Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Accelerated Aging
2.3. Chemical Analyses
2.4. XRD Analysis
2.5. Size Exclusion Chromatography
2.6. ATR-FTIR Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Búryová, D.; Sedlák, P. Life Cycle Assessment of Coated and Thermally Modified Wood Façades. Coatings 2021, 11, 1487. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies—A Review. iForest 2017, 10, 895. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- de Oliveira Araújo, S.; Rocha Vital, B.; Oliveira, B.; Oliveira Carneiro, A.d.C.; Lourenço, A.; Pereira, H. Physical and Mechanical Properties of Heat Treated Wood from Aspidosperma populifolium, Dipteryx odorata and Mimosa scabrella. Maderas Cienc. Tecnol. 2016, 18, 143–156. [Google Scholar] [CrossRef]
- Javed, M.A.; Kekkonen, P.M.; Ahola, S.; Telkki, V.-V. Magnetic Resonance Imaging Study of Water Absorption in Thermally Modified Pine Wood. Holzforschung 2014, 69, 899–907. [Google Scholar] [CrossRef]
- Thakur, R.; Dutt, B.; Kumar, R.; Sharma, Y.P.; Pingale, A. Optimizing Physical and Mechanical Attributes of Acrocarpus fraxinifolius Wood via Heat Treatment. Int. J. Adv. Biochem. Res. 2024, 8, 260–267. [Google Scholar] [CrossRef]
- Calonego, F.W.; Severo, E.T.D.; Furtado, E.L. Decay Resistance of Thermally-Modified Eucalyptus grandis Wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour. Technol. 2010, 101, 9391–9394. [Google Scholar] [CrossRef]
- Lekounougou, S.; Kocaefe, D. Comparative Study on the Durability of Heat-Treated White Birch (Betula papyrifera) Subjected to the Attack of Brown and White Rot Fungi. Wood Mater. Sci. Eng. 2012, 7, 101–106. [Google Scholar] [CrossRef]
- Paes, J.; Brocco, V.; Loiola, P.; Segundinho, P.; Silva, M.; Juizo, C. Effect of Thermal Modification on Decay Resistance of Corymbia citriodora and Pinus taeda Wood. J. Trop. For. Sci. 2021, 33, 185–190. [Google Scholar] [CrossRef]
- Borrega, M.; Kärenlampi, P.P. Mechanical Behavior of Heat-Treated Spruce (Picea abies) Wood at Constantmoisture Content and Ambient Humidity. Holz Roh. Werkst. 2008, 66, 63–69. [Google Scholar] [CrossRef]
- Herrera-Builes, J.F.; Sepúlveda-Villarroel, V.; Osorio, J.A.; Salvo-Sepúlveda, L.; Ananías, R.A. Effect of Thermal Modification Treatment on Some Physical and Mechanical Properties of Pinus oocarpa Wood. Forests 2021, 12, 249. [Google Scholar] [CrossRef]
- Rowell, R.M.; Ibach, R.E.; McSweeny, J.; Nilsson, T. Understanding Decay Resistance, Dimensional Stability and Strength Changes in Heat-Treated and Acetylated Wood. Wood Mater. Sci. Eng. 2009, 4, 14–22. [Google Scholar] [CrossRef]
- Yang, T.-H.; Lee, C.-H.; Lee, C.-J.; Cheng, Y.-W. Effects of Different Thermal Modification Media on Physical and Mechanical Properties of Moso Bamboo. Constr. Build. Mater. 2016, 119, 251–259. [Google Scholar] [CrossRef]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A Review of Wood Thermal Pretreatments to Improve Wood Composite Properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef]
- Torniainen, P.; Popescu, C.-M.; Jones, D.; Scharf, A.; Sandberg, D. Correlation of Studies between Colour, Structure and Mechanical Properties of Commercially Produced ThermoWood® Treated Norway Spruce and Scots Pine. Forests 2021, 12, 1165. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 2011; pp. 66–131. ISBN 978-3-11-083965-4. [Google Scholar]
- Sjöström, E. Wood Polysaccharides. In Wood Chemistry, 2nd ed.; Sjöström, E., Ed.; Academic Press: San Diego, CA, USA, 1993; pp. 51–70. ISBN 978-0-08-092589-9. [Google Scholar]
- Zhang, N.; Li, S.; Xiong, L.; Hong, Y.; Chen, Y. Cellulose-Hemicellulose Interaction in Wood Secondary Cell-Wall. Model. Simul. Mater. Sci. Eng. 2015, 23, 085010. [Google Scholar] [CrossRef]
- Zachar, M.; Čabalová, I.; Kačíková, D.; Jurczyková, T. Effect of Natural Aging on Oak Wood Fire Resistance. Polymers 2021, 13, 2059. [Google Scholar] [CrossRef]
- Ou, J.; Zhao, G.; Wang, F.; Li, W.; Lei, S.; Fang, X.; Siddiqui, A.R.; Xia, Y.; Amirfazli, A. Durable Superhydrophobic Wood via One-Step Immersion in Composite Silane Solution. ACS Omega 2021, 6, 7266–7274. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.-H. Effect of a Combination of Moderate-Temperature Heat Treatment and Subsequent Wax Impregnation on Wood Hygroscopicity, Dimensional Stability, and Mechanical Properties. Forests 2020, 11, 920. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Sun, B.; Chai, Y.; Liu, J.; Cao, J. Effect of Vacuum Heat Treatment on the Chemical Composition of Larch Wood. BioResources 2016, 11, 5743–5750. [Google Scholar] [CrossRef]
- Kačíková, D.; Kačík, F.; Čabalová, I.; Ďurkovič, J. Effects of Thermal Treatment on Chemical, Mechanical and Colour Traits in Norway Spruce Wood. Bioresour. Technol. 2013, 144, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Wikberg, H.; Liisa Maunu, S. Characterisation of Thermally Modified Hard- and Softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004, 58, 461–466. [Google Scholar] [CrossRef]
- Sikora, A.; Hájková, K.; Jurczyková, T. Degradation of Chemical Components of Thermally Modified Robinia pseudoacacia L. Wood and Its Effect on the Change in Mechanical Properties. Int. J. Mol. Sci. 2022, 23, 15652. [Google Scholar] [CrossRef] [PubMed]
- Fengel, D.; Fengel, D. Über die Veränderungen des Holzes und seiner Komponenten im Temperaturbereich bis 200°C— Vierte Mitteilung: Das Verhalten der Cellulose im Fichtenholz bei thermischer Behandlung. (On the Changes in the Chemical Composition of Wood within the Temperature Range up to 200 °C—Part IV: The Behaviour of Cellulose in Sprucewood under Thermal Treatment). Holz Roh. Werkst. 1967, 25, 102–111. [Google Scholar] [CrossRef]
- Sweet, M.S.; Winandy, J.E. Influence of Degree of Polymerization of Cellulose and Hemicellulose on Strength Loss in Fire-Retardant-Treated Southern Pine. Holzforschung 1999, 53, 311–317. [Google Scholar] [CrossRef]
- Yildiz, S.; Gezer, E.D.; Yildiz, U.C. Mechanical and Chemical Behavior of Spruce Wood Modified by Heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Antons, A.; Cīrule, D.; Andersone, I.; Verovkins, A.; Kuka, E. Influence of Different Modifications on Bending Strength of Wood. Key Eng. Mater. 2019, 800, 240–245. [Google Scholar] [CrossRef]
- Kim, P.; Taylor, A.; Lloyd, J.; Kim, J.-W.; Abdoulmoumine, N.; Labbé, N. Two-Step Thermochemical Process for Adding Value to Used Railroad Wood Ties and Reducing Environmental Impacts. ACS Sustain. Chem. Eng. 2017, 5, 9485–9493. [Google Scholar] [CrossRef]
- Zhao, X.; Xiong, L.; Zhang, M.; Bai, F. Towards Efficient Bioethanol Production from Agricultural and Forestry Residues: Exploration of Unique Natural Microorganisms in Combination with Advanced Strain Engineering. Bioresour. Technol. 2016, 215, 84–91. [Google Scholar] [CrossRef]
- Luo, S.; Cao, J.; Peng, Y. Properties of Glycerin-Thermally Modified Wood Flour/Polypropylene Composites. Polym. Compos. 2013, 35, 201–207. [Google Scholar] [CrossRef]
- Miao, J.; Yu, Y.; Jiang, Z.; Tang, L.; Zhang, L. Partial Delignification of Wood and Membrane Preparation Using a Quaternary Ammonium Ionic Liquid. Sci. Rep. 2017, 7, 42472. [Google Scholar] [CrossRef] [PubMed]
- Dimos, K.; Paschos, T.; Louloudi, A.; Kalogiannis, K.G.; Lappas, A.A.; Papayannakos, N.; Kekos, D.; Mamma, D. Effect of Various Pretreatment Methods on Bioethanol Production from Cotton Stalks. Fermentation 2019, 5, 5. [Google Scholar] [CrossRef]
- Vilcekova, S.; Monokova, A.; Meciarova, L.; Selecka, I. Methodological Evaluation of Family House with Different Thermo-Physical Parameters of Building Materials. Proceedings 2018, 2, 1277. [Google Scholar] [CrossRef]
- Pourhashem, G.; Adler, P.R.; McAloon, A.J.; Spatari, S. Cost and Greenhouse Gas Emission Tradeoffs of Alternative Uses of Lignin for Second Generation Ethanol. Environ. Res. Lett. 2013, 8, 025021. [Google Scholar] [CrossRef]
- Vasco-Correa, J.; Shah, A. Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation 2019, 5, 30. [Google Scholar] [CrossRef]
- Chundawat, S.P.S.; Donohoe, B.S.; Sousa, L.d.C.; Elder, T.; Agarwal, U.P.; Lu, F.; Ralph, J.; Himmel, M.E.; Balan, V.; Dale, B.E. Multi-Scale Visualization and Characterization of Lignocellulosic Plant Cell Wall Deconstruction during Thermochemical Pretreatment. Energy Environ. Sci. 2011, 4, 973–984. [Google Scholar] [CrossRef]
- Yip, K.; Xu, M.; Li, C.-Z.; Jiang, S.P.; Wu, H. Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy Fuels 2010, 25, 406–414. [Google Scholar] [CrossRef]
- Janiszewska, D.; Olchowski, R.; Nowicka, A.; Zborowska, M.; Marszałkiewicz, K.; Shams, M.; Giannakoudakis, D.A.; Anastopoulos, I.; Barczak, M. Activated Biochars Derived from Wood Biomass Liquefaction Residues for Effective Removal of Hazardous Hexavalent Chromium from Aquatic Environments. GCB Bioenergy 2021, 13, 1247–1259. [Google Scholar] [CrossRef]
- Gao, J.; Jebrane, M.; Terziev, N.; Daniel, G. Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development. Forests 2021, 12, 1048. [Google Scholar] [CrossRef]
- Loziuk, P.L.; Parker, J.; Li, W.; Lin, C.-Y.; Wang, J.P.; Li, Q.; Sederoff, R.R.; Chiang, V.L.; Muddiman, D.C. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa. J. Proteome Res. 2015, 14, 4158–4168. [Google Scholar] [CrossRef]
- ASTM-G155-05; Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2005.
- ASTM D1107-21; Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA, 2021.
- Seifert, V. Über Ein Neues Verfahren Zur Schnellbestimmung Der Rein-Cellulose. (About a New Method for Rapid Determination of Pure Cellulose). Papier 1956, 10, 301–306. [Google Scholar]
- Wise, L.E.; Murphy, M.; d’Addieco, A.A. A Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and Studies on the Hemicelluloses. Pap. Trade J. 1946, 122, 35–43. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. In Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Gašparík, M.; Zeidler, A.; Výbohová, E.; Kačíková, D.; Kačík, F. Chemical Changes of Polysaccharides in Heat-Treated European Beech Wood. J. Wood Sci. 2024, 70, 38. [Google Scholar] [CrossRef]
- Kačík, F.; Podzimek, Š.; Vizárová, K.; Kačíková, D.; Čabalová, I. Characterization of Cellulose Degradation during Accelerated Ageing by SEC-MALS, SEC-DAD, and A4F-MALS Methods. Cellulose 2016, 23, 357–366. [Google Scholar] [CrossRef]
- Potthast, A.; Radosta, S.; Saake, B.; Lebioda, S.; Heinze, T.; Henniges, U.; Isogai, A.; Koschella, A.; Kosma, P.; Rosenau, T.; et al. Comparison Testing of Methods for Gel Permeation Chromatography of Cellulose: Coming Closer to a Standard Protocol. Cellulose 2015, 22, 1591–1613. [Google Scholar] [CrossRef]
- Vera-Loor, A.; Walger, E.; Marlin, N.; Mortha, G. Evaluation of the Dissolving Ability of Cellulosic Pulps: Investigation of a Novel Method Using Light Scattering Follow-up during Classical Cellulose Carbanilation. Holzforschung 2023, 77, 139–148. [Google Scholar] [CrossRef]
- Dahlman, O.; Jacobs, A.; Sjöberg, J. Molecular Properties of Hemicelluloses Located in the Surface and Inner Layers of Hardwood and Softwood Pulps. Cellulose 2003, 10, 325–334. [Google Scholar] [CrossRef]
- Kačík, F.; Kúdela, J.; Výbohová, E.; Jurczyková, T.; Čabalová, I.; Adamčík, L.; Kmeťová, E.; Kačíková, D. Impact of Thermal Treatment and Accelerated Aging on the Chemical Composition, Morphology, and Properties of Spruce Wood. Forests 2025, 16, 180. [Google Scholar] [CrossRef]
- Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent Advances in Understanding the Pseudo-Lignin Formation in a Lignocellulosic Biorefinery. Green Chem. 2018, 20, 2192–2205. [Google Scholar] [CrossRef]
- Jiang, J.; Peng, Y.; Ran, Y.; Cao, J. Pseudo Lignin Formed from Hygrothermally Treated Holocellulose and Its Effect on Fungal Degradation. Ind. Crops Prod. 2022, 184, 115004. [Google Scholar] [CrossRef]
- Leppänen, K.; Spetz, P.; Pranovich, A.; Hartonen, K.; Kitunen, V.; Ilvesniemi, H. Pressurized Hot Water Extraction of Norway Spruce Hemicelluloses Using a Flow-through System. Wood Sci. Technol. 2011, 45, 223–236. [Google Scholar] [CrossRef]
- Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Effect of Intermittent Heat Treatment on Crystallinity in Wood Cellulose. J. Wood Sci. 2001, 47, 336–341. [Google Scholar] [CrossRef]
- Lourenço, A.; Araújo, S.; Gominho, J.; Evtuguin, D. Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood. Polymers 2020, 12, 2831. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Changes of Crystallinity in Wood Cellulose by Heat Treatment under Dried and Moist Conditions. J. Wood Sci. 2000, 46, 431–436. [Google Scholar] [CrossRef]
- Mastouri, A.; Azadfallah, M.; Kamboj, G.; Rezaei, F.; Tarmian, A.; Efhamisisi, D.; Mahmoudkia, M.; Corcione, C.E. Kinetic Studies on Photo-Degradation of Thermally-Treated Spruce Wood during Natural Weathering: Surface Performance, Lignin and Cellulose Crystallinity. Constr. Build. Mater. 2023, 392, 131923. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms. Bioresour. Technol. 2012, 126, 7–12. [Google Scholar] [CrossRef]
- Jusner, P.; Bausch, F.; Schiehser, S.; Schwaiger, E.; Potthast, A.; Rosenau, T. Protocol for Characterizing the Molar Mass Distribution and Oxidized Functionality Profiles of Aged Transformer Papers by Gel Permeation Chromatography (GPC). Cellulose 2022, 29, 2241–2256. [Google Scholar] [CrossRef]
- Hult, E.-L.; Larsson, P.T.; Iversen, T. Cellulose Fibril Aggregation—An Inherent Property of Kraft Pulps. Polymer 2001, 42, 3309–3314. [Google Scholar] [CrossRef]
- Silveira, R.L.; Stoyanov, S.R.; Kovalenko, A.; Skaf, M.S. Cellulose Aggregation under Hydrothermal Pretreatment Conditions. Biomacromolecules 2016, 17, 2582–2590. [Google Scholar] [CrossRef]
- Abik, F.; Palasingh, C.; Bhattarai, M.; Leivers, S.; Ström, A.; Westereng, B.; Mikkonen, K.S.; Nypelö, T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. J. Agric. Food Chem. 2023, 71, 2667–2683. [Google Scholar] [CrossRef]
- Qaseem, M.F.; Shaheen, H.; Wu, A.-M. Cell Wall Hemicellulose for Sustainable Industrial Utilization. Renew. Sustain. Energy Rev. 2021, 144, 110996. [Google Scholar] [CrossRef]
- Rao, J.Y.; Ziwen, L.; Gegu, C.; Feng, P. Hemicellulose: Structure, Chemical Modification, and Application. Prog. Polym. Sci. 2023, 140, 101675. [Google Scholar] [CrossRef]
- Song, T.; Pranovich, A.; Holmbom, B. Hot-Water Extraction of Ground Spruce Wood of Different Particle Size. BioResources 2012, 7, 4214–4225. [Google Scholar] [CrossRef]
- Markstedt, K.; Xu, W.; Liu, J.; Xu, C.; Gatenholm, P. Synthesis of Tunable Hydrogels Based on O-Acetyl-Galactoglucomannans from Spruce. Carbohydr. Polym. 2017, 157, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Willför, S.; Holmbom, B. Rheological Properties of Mixtures of Spruce Galactoglucomannans and Konjac Glucomannan or Some Other Polysaccharides. BioResources 2008, 3, 713–730. [Google Scholar] [CrossRef]
- Rissanen, J.V.; Grénman, H.; Xu, C.; Willför, S.; Murzin, D.Y.; Salmi, T. Obtaining Spruce Hemicelluloses of Desired Molar Mass by Using Pressurized Hot Water Extraction. ChemSusChem 2014, 7, 2947–2953. [Google Scholar] [CrossRef]
- Li, J.; Kasal, B. Effects of Thermal Aging on the Adhesion Forces of Biopolymers of Wood Cell Walls. Biomacromolecules 2022, 23, 1601–1609. [Google Scholar] [CrossRef]
- Oberle, A.; Výbohová, E.; Baar, J.; Paschová, Z.; Beránek, Š.; Drobyshev, I.; Čabalová, I.; Čermák, P. Chemical Changes in Thermally Modified, Acetylated and Melamine Formaldehyde Resin Impregnated Beech Wood. Holzforschung 2024, 78, 459–469. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical Changes in Hydrothermal Treated Wood: FTIR Analysis of Combined Hydrothermal and Dry Heat-Treated Wood. Holz Roh. Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Robles, E.; Herrera, R.; De Hoyos Martínez, P.L.; Fernández Rodríguez, J.; Labidi, J. Valorization of Heat-Treated Wood after Service Life through a Cascading Process for the Production of Lignocellulosic Derivatives. Resour. Conserv. Recycl. 2021, 170, 105602. [Google Scholar] [CrossRef]
Step | Mode | Radiation Intensity (W·m−2) | Black Panel Temperature (°C) | Air Temperature (°C) | Relative Air Humidity (%) | Time (min) |
---|---|---|---|---|---|---|
1 | Radiation | 0.35 | 63 | 48 | 30 | 102 |
2 | Radiation + water spraying | 0.35 | 63 | 48 | 90 | 18 |
T (°) | TW | TW-XE | ||||
---|---|---|---|---|---|---|
Holo- Cellulose | Cellulose | Hemi- Celluloses | Holo- Cellulose | Cellulose | Hemi- Celluloses | |
REF | 77.43 (0.61) | 45.35 (0.26) | 32.07 (0.68) | 77.43 (0.61) | 45.35 (0.26) | 32.07 (0.68) |
160 | 76.29 (0.78) | 45.48 (0.14) | 30.81 (0.81) | 76.38 (0.36) | 45.38 (0.12) | 31.00 (0.40) |
180 | 66.93 (0.61) | 46.33 (0.21) | 20.59 (0.81) | 62.72 (0.36) | 45.23 (0.37) | 17.49 (0.54) |
210 | 58.39 (0.12) | 58.39 (0.17) | 7.83 (0.16) | 58.82 (0.22) | 52.56 (0.11) | 6.26 (0.12) |
Sample | Glucose (GLC) | Xylose (XYL) | Galactose (GAL) | Arabinose (ARA) | Mannose (MAN) | Total |
---|---|---|---|---|---|---|
REF | 48.24 (0.83) | 6.52 (0.10) | 3.47 (0.03) | 3.32 (0.31) | 11.32 (0.16) | 72.87 (0.99) |
160-TW | 44.31 (0.53) | 4.98 (0.11) | 3.09 (0.09) | 1.61 (0.08) | 10.48 (0.16) | 64.47 (0.89) |
180-TW | 41.46 (0.06) | 4.94 (0.06) | 1.84 (0.08) | 1.71 (0.06) | 9.00 (0.13) | 58.95 (0.17) |
210-TW | 40.38 (0.22) | 3.57 (0.05) | 1.00 (0.07) | 1.11 (0.09) | 7.82 (0.16) | 53.87 (0.38) |
160-TW-XE | 43.07 (0.32) | 4.92 (0.21) | 2.91 (0.04) | 1.64 (0.33) | 10.40 (0.41) | 62.94 (1.14) |
180-TW-XE | 38.18 (0.57) | 5.18 (0.10) | 2.63 (0.03) | 1.55 (0.05) | 7.81 (0.21) | 55.35 (0.88) |
210-TW-XE | 37.44 (0.34) | 3.78 (0.12) | 1.42 (0.05) | 0.88 (0.03) | 7.12 (0.09) | 50.64 (0.56) |
Sample | Glucose (GLC) | Xylose (XYL) | Galactose (GAL) | Arabinose (ARA) | Mannose (MAN) |
---|---|---|---|---|---|
REF | 64.75 (0.36) | 9.33 (0.13) | 4.96 (0.05) | 4.76 (0.42) | 16.21 (0.16) |
160-TW | 68.73 (0.16) | 7.73 (0.06) | 4.79 (0.14) | 2.50 (0.09) | 16.25 (0.04) |
180-TW | 70.33 (0.11) | 8.39 (0.09) | 3.12 (0.13) | 2.89 (0.10) | 15.27 (0.21) |
210-TW | 74.96 (0.45) | 6.63 (0.07) | 1.85 (0.12) | 2.06 (0.16) | 14.51 (0.24) |
160-TW-XE | 68.44 (0.99) | 7.82 (0.23) | 4.62 (0.03) | 2.60 (0.47) | 16.52 (0.35) |
180-TW-XE | 68.98 (0.18) | 9.35 (0.05) | 4.76 (0.13) | 2.80 (0.05) | 14.11 (0.19) |
210-TW-XE | 73.94 (0.24) | 7.46 (0.16) | 2.80 (0.08) | 1.73 (0.07) | 14.07 (0.03) |
Sample | Mn | Mw | Mz | PDI | DP |
---|---|---|---|---|---|
REF | 13,590 (252) | 196,859 (9276) | 703,596 (12,596) | 14.48 (0.42) | 1215 (57) |
160-TW | 13,531 (138) | 215,639 (3374) | 750,340 (8230) | 15.94 (0.39) | 1338 (20) |
180-TW | 12,061 (286) | 164,887 (5165) | 629,976 (19,977) | 13.67 (0.11) | 1027 (32) |
210-TW | 8720 (109) | 99,330 (2559) | 431,606 (9563) | 11.39 (0.15) | 610 (18) |
160-TW-XE | 13,532 (607) | 214,154 (20,431) | 754,195 (42,805) | 15.83 (0.80) | 1322 (126) |
180-TW-XE | 13,072 (316) | 191,052 (2551) | 734,342 (4990) | 14.62 (0.16) | 1179 (16) |
210-TW-XE | 8769 (85) | 96,640 (2400) | 413,036 (15,473) | 11.02 (0.17) | 597 (15) |
Sample | Mn | Mw | Mz | PDI |
---|---|---|---|---|
REF | 6941 (115) | 45,278 (210) | 143,947 (5873) | 6.52 (0.14) |
160-TW | 6256 (721) | 44,305 (3052) | 141,816 (1549) | 7.10 (0.33) |
180-TW | 6869 (32) | 27,205 (176) | 85,926 (2590) | 3.96 (0.01) |
210-TW | 5300 (371) | 13,597 (21) | 27,680 (1906) | 2.57 (0.18) |
160-TW-XE | 7066 (213) | 42,191 (207) | 122,628 (9765) | 5.97 (0.15) |
180-TW-XE | 7186 (88) | 24,929 (2) | 60,378 (752) | 3.47 (0.04) |
210-TW-XE | 4930 (30) | 13,274 (347) | 35,063 (3818) | 2.69 (0.09) |
Wavenumber (cm−1) | ΔTW (%) | ΔTW-XE (%) | ||||
---|---|---|---|---|---|---|
160 °C | 180 °C | 210 °C | 160 °C | 180 °C | 210 °C | |
898 | 17.49 | 10.06 | −11.39 | 4.46 | −9.85 | −1.60 |
1030 | 19.20 | 9.37 | 3.22 | −3.90 | −4.35 | 6.67 |
1053 | 10.33 | 3.96 | −2.35 | −5.58 | −6.43 | 2.28 |
1103 | −3.03 | −1.66 | −6.02 | −6.31 | −8.83 | −3.39 |
1160 | −7.09 | −6.08 | −14.63 | −11.82 | −13.91 | −13.57 |
1202 | −12.91 | −10.24 | −7.75 | −10.80 | −18.16 | −12.38 |
1261 | 2.36 | 24.42 | 68.46 | −1.36 | 25.89 | 50.82 |
1315 | −2.24 | −0.09 | −19.33 | 1.88 | −9.09 | −18.81 |
1334 | −2.87 | −2.80 | −20.37 | 1.82 | −8.60 | −16.86 |
1429 | −8.40 | −6.49 | 6.10 | −6.15 | −10.17 | 3.15 |
1450 | −0.54 | 6.64 | 27.21 | 3.34 | 1.08 | 25.32 |
1512 | −42.82 | 74.72 | 1107.14 | 40.74 | 122.37 | 923.57 |
1644 | 11.18 | 21.35 | 78.89 | −4.81 | 12.99 | 67.16 |
1727 | 26.01 | 58.44 | 221.10 | 14.94 | 85.31 | 193.35 |
2895 | 1.62 | −0.05 | −2.28 | 3.66 | −2.83 | 6.53 |
3338 | 1.18 | −4.80 | −3.67 | 2.73 | 0.13 | 7.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačík, F.; Jurczyková, T.; Bálintová, M.; Kmeťová, E.; Výbohová, E.; Kačíková, D. Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes. Polymers 2025, 17, 1265. https://doi.org/10.3390/polym17091265
Kačík F, Jurczyková T, Bálintová M, Kmeťová E, Výbohová E, Kačíková D. Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes. Polymers. 2025; 17(9):1265. https://doi.org/10.3390/polym17091265
Chicago/Turabian StyleKačík, František, Tereza Jurczyková, Magdaléna Bálintová, Elena Kmeťová, Eva Výbohová, and Danica Kačíková. 2025. "Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes" Polymers 17, no. 9: 1265. https://doi.org/10.3390/polym17091265
APA StyleKačík, F., Jurczyková, T., Bálintová, M., Kmeťová, E., Výbohová, E., & Kačíková, D. (2025). Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes. Polymers, 17(9), 1265. https://doi.org/10.3390/polym17091265