, X., & Brecht, J. K. (2020). A Novel Graft between Pac Choi (Brassica rapa var. chinensis) and Daikon Radish (Raphanus sativus var. longipinnatus). Agronomy, 10(10), 1464. https://doi.org/10.3390/agronomy10101464