Above- and Below-Ground Part Growth in Chewings and Strong Creeping Red Fescue Grown for Seed Resulting from Retardants and N Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Crop Management
2.4. Measurement
2.5. Statistical Analysis
3. Results
3.1. Length of Generative Tillers and Canopy Height
3.2. Biomass Production of Aboveground Part
3.3. Biomass Production of Below-Ground Part
3.4. Nitrogen Concentration and Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duru, M.; Cruz, P.; Magda, D. Using plant traits to compare sward structure and composition of grass species cross environment al gradients. Appl. Veg. Sci. 2004, 7, 11–18. [Google Scholar] [CrossRef]
- Stukonis, V.; Juzenas, S.; Ceseviciene, J.; Norkeviciene, E. Assesment of morfo-anatomical traits of red fescue (Festuca rubra L.) germplasm differing in origin. Zemdirbyste 2015, 102, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Bertin, C.; Senesac, A.F.; Rossi, F.S.; DiTommaso, A.; Westo, L.A. Evaluation of selected fine-leaf fescue cultivars for their turfgrass quality and weed suppressive ability in field settings. HortTechnology 2009, 19, 660–668. [Google Scholar] [CrossRef]
- Szczepanek, M.; Onofri, A. Chewing, strong and slender creeping red fescue response to sowing time and method. Crop Sci. 2013, 53, 2613–2622. [Google Scholar] [CrossRef]
- Bonnett, G.D.; Incoll, L.D. The potential pre-anthesis and post-anthesis contributions of stem internodes to grain yield in crops of winter barley. Ann. Bot. 1992, 69, 219–225. [Google Scholar] [CrossRef]
- Chynoweth, R.J.; Moot, D.J. Seed growth of three perennial ryegrass cultivars sown on two dates and treated with trinexapac ethyl straw shortener. Grass Forage Sci. 2016, 72, 271–280. [Google Scholar] [CrossRef]
- Griffith, S.M. Changes in dry matter, carbohydrate and seed yield resulting from lodging in three temperate grass species. Ann. Bot. 2000, 85, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Biligetu, B.; Schellenberg, M.P.; McLeod, J.G.; Wang, Z. Seed yield variation in plains rough fescue (Festuca hallii (Vasey) Piper) populations and its relation with phenotypic characteristics and environmental factors. Grass Forage Sci. 2013, 68, 589–595. [Google Scholar] [CrossRef]
- Dziamski, A.; Stypczyńska, Z.; Żurek, G.; Łabędzki, L.; Długosz, J. Observations of root system development and dynamics of root: Shoot ratio of selected turf grass varieties and breeding lines grown in different soil conditions. Plant Breed. Seed Sci. 2007, 55, 73–87. [Google Scholar]
- Fairey, N.A.; Lefkovitch, L.P. Crop density and seed production of creeping red fescue (Festuca rubra L. var. rubra). 2. Reproductive components and seed characteristic. Can. J. Plant Sci. 1995, 76, 299–306. [Google Scholar] [CrossRef]
- Ijaz, M.; Mahmood, K.; Honermeier, B. Interactive Role of Fungicides and plant growth regulator (Trinexapac) on seed yield and oil quality of winter rapeseed. Agronomy 2015, 5, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Piao, L.; Li, M.; Xiao, J.; Gu, W.; Zhan, M.; Cao, C.; Zhao, M.; Li, C. Effects of soil tillage and canopy optimization on grain yield, root growth, and water use efficiency of rainfed maize in northeast China. Agronomy 2019, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Ye, D.; Wang, W.; Qiu, X.; Duan, L.; Li, Z.; Zhang, M. Ethephon improved stalk strength of maize (Zea mays L.) mainly through altering anternode morphological traits to modulate mechanical properties under field conditions. Agronomy 2019, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Rademacher, W. Growth retardants: Effect on gibberellin biosynthesis and metabolic pathways. Annu. Rev. Plant Physiol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [Green Version]
- Rajala, A.; Peltonen-Sainio, P. Plant growth regulator effects on spring cereal root and shoot growth. Agron. J. 2001, 93, 936–943. [Google Scholar] [CrossRef]
- Rajala, A.; Peltonen-Sainio, P.; Onnela, M.; Jackson, M. Effects of applying stem-shortening plant growth regulators to leaves on root elongation by seedlings of wheat, oat and barley: Mediation by ethylene. Plant Growth Regul. 2002, 38, 51–59. [Google Scholar] [CrossRef]
- Soil Survey Staff. Key to Soil Taxonomy, 11th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Lancashire, P.D.; Bleiholder, H.; Langelüddecke, P.; Stauss, R.; Van Den Boom, M.T.; Weber, E.; Witzen-Berger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Chastain, T.G.; Young, W.C.; Silberstein, T.B.; Garbacik, C.J. Performance of trinexapac-ethyl on Lolium perenne seed crops in diverse lodging environments. Field Crops Res. 2014, 157, 65–70. [Google Scholar] [CrossRef]
- Al-Mana, F.A.; Abdel-Kader, H.H.; Bisarove, R.J. Effects of some growth retardants on shoot and root growth of two cool-season turfgrasses. Hortscience 1995, 30, 895. [Google Scholar] [CrossRef] [Green Version]
- Tilhou, N.W.; Nave, R.L. Improving nutritive value of native warm-season grasses with the plant growth regulator Trinexapac-Ethyl. Agron. J. 2018, 110, 1836–1842. [Google Scholar] [CrossRef] [Green Version]
- Zapiola, M.L.; Chastain, T.G.; Silberstein, T.B.; Young, W.C. Trinexapac-ethyl and open-field burning maximize seed yield in creeping red fescue. Agron. J. 2006, 98, 1427–1434. [Google Scholar] [CrossRef]
- Stier, J.C.; Rogers, J.N.; Crum, J.R.; Rieke, P.E. Flurprimidol effects on Kentucky bluegrass under reduced irradiance. Crop Sci. 1999, 39, 1423–1430. [Google Scholar] [CrossRef]
- Heide, O.M. Control of flowering and reproduction in temperate grasses. New Phytol. 1994, 128, 347–362. [Google Scholar] [CrossRef]
- Havstad, L.T.; Aamlid, T.S.; Heide, O.M.; Junttila, O. Transfer of flowering induction stimuli to non-exposed tillers in a selection of temperate grasses. Acta Agric. Scand. B Soil Plant Sci. 2004, 54, 23–30. [Google Scholar] [CrossRef]
- Pechackova, S. Root response to above-ground light quality. Plant Ecol. 1999, 141, 67–77. [Google Scholar] [CrossRef]
- Young, W.C.; Chilcote, D.O.; Youngberg, H.W. Chemical dwarfing and response of cool-season grass seed crops to spring-applied nitrogen. Agron. J. 1999, 91, 344–350. [Google Scholar] [CrossRef]
- Brown, R.N.; Percivalle, C.; Narkiewicz, S.; De Cuollo, S. Relative rooting depths of native grasses and amenity grasses with potential for use on roadsides in New Engand. Hortscience 2010, 45, 393–400. [Google Scholar] [CrossRef]
Plant Growth Regulator | Morphotype/Cultivar of Red Fescue | Spring Nitrogen Rate |
---|---|---|
Control-without treatment | ||
chloromequat chloride (CCC) 1350 a.i. g ha−1 at BBCH 30-31 | strong creeping red fescue Festuca rubra L ssp. rubra cv. ‘Nista’ | 40 kg ha−1 |
chloromequat chloride (CCC) 625 a.i. g ha−1 at BBCH 30-31 + ethephon (ET) 240 a.i. g ha−1 at BBCH 37-39 | ||
chloromequat chloride (CCC) 625 a.i. g ha−1 at BBCH 30-3 + trinexapac-ethyl (TE) 75 a.i. g ha−1 at BBCH 37-39 | Chewings red fescue Festuca rubra L ssp. commutate cv. ‘Dorosa’ | 70 kg ha−1 |
Treatment | Plant Growth Regulator (PGR) | Mean | LSD α = 0.05 | |||
---|---|---|---|---|---|---|
Control | Chlormequat Chloride | Chlormequat Chloride + Ethephon | Chlormequat Chloride + Trinexapac-ethyl | |||
Generative tiller length (cm) | ||||||
Cultivar | PGR—1.75; cultivar—1.33; N rate—0.75; PGR × cultivar—2.54; PGR × N rate—ns; cultivar × N rate—ns | |||||
Nista | 72.7 | 71.0 | 71.5 | 69.8 | 71.3 | |
Dorosa | 74.0 | 67.5 | 68.2 | 64.6 | 68.6 | |
N rate [kg ha−1] | ||||||
40 | 73.5 | 68.4 | 69.0 | 66.1 | 69.3 | |
70 | 73.2 | 70.1 | 70.7 | 68.3 | 70.6 | |
Mean | 73.4 | 69.3 | 69.9 | 67.2 | 69.9 |
Treatment | Plant Growth Regulator (PGR) | Mean | LSD α = 0.05 | |||
---|---|---|---|---|---|---|
Control | Chlormequat Chloride | Chlormequat Chloride + Ethephon | Chlormequat Chloride + Trinexapac-ethyl | |||
Canopy height [cm] | ||||||
Cultivar | PGR—5.63; cultivar—2.09; N rate—1.03; PGR × cultivar—ns; PGR × N rate—ns; cultivar × N rate—1.45 | |||||
Nista 40 | 47.2 | 54.4 | 53.7 | 54.7 | 52.5 | |
Nista 70 | 41.2 | 51.4 | 49.7 | 50.2 | 48.1 | |
Mean | 44.2 | 52.9 | 51.7 | 52.5 | 50.3 | |
Dorosa 40 | 44.5 | 57.9 | 56.4 | 56.2 | 53.7 | |
Dorosa 70 | 42.9 | 54.4 | 54.6 | 54.6 | 51.6 | |
Mean | 43.7 | 56.1 | 55.5 | 55.4 | 52.7 | |
N rate [kg ha−1] | ||||||
40 | 45.8 | 56.2 | 55.0 | 55.5 | 53.1 | |
70 | 42.0 | 52.9 | 52.2 | 52.4 | 49.9 | |
Mean | 43.9 | 54.5 | 53.6 | 53.9 | 51.5 |
Treatment | Plant Growth Regulator (PGR) | Mean | LSD α = 0.05 | |||
---|---|---|---|---|---|---|
Control | Chlormequat Chloride | Chlormequat Chloride + Ethephon | Chlormequat Chloride + Trinexapac-ethyl | |||
Vegetative tillers DM (kg m−2) | ||||||
Cultivar | PGR—ns; cultivar—0.022; N rate—ns; PGR × cultivar—ns; PGR × N rate—ns; cultivar × N rate —ns | |||||
Nista | 0.247 | 0.199 | 0.224 | 0.213 | 0.221 | |
Dorosa | 0.150 | 0.192 | 0.164 | 0.149 | 0.164 | |
N rate [kg ha−1] | ||||||
40 | 0.178 | 0.170 | 0.191 | 0.190 | 0.182 | |
70 | 0.220 | 0.187 | 0.197 | 0.172 | 0.194 | |
Mean | 0.199 | 0.179 | 0.194 | 0.181 | 0.188 | |
Generative tiller DM (kg m−2) | ||||||
Cultivar | PGR—ns; cultivar—0.042; N rate—0.023; PGR × cultivar—ns; PGR × N rate—ns; cultivar × N rate —ns | |||||
Nista | 0.452 | 0.448 | 0.364 | 0.448 | 0.428 | |
Dorosa | 0.564 | 0.516 | 0.568 | 0.560 | 0.552 | |
N rate [kg ha−1] | ||||||
40 | 0.492 | 0.428 | 0.432 | 0.464 | 0.452 | |
70 | 0.520 | 0.572 | 0.500 | 0.544 | 0.532 | |
Mean | 0.508 | 0.500 | 0.464 | 0.504 | 0.492 |
Treatment | Plant Growth Regulator (PGR) | Mean | LSD α = 0.05 | |||
---|---|---|---|---|---|---|
Control | Chlormequat Chloride | Chlormequat Chloride + Ethephon | Chlormequat Chloride + Trinexapac-ethyl | |||
Roots DM (kg 0.09 m−3) | ||||||
Cultivar | PGR—ns; cultivar—0.024; N rate—0.023; PGR × cultivar—ns; PGR × N rate—ns; cultivar × N rate—ns | |||||
Nista | 0.460 | 0.467 | 0.476 | 0.463 | 0.467 | |
Dorosa | 0.533 | 0.549 | 0.573 | 0.568 | 0.556 | |
N rate [kg ha−1] | ||||||
40 | 0.510 | 0.511 | 0.543 | 0.522 | 0.522 | |
70 | 0.483 | 0.505 | 0.507 | 0.509 | 0.501 | |
Mean | 0.497 | 0.508 | 0.525 | 0.515 | 0.511 | |
Rhizomes DM (kg 0.09 m−3) | ||||||
N rate [kg ha−1] | ||||||
40 | 0.116 | 0.120 | 0.107 | 0.113 | 0.114 | PGR—ns; N rate—0.012; PGR × N rate—ns |
70 | 0.103 | 0.089 | 0.092 | 0.097 | 0.095 | |
Mean | 0.109 | 0.104 | 0.100 | 0.105 | 0.105 |
Treatment | Plant growth regulator (PGR) | Mean | LSD α = 0.05 | |||
---|---|---|---|---|---|---|
Control | Chlormequat Chloride | Chlormequat Chloride + Ethephon | Chlormequat Chloride + Trinexapac-ethyl | |||
N content (%) | ||||||
Cultivar | PGR—ns; cultivar—ns; N rate—0.037; PGR × cultivar—ns; PGR × N rate—ns; cultivar × N rate—ns | |||||
Nista | 1.13 | 1.12 | 1.15 | 1.18 | 1.15 | |
Dorosa | 1.11 | 1.15 | 1.17 | 1.16 | 1.15 | |
N rate [kg ha−1] | ||||||
40 | 1.07 | 1.07 | 1.12 | 1.10 | 1.09 | |
70 | 1.17 | 1.20 | 1.20 | 1.24 | 1.20 | |
Mean | 1.12 | 1.14 | 1.16 | 1.17 | 1.15 | |
N uptake (kg ha−1) | ||||||
Cultivar | PGR—ns; cultivar—6.29; N rate—5.00; PGR × cultivar—ns; PGR × N rate—ns; cultivar × N rate—ns | |||||
Nista | 79.2 | 71.1 | 67.0 | 76,1 | 73.3 | |
Dorosa | 78.7 | 82.2 | 83.9 | 81.5 | 81.6 | |
N rate [kg ha−1] | ||||||
40 | 71.3 | 63.1 | 68.8 | 70.5 | 68.3 | |
70 | 86.6 | 90.2 | 82.0 | 87,2 | 86.3 | |
Mean | 78.9 | 76.6 | 75.4 | 78.8 | 77.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanek, M.; Stypczyńska, Z.; Dziamski, A.; Wichrowska, D. Above- and Below-Ground Part Growth in Chewings and Strong Creeping Red Fescue Grown for Seed Resulting from Retardants and N Fertilization. Agronomy 2020, 10, 4. https://doi.org/10.3390/agronomy10010004
Szczepanek M, Stypczyńska Z, Dziamski A, Wichrowska D. Above- and Below-Ground Part Growth in Chewings and Strong Creeping Red Fescue Grown for Seed Resulting from Retardants and N Fertilization. Agronomy. 2020; 10(1):4. https://doi.org/10.3390/agronomy10010004
Chicago/Turabian StyleSzczepanek, Małgorzata, Zofia Stypczyńska, Andrzej Dziamski, and Dorota Wichrowska. 2020. "Above- and Below-Ground Part Growth in Chewings and Strong Creeping Red Fescue Grown for Seed Resulting from Retardants and N Fertilization" Agronomy 10, no. 1: 4. https://doi.org/10.3390/agronomy10010004
APA StyleSzczepanek, M., Stypczyńska, Z., Dziamski, A., & Wichrowska, D. (2020). Above- and Below-Ground Part Growth in Chewings and Strong Creeping Red Fescue Grown for Seed Resulting from Retardants and N Fertilization. Agronomy, 10(1), 4. https://doi.org/10.3390/agronomy10010004