The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Statistical Analysis
3. Results
3.1. Weather Conditions during the Experiment
3.2. Camelina Genotypes and Traits
3.3. Genotype-by-Environment (GE) Interaction
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Francis, A.; Warwick, S.I. The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Can. J. Plant Sci. 2009, 89, 791–810. [Google Scholar] [CrossRef]
- Putnam, D.H.; Budin, J.T.; Field, L.A.; Breene, W.M. Camelina: A promising low-input oilseed. In New Crops; Janick, J., Simon, J.E., Eds.; Wiley: New York, NY, USA, 1993; pp. 314–322. [Google Scholar]
- Research Centre for Cultivar Testing Diariusz. Polish Gaz. Plant Breeders’ Rights Natl. List 2018, 3, 16.
- Eynck, C.; Falk, K. Camelina (Camelina sativa). In BiofuelCrops: Production, Physiology and Genetics; Singh, B., Ed.; CABI: Fort Valley, GA, USA, 2013; p. 369. [Google Scholar]
- Putnam, M.L.; Serdani, M.; Ehrensing, D.; Curtis, M. Camelina Infected by Downy Mildew (Hyaloperonospora camelinae ) in the Western United States: A First Report. Plant Heal. Prog. 2009, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Gesch, R.W. Influence of genotype and sowing date on camelina growth and yield in the north central U.S. Ind. Crops Prod. 2014, 54, 209–215. [Google Scholar] [CrossRef]
- Soroka, J.; Olivier, C.; Grenkow, L.; Séguin-Swartz, G. Interactions between Camelina sativa (Brassicaceae) and insect pests of canola. Can. Entomol. 2015, 147, 193–214. [Google Scholar] [CrossRef]
- Masella, P.; Martinelli, T.; Galasso, I. Agronomic evaluation and phenotypic plasticity of Camelina sativa growing in Lombardia, Italy. Crop Pasture Sci. 2014, 65, 453. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Załuski, D.; Kwiatkowski, J.; Szczukowski, S. Camelina and crambe production – Energy efficiency indices depending on nitrogen fertilizer application. Ind. Crops Prod. 2019, 137, 386–395. [Google Scholar] [CrossRef]
- Zanetti, F.; Eynck, C.; Christou, M.; Krzyżaniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; Van Loo, E.N.; Puttick, D.; Monti, A. Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 2017, 107, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Kurasiak-Popowska, D.; Tomkowiak, A.; Człopińska, M.; Bocianowski, J.; Weigt, D.; Nawracała, J. Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Ind. Crops Prod. 2018, 123, 667–675. [Google Scholar] [CrossRef]
- Madry, W.; Gacek, E.S.; Paderewski, J.; Gozdowski, D.; Drzazga, T. Adaptive yield response of winter wheat cultivars across environments in Poland using combined AMMI and cluster analyses. Int. J. Plant Prod. 2011, 5, 299–309. [Google Scholar]
- Gauch, H.G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs; Elsevier: Ithaca, NY, USA, 1992; ISBN 9780444892409. [Google Scholar]
- Gauch, H.G. A Simple Protocol for AMMI Analysis of Yield Trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Fabio, E.S.; Volk, T.A.; Miller, R.O.; Serapiglia, M.J.; Gauch, H.G.; Van Rees, K.C.J.; Hangs, R.D.; Amichev, B.Y.; Kuzovkina, Y.A.; Labrecque, M.; et al. Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids. GCB Bioenergy 2017, 9, 445–459. [Google Scholar] [CrossRef]
- Bocianowski, J.; Niemann, J.; Nowosad, K. Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 7. [Google Scholar] [CrossRef] [Green Version]
- Paderewski, J.; Rodrigues, P.C. Constrained AMMI Model: Application to Polish Winter Wheat Post-Registration Data. Crop Sci. 2018, 58, 1458. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R.; Armion, M.; Zadhasan, E.; Ahmadi, M.M.; Amri, A. The use of AMMi model for interpreting genotype × environment interaction in durum wheat. Exp. Agric. 2018, 54, 670–683. [Google Scholar] [CrossRef]
- Krishnappa, G.; Ahlawat, A.K.; Shukla, R.B.; Singh, S.K.; Singh, S.K.; Singh, A.M.; Singh, G.P. Multi-environment analysis of grain quality traits in recombinant inbred lines of a biparental cross in bread wheat (Triticum aestivum L.). Cereal Res. Commun. 2019, 47, 334–344. [Google Scholar] [CrossRef]
- Sardouei-Nasab, S.; Mohammadi-Nejad, G.; Nakhoda, B. Yield stability in bread wheat germplasm across drought stress and non-stress conditions. Agron. J. 2019, 111, 175–181. [Google Scholar] [CrossRef]
- Nowosad, K.; Liersh, A.; Popławska, W.; Bocianowski, J. Genotype by environment interaction for oil content in winter oilseed rape (Brassica napus L.) using additive main effects and multiplicative interaction model. Indian J. Genet. Plant Breed. 2017, 77, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Brankovic-Radojcic, D.; Babic, V.; Girek, Z.; Zivanovic, T.; Radojĉic, A.; Filipovic, M.; Srdic, J. Evaluation of maize grain yield and yield stability by AMMI analysis. Genetika 2018, 50, 1067–1080. [Google Scholar] [CrossRef]
- Bernardo Júnior, L.A.Y.; da Silva, C.P.; de Oliveira, L.A.; Nuvunga, J.J.; Pires, L.P.M.; Von Pinho, R.G.; Balestre, M. AMMI Bayesian Models to Study Stability and Adaptability in Maize. Agron. J. 2018, 110, 1765. [Google Scholar] [CrossRef]
- Das, A.K.; Muthusamy, V.; Zunjare, R.U.; Chauhan, H.S.; Sharma, P.K.; Bhat, J.S.; Guleria, S.K.; Saha, S.; Hossain, F. Genetic variability-, genotype × environment interactions- and combining ability-analyses of kernel tocopherols among maize genotypes possessing novel allele of γ-tocopherol methyl transferase (ZmVTE4). J. Cereal Sci. 2019, 86, 1–8. [Google Scholar] [CrossRef]
- Jain, B.T.; Sarial, A.K.; Saharan, R.P.; HariKesh; Anuragi, H. AMMI biplot analysis for stability in basmati rice (Oryza sativa L.) in different production systems. Electron. J. Plant Breed. 2018, 9, 502–510. [Google Scholar] [CrossRef]
- Ponnuswamy, R.; Rathore, A.; Vemula, A.; Das, R.R.; Singh, A.K.; Balakrishnan, D.; Arremsetty, H.S.; Vemuri, R.B.; Ram, T. Analysis of multi-location data of hybrid rice trials reveals complex genotype by environment interaction. Cereal Res. Commun. 2018, 46, 146–157. [Google Scholar] [CrossRef]
- Inabangan-Asilo, M.A.; Mallikarjuna Swamy, B.P.; Amparado, A.F.; Descalsota-Empleo, G.I.L.; Arocena, E.C.; Reinke, R. Stability and G × E analysis of zinc-biofortified rice genotypes evaluated in diverse environments. Euphytica 2019, 215, 61. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.O. Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. F. Crop. Res. 2018, 220, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Hassani, M.; Heidari, B.; Dadkhodaie, A.; Stevanato, P. Genotype by environment interaction components underlying variations in root, sugar and white sugar yield in sugar beet (Beta vulgaris L.). Euphytica 2018, 214, 79. [Google Scholar] [CrossRef]
- Fotso, A.K.; Hanna, R.; Kulakow, P.; Parkes, E.; Iluebbey, P.; Ngome, F.A.; Suh, C.; Massussi, J.; Choutnji, I.; Wirnkar, V.L. AMMI analysis of cassava response to contrasting environments: Case study of genotype by environment effect on pests and diseases, root yield, and carotenoids content in Cameroon. Euphytica 2018, 214, 155. [Google Scholar] [CrossRef]
- Patil, A.S.; Hedvat, I.; Levy, Y.; Galili, S.; Hovav, R. Genotype-by-environment effects on the performance of recombinant inbred lines of Virginia-type peanut. Euphytica 2018, 214, 83. [Google Scholar] [CrossRef]
- Riaz, M.; Farooq, J.; Ahmed, S.; Amin, M.; Chattha, W.S.; Ayoub, M.; Kainth, R.A. Stability analysis of different cotton genotypes under normal and water-deficit conditions. J. Integr. Agric. 2019, 18, 1257–1265. [Google Scholar] [CrossRef]
- Bocianowski, J.; Księżak, J.; Nowosad, K. Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 191. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S. A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Res. Commun. 1988, 16, 113–115. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13. Available online: http://statistica.io (accessed on 27 November 2019).
- R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org (accessed on 27 November 2019).
- Gauch, H.G.; Piepho, H.P.; Annicchiarico, P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 2008, 48, 866–889. [Google Scholar] [CrossRef]
- Gesch, R.W.; Cermak, S.C. Sowing Date and Tillage Effects on Fall-Seeded Camelina in the Northern Corn Belt. Agron. J. 2011, 103, 980. [Google Scholar] [CrossRef] [Green Version]
- Hunsaker, D.J.; French, A.N.; Clarke, T.R.; El-Shikha, D.M. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci. 2011, 29, 27–43. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crops Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Tworkowski, J.; Puttick, D.; Eynck, C.; Załuski, D.; Kwiatkowski, J. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Ind. Crops Prod. 2019, 138, 111443. [Google Scholar] [CrossRef]
- Guy, S.O.; Wysocki, D.J.; Schillinger, W.F.; Chastain, T.G.; Karow, R.S.; Garland-Campbell, K.; Burke, I.C. Camelina: Adaptation and performance of genotypes. F. Crop. Res. 2014, 155, 224–232. [Google Scholar] [CrossRef]
- George, N.; Hollingsworth, J.; Yang, W.R.; Kaffka, S. Canola and camelina as new crop options for cool-season production in California. Crop Sci. 2017, 57, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Obour, A.K.; Obeng, E.; Mohammed, Y.A.; Ciampitti, I.A.; Durrett, T.P.; Aznar-Moreno, J.A.; Chen, C. Camelina seed yield and fatty acids as influenced by genotype and environment. Agron. J. 2017, 109, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Urbaniak, S.D.; Caldwell, C.D.; Zheljazkov, V.D.; Lada, R.; Luan, L. The effect of seeding rate, seeding date and seeder type on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can. J. Plant Sci. 2008, 88, 501–508. [Google Scholar] [CrossRef]
- Berti, M.; Wilckens, R.; Fischer, S.; Solis, A.; Johnson, B. Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind. Crops Prod. 2011, 34, 1358–1365. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S. The role of yield components in the management of yielding of some spring oilseed crops. Rośliny Oleiste Oilseed Crop. 2003, 23, 443–454. [Google Scholar]
- Vollmann, J.; Damboeck, A.; Eckl, A.; Schrems, H.; Ruckenbauer, P. Improvement of Camelina sativa, an underexploited oilseed. In Progress in New Crops; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1996; pp. 357–362. [Google Scholar]
Genotype | Source | 1000-Seed Weight (g) | Seed Germination (%) |
---|---|---|---|
13CS0787-05 | Linnaeus Plant Sciences Inc., Saskatoon, Canada. | 1.24 ± 0.09 1 | 98.8 ± 0.96 |
13CS0787-06 | 1.74 ± 0.15 | 95.5 ± 2.65 | |
13CS0787-08 | 1.64 ± 0.10 | 97.0 ± 2.83 | |
13CS0787-09 | 1.27 ± 0.04 | 98.0 ± 1.41 | |
13CS0787-15 | 1.28 ± 0.10 | 98.3 ± 0.96 | |
13CS0789-02 | 1.27 ± 0.04 | 97.0 ± 2.16 | |
14CS0886 | 1.25 ± 0.07 | 97.8 ± 1.26 | |
14CS0887 | 1.27 ± 0.08 | 98.8 ± 0.50 | |
Midas | Agriculture and Agri-food Canada, Saskatoon, Canada. | 1.12 ± 0.06 | 98.8 ± 0.96 |
Omega | Poznan University of Life Sciences, Poland. | 1.37 ± 0.06 | 97.3 ± 1.50 |
Variables | F1 | F2 | F3 |
---|---|---|---|
Final density | −0.50 1 | −0.17 | 0.21 |
Plant height | 0.20 | 0.73 | 0.36 |
Number of branches | 0.84 | 0.31 | −0.15 |
Plant mass | 0.90 | 0.10 | 0.26 |
Straw yield | 0.28 | 0.81 | 0.12 |
1000-seed weight | 0.02 | 0.06 | 0.90 |
Seed mass per plant | 0.87 | 0.07 | 0.16 |
Seed yield | 0.05 | 0.72 | −0.27 |
Eigenvalue (λi) | 2.64 | 1.85 | 1.18 |
Explained variance | 32.9% | 23.1% | 14.8% |
Source of Variation | Plant Height | Number of Branches | Plant Mass | Straw Yield | 1000-Seed Weight | Seed Mass Per Plant | Seed Yield | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | SS (%) 1 | F | SS (%) | F | SS (%) | F | SS (%) | F | SS (%) | F | SS (%) | F | SS (%) | F | |
Total | 159 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||||||
Environment | 3 | 71.5 | 62.8 ** | 35.2 | 8.37 ** | 16.1 | 5.88 * | 22.5 | 16.8 ** | 10.6 | 15.7 ** | 21.8 | 7.76 ** | 72.7 | 78.0 ** |
Replication (Env.) | 12 | 4.6 | 3.12 ** | 16.8 | 5.07 ** | 10.9 | 2.06 * | 5.4 | 1.73 | 2.7 | 2.60 ** | 11.2 | 2.24 * | 3.7 | 2.80 ** |
Genotype | 9 | 8.8 | 8.06 ** | 4.5 | 1.80 | 13.2 | 3.32 ** | 25.3 | 10.8 ** | 73.3 | 94.4 ** | 7.1 | 1.90 | 5.9 | 5.89 ** |
G × E | 27 | 2.0 | 0.60 | 13.6 | 1.81 * | 12.1 | 1.01 | 18.8 | 2.68 ** | 4.1 | 1.78 * | 14.8 | 1.31 | 5.7 | 1.89 * |
IPCA1 | 11 | [66.8] 2 | 0.98 | [79.1] | 3.52 ** | [67.9] | 1.69 | [58.9] | 3.89 ** | [75.6] | 3.30 * | [66.3] | 2.14 * | [58.7] | 2.71 ** |
IPCA2 | 9 | [25.1] | 0.45 | [13.9] | 0.76 | [16.9] | 0.51 | [29.9] | 2.41 * | [19.2] | 1.02 | [23.0] | 0.90 | [25.8] | 1.46 |
IPCA3 | 7 | [8.1] | 0.19 | [7.0] | 0.49 | [15.2] | 0.59 | [11.2] | 1.17 | [5.2] | 0.36 | [10.7] | 0.54 | [15.9] | 1.13 |
Residuals | 108 | 13.1 | 29.9 | 47.7 | 28.0 | 9.3 | 45.1 | 12.0 |
Genotype | Seed Yield (Mg.ha−1 dm) | ASV | Shukla | YSI Rang-Sum | Kang Rang-Sum | Straw Yield (Mg.ha−1 dm) | ASV | Shukla | YSI Rang-Sum | Kang Rang-Sum |
---|---|---|---|---|---|---|---|---|---|---|
13CS0787-05 | 2.05 [3] | 0.38 [4] | 0.015 [5] | 7 | 8 | 2.74 [2] | 0.54 [4] | 0.091 [4] | 6 | 6 |
13CS0787-06 | 2.02 [6] | 0.49 [6] | 0.020 [6] | 12 | 12 | 2.47 [6] | 1.24 [9] | 0.228 [9] | 15 | 15 |
13CS0787-08 | 2.17 [2] | 0.70 [9] | 0.025 [8] | 11 | 10 | 2.63 [3] | 0.88 [8] | 0.116 [5] | 11 | 8 |
13CS0787-09 | 2.03 [5] | 0.56 [8] | 0.023 [7] | 13 | 12 | 2.58 [4] | 0.17 [1] | 0.003 [1] | 5 | 5 |
13CS0787-15 | 2.21 [1] | 0.23 [2] | 0.003 [1] | 3 | 2 | 2.81 [1] | 0.41 [2] | 0.055 [3] | 3 | 4 |
13CS0789-02 | 2.02 [8] | 1.32 [10] | 0.085 [10] | 18 | 18 | 1.97 [9] | 0.53 [3] | 0.139 [7] | 12 | 16 |
14CS0886 | 2.03 [4] | 0.29 [3] | 0.001 [2] | 7 | 6 | 2.49 [5] | 1.37 [10] | 0.285 [10] | 15 | 15 |
14CS0887 | 1.70 [10] | 0.11 [1] | 0.009 [4] | 11 | 14 | 1.77 [10] | 0.57 [5] | 0.050 [2] | 15 | 12 |
Midas | 2.02 [7] | 0.45 [5] | 0.008 [3] | 12 | 10 | 2.37 [7] | 0.86 [7] | 0.121 [6] | 14 | 13 |
Omega | 1.98 [9] | 0.50 [7] | 0.039 [9] | 16 | 18 | 2.00 [8] | 0.69 [6] | 0.163 [8] | 14 | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Załuski, D.; Tworkowski, J.; Krzyżaniak, M.; Stolarski, M.J.; Kwiatkowski, J. The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy 2020, 10, 64. https://doi.org/10.3390/agronomy10010064
Załuski D, Tworkowski J, Krzyżaniak M, Stolarski MJ, Kwiatkowski J. The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy. 2020; 10(1):64. https://doi.org/10.3390/agronomy10010064
Chicago/Turabian StyleZałuski, Dariusz, Józef Tworkowski, Michał Krzyżaniak, Mariusz J. Stolarski, and Jacek Kwiatkowski. 2020. "The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland" Agronomy 10, no. 1: 64. https://doi.org/10.3390/agronomy10010064
APA StyleZałuski, D., Tworkowski, J., Krzyżaniak, M., Stolarski, M. J., & Kwiatkowski, J. (2020). The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy, 10(1), 64. https://doi.org/10.3390/agronomy10010064