Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
Abstract
:1. Introduction
2. The Basic Requirements for Lithium Battery Separators
3. Preparation Process of Polyphenylene Sulfide Separator
3.1. Nanofiber Nonwoven Fabric
3.1.1. Melt-Blown Spinning
3.1.2. Electrospinning
3.1.3. Island-in-the-Sea Melt Spinning
3.2. Particle Leaching
3.3. Thermally Induced Phase Separation (TIPS)
3.4. Dry-Film Forming Process
4. Application of PPS Separators in Lithium Batteries
4.1. Porous Separator
4.1.1. PPS/SiO2 Separator
4.1.2. PPS Composite Separator
4.2. Non-Porous Separator
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vu, T.T.; Cheon, H.J.; Shin, S.Y.; Jeong, G.; Wi, E.; Chang, M. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Mater. 2023, 61, 102876. [Google Scholar] [CrossRef]
- Liu, C.; Wu, B.; Liu, T.; Zhang, Y.; Cui, J.; Huang, L.; Tan, G.; Zhang, L.; Su, Y.; Wu, F. Metal-organic frameworks and their composites for advanced lithium-ion batteries: Synthesis, progress and prospects. J. Energy Chem. 2024, 89, 449–470. [Google Scholar] [CrossRef]
- Braun, P.V.; Cho, J.; Pikul, J.H.; King, W.P.; Zhang, H. High power rechargeable batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 186–198. [Google Scholar] [CrossRef]
- Wang, D.; Han, C.; Mo, F.; Yang, Q.; Zhao, Y.; Li, Q.; Liang, G.; Dong, B.; Zhi, C. Energy density issues of flexible energy storage devices. Energy Storage Mater. 2020, 28, 264–292. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Wang, X.; Guo, Y.; Ni, C.; Wu, J.; Hao, C. High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode. Ind. Crops Prod. 2022, 189, 115863. [Google Scholar] [CrossRef]
- Lin, X.; Lu, W. A framework for optimization on battery cycle life. J. Electrochem. Soc. 2018, 165, A3380. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, F.; Hu, Q.; Fu, L.; Gao, X. Decentralised control strategy for hybrid battery energy storage system with considering dynamical state-of-charge regulation. IET Smart Grid 2020, 3, 890–897. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, Y.; Chen, R.; Ling, G.; Wang, X.; Shen, Y.; Hao, C. Cu-ag-c@ni3s4 with core shell structure and rose derived carbon electrode materials: An environmentally friendly supercapacitor with high energy and power density. Ind. Crops Prod. 2024, 222, 119676. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.-B.; Shen, L.; Lei, D.; Ma, J.; Ye, H.; Shi, K.; Li, B.; Kang, F. Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy 2018, 50, 367–375. [Google Scholar] [CrossRef]
- Wen, G.; Rehman, S.; Tranter, T.G.; Ghosh, D.; Chen, Z.; Gostick, J.T.; Pope, M.A. Insights into multiphase reactions during self-discharge of li-s batteries. Chem. Mater. 2020, 32, 4518–4526. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, H.; Yi, W.; Lai, X.; Dai, H.; Han, X.; Ouyang, M. A novel classification method of commercial lithium-ion battery cells based on fast and economic detection of self-discharge rate. J. Power Sources 2020, 478, 229039. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Yang, H.; Dong, Z.Y.; Zhang, R. Optimal whole-life-cycle planning of battery energy storage for multi-functional services in power systems. IEEE Trans. Sustain. Energy 2020, 11, 2077–2086. [Google Scholar] [CrossRef]
- Khantimerov, S.; Fatykhov, R.; Suleimanov, N. Prospectives for the use of li-ion batteries in hybrid stand-alone power sources. Int. J. Emerg. Electr. Power Syst. 2019, 20, 20180175. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Liu, J.; Guo, S.; Hu, C.; Lyu, H.; Guo, Z. Advanced nanocomposite electrodes for lithium-ion batteries. In Multifunctional Nanocomposites for Energy and Environmental Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar]
- Jiangyi, H.; Fan, W. Design and testing of a small orchard tractor driven by a power battery. Eng. Agric. 2023, 43, e20220195. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, J.; Gao, Y.; Zhang, W.; Liu, Q.; Hu, X. Charging optimization in lithium-ion batteries based on temperature rise and charge time. Appl. Energy 2017, 194, 569–577. [Google Scholar] [CrossRef]
- Silva; Fernando, A. Lithium-ion batteries: Fundamentals and applications [book news]. IEEE Ind. Electron. Mag. 2016, 10, 58–59. [Google Scholar] [CrossRef]
- Yuan, B.; Wen, K.; Chen, D.; Liu, Y.; Dong, Y.; Feng, C.; Han, Y.; Han, J.; Zhang, Y.; Xia, C. Composite separators for robust high rate lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2101420. [Google Scholar] [CrossRef]
- Liang, T.; Cheng, D.; Chen, J.; Wu, X.; Xiong, H.; Yu, S.; Zhang, Z.; Liu, H.; Liu, S.; Song, X. Evolution from passive to active components in lithium metal and lithium-ion batteries separators. Mater. Today Energy 2024, 45, 101684. [Google Scholar] [CrossRef]
- Ryu, J.; Han, D.-Y.; Hong, D.; Park, S. A polymeric separator membrane with chemoresistance and high li-ion flux for high-energy-density lithium metal batteries. Energy Storage Mater. 2022, 45, 941–951. [Google Scholar] [CrossRef]
- Deng, Y.; Hussain, A.; Raza, W.; Cai, X.; Liu, D.; Shen, J. Review on current development of polybenzimidazole membrane for lithium battery. J. Energy Chem. 2024, 91, 579–608. [Google Scholar] [CrossRef]
- Zhong, S.; Yuan, B.; Guang, Z.; Chen, D.; Li, Q.; Dong, L.; Ji, Y.; Dong, Y.; Han, J.; He, W. Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Mater. 2021, 41, 805–841. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef]
- Feng, Y.; Dong, Y.; He, Y.; Yuan, B.; Zhou, S.; Qiao, L.; Li, X.; Han, J.; Costa, C.M.; Lanceros-Méndez, S.; et al. Interface engineering of quasi-solid poly(vinylidene fluoride) separators for next-generation lithium ion batteries. Coord. Chem. Rev. 2024, 518, 216104. [Google Scholar] [CrossRef]
- Babiker, D.M.D.; Usha, Z.R.; Wan, C.; Hassaan, M.M.E.; Chen, X.; Li, L. Recent progress of composite polyethylene separators for lithium/sodium batteries. J. Power Sources 2023, 564, 232853. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Qiu, S.; Jia, Y.; Wang, L.; Wang, H. Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (bc) for heat-resistant and high-wettability separator in lithium-ion battery. Compos. Commun. 2021, 24, 100659. [Google Scholar] [CrossRef]
- Chou, L.-Y.; Ye, Y.; Lee, H.K.; Huang, W.; Xu, R.; Gao, X.; Chen, R.; Wu, F.; Tsung, C.-K.; Cui, Y. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries. Nano Lett. 2021, 21, 2074–2080. [Google Scholar] [CrossRef]
- Jeong, H.-S.; Hong, S.C.; Lee, S.-Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of al2o3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J. Membr. Sci. 2010, 364, 177–182. [Google Scholar] [CrossRef]
- Leng, X.; Yang, M.; Li, C.; Arifeen, W.U.; Ko, T.J. High-performance separator for lithium-ion battery based on dual-hybridizing of materials and processes. Chem. Eng. J. 2022, 433, 133773. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, P.; Jin, H.; Liu, X.; Ding, Y. Flexible, nonflammable and li-dendrite resistant na2ti3o7 nanobelt-based separators for advanced li storage. J. Membr. Sci. 2019, 583, 190–199. [Google Scholar] [CrossRef]
- Mao, Y.; Sun, W.; Qiao, Y.; Liu, X.; Xu, C.; Fang, L.; Hou, W.; Wang, Z.; Sun, K. A high strength hybrid separator with fast ionic conductor for dendrite-free lithium metal batteries. Chem. Eng. J. 2021, 416, 129119. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Fan, Z.; Wu, G.; Liu, L.; Huang, Y. Aramid nanofiber-based porous membrane for suppressing dendrite growth of metal-ion batteries with enhanced electrochemistry performance. Chem. Eng. J. 2021, 426, 131924. [Google Scholar] [CrossRef]
- Guo, D.; Mu, L.; Lin, F.; Liu, G. Mesoporous polyimide thin films as dendrite-suppressing separators for lithium–metal batteries. ACS Nano 2024, 18, 155–163. [Google Scholar] [CrossRef]
- Hou, Y.; Huang, Z.; Chen, Z.; Li, X.; Chen, A.; Li, P.; Wang, Y.; Zhi, C. Bifunctional separators design for safe lithium-ion batteries: Suppressed lithium dendrites and fire retardance. Nano Energy 2022, 97, 107204. [Google Scholar] [CrossRef]
- Zuo, P.; Tcharkhtchi, A.; Shirinbayan, M.; Fitoussi, J.; Bakir, F. Overall investigation of poly (phenylene sulfide) from synthesis and process to applications—A review. Macromol. Mater. Eng. 2019, 304, 1800686. [Google Scholar] [CrossRef]
- Chen, G.; Mohanty, A.K.; Misra, M. Progress in research and applications of polyphenylene sulfide blends and composites with carbons. Compos. Part B Eng. 2021, 209, 108553. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, C.; Gao, H.; Wu, J.-C.; Hou, D.; Liu, M.; Zhang, M.; Xu, Z.; Yang, J.; Chen, D. Polyphenylene sulfide-based solid-state separator for limited li metal battery. Small 2021, 17, 2104365. [Google Scholar] [CrossRef]
- Zimmerman, M.A.; Gavrilov, A.G. Solid, Ionically Conducting Polymer Material, and Methods and Applications for Same. U.S. Patent 2017338492 (A1), 23 November 2017. [Google Scholar]
- Lee, J.-P.; Kang, S.-J. Electrolyte Membrane for All-Solid-State Battery, and All-Solid-State Battery Comprising Same. U.S. Patent 12095115, 17 September 2024. [Google Scholar]
- Wang, L.; Yang, S.; Wang, H.; Wang, Z.; Chen, M.; Wang, X.; Chen, S.; Chen, L.; Yin, X.; Qin, J.; et al. A Melt-Blown Polyphenylene Sulfide Nonwoven Fabric Lithium Battery Separator and Its Preparation Method. C.N. Patent 104795525B, 1 June 2018. [Google Scholar]
- Zhou, H.; Gao, H.; Wu, J.; Yu, C.; Liu, M.; Hou, D. Pre-Lithiated Polyphenylene Sulfide, Polyphenylene Sulfide-Based Solid Electrolyte Membrane, Battery Electrode Sheet, Quasi-Solid-State Lithium Ion Battery and Method for Manufacturing Same. U.S. Patent 20220037696 A1, 2 March 2022. [Google Scholar]
- Gao, N.; Abboud, A.W.; Mattei, G.S.; Li, Z.; Corrao, A.A.; Fang, C.; Liaw, B.; Meng, Y.S.; Khalifah, P.G.; Dufek, E.J. Fast diagnosis of failure mechanisms and lifetime prediction of li metal batteries. Small Methods 2021, 5, 2000807. [Google Scholar] [CrossRef]
- Lagadec, M.F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25. [Google Scholar] [CrossRef]
- Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886. [Google Scholar] [CrossRef]
- Ihm, D.; Noh, J.; Kim, J. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for li-ion secondary battery. J. Power Sources 2002, 109, 388–393. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Chen, B.; Zhao, W.; Sha, L.; Wang, D.; Yu, J.; Shi, S. Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations. Chin. Chem. Lett. 2022, 33, 3287–3290. [Google Scholar] [CrossRef]
- Li, J.; Jia, H.; Ma, S.; Xie, L.; Wei, X.-X.; Dai, L.; Wang, H.; Su, F.; Chen, C.-M. Separator design for high-performance supercapacitors: Requirements, challenges, strategies, and prospects. ACS Energy Lett. 2023, 8, 56–78. [Google Scholar] [CrossRef]
- Gou, J.; Liu, W.; Tang, A.; Wu, L. Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators. J. Membr. Sci. 2022, 659, 120807. [Google Scholar] [CrossRef]
- Shi, H.; Qin, J.; Huang, K.; Lu, P.; Zhang, C.; Dong, Y.; Ye, M.; Liu, Z.; Wu, Z.S. A two-dimensional mesoporous polypyrrole–graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. 2020, 132, 12245–12251. [Google Scholar] [CrossRef]
- Lin, G.; Jia, K.; Bai, Z.; Liu, C.; Liu, S.; Huang, Y.; Liu, X. Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2207969. [Google Scholar] [CrossRef]
- Chu, Z.; Gao, X.; Wang, C.; Wang, T.; Wang, G. Metal–organic frameworks as separators and electrolytes for lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316. [Google Scholar] [CrossRef]
- Sun, X.; Xu, W.; Zhang, X.; Lei, T.; Lee, S.-Y.; Wu, Q. Zif-67@cellulose nanofiber hybrid membrane with controlled porosity for use as li-ion battery separator. J. Energy Chem. 2021, 52, 170–180. [Google Scholar] [CrossRef]
- Schilling, A.; Wiemers-Meyer, S.; Winkler, V.; Nowak, S.; Hoppe, B.; Heimes, H.H.; Dröder, K.; Winter, M. Influence of separator material on infiltration rate and wetting behavior of lithium-ion batteries. Energy Technol. 2020, 8, 1900078. [Google Scholar] [CrossRef]
- Han, W.-W.; Ardhi, R.E.A.; Liu, G.-C. Dual impact of superior sei and separator wettability to inhibit lithium dendrite growth. Rare Met. 2022, 41, 353–355. [Google Scholar] [CrossRef]
- Davoodabadi, A.; Jin, C.; Wood Iii, D.L.; Singler, T.J.; Li, J. On electrolyte wetting through lithium-ion battery separators. Extrem. Mech. Lett. 2020, 40, 100960. [Google Scholar] [CrossRef]
- Costa, C.M.; Silva, M.M.; Lanceros-Méndez, S. Battery separators based on vinylidene fluoride (vdf) polymers and copolymers for lithium ion battery applications. RSC Adv. 2013, 3, 11404–11417. [Google Scholar] [CrossRef]
- Yang, X.; Adair, K.R.; Gao, X.; Sun, X. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 2021, 14, 643–671. [Google Scholar] [CrossRef]
- Francis, C.F.J.; Kyratzis, I.L.; Best, A.S. Lithium-ion battery separators for ionic-liquid electrolytes: A review. Adv. Mater. 2020, 32, 1904205. [Google Scholar] [CrossRef]
- Peng, L.; Kong, X.; Li, H.; Wang, X.; Shi, C.; Hu, T.; Liu, Y.; Zhang, P.; Zhao, J. A rational design for a high-safety lithium-ion battery assembled with a heatproof–fireproof bifunctional separator. Adv. Funct. Mater. 2021, 31, 2008537. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; Toprakci, O.; Liang, Y.; Alcoutlabi, M. Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym. Rev. 2011, 51, 239–264. [Google Scholar] [CrossRef]
- Jung, J.-W.; Lee, C.-L.; Yu, S.; Kim, I.-D. Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 2016, 4, 703–750. [Google Scholar] [CrossRef]
- Pan, J.-L.; Zhang, Z.; Zhang, H.; Zhu, P.-P.; Wei, J.-C.; Cai, J.-X.; Yu, J.; Koratkar, N.; Yang, Z.-Y. Ultrathin and strong electrospun porous fiber separator. ACS Appl. Energy Mater. 2018, 1, 4794–4803. [Google Scholar] [CrossRef]
- Cho, T.-H.; Tanaka, M.; Onishi, H.; Kondo, Y.; Nakamura, T.; Yamazaki, H.; Tanase, S.; Sakai, T. Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for li-ion battery. J. Power Sources 2008, 181, 155–160. [Google Scholar] [CrossRef]
- Lee, J.H.; Manuel, J.; Choi, H.; Park, W.H.; Ahn, J.-H. Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries. Polymer 2015, 68, 335–343. [Google Scholar] [CrossRef]
- Ma, X.; Kolla, P.; Yang, R.; Wang, Z.; Zhao, Y.; Smirnova, A.L.; Fong, H. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim. Acta 2017, 236, 417–423. [Google Scholar] [CrossRef]
- Mohanta, J.; Kwon, O.H.; Choi, J.H.; Yun, Y.-M.; Kim, J.-K.; Jeong, S.M. Preparation of highly porous pan-latp membranes as separators for lithium ion batteries. Nanomaterials 2019, 9, 1581. [Google Scholar] [CrossRef]
- Cao, L.; An, P.; Xu, Z.; Huang, J. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J. Electroanal. Chem. 2016, 767, 34–39. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Z.; Kong, Q.; Yao, J.; Zhang, C.; Han, P.; Cui, G. A high temperature operating nanofibrous polyimide separator in li-ion battery. Solid State Ion. 2013, 232, 44–48. [Google Scholar] [CrossRef]
- Kong, L.; Liu, B.; Ding, J.; Yan, X.; Tian, G.; Qi, S.; Wu, D. Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior lithium-ion battery separator with shutdown function. J. Membr. Sci. 2018, 549, 244–250. [Google Scholar] [CrossRef]
- Kim, J.R.; Choi, S.W.; Jo, S.M.; Lee, W.S.; Kim, B.C. Electrospun pvdf-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim. Acta 2004, 50, 69–75. [Google Scholar] [CrossRef]
- Ding, Y.; Di, W.; Jiang, Y.; Xu, F.; Long, Z.; Ren, F.; Zhang, P. The morphological evolution, mechanical properties and ionic conductivities of electrospinning p(vdf-hfp) membranes at various temperatures. Ionics 2009, 15, 731–734. [Google Scholar] [CrossRef]
- Yu, Y.; Xiong, S.; Huang, H.; Zhao, L.; Wang, L. Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React. Funct. Polym. 2020, 150, 104539. [Google Scholar] [CrossRef]
- Composite melt-blown nonwoven fabrics with large pore size as li-ion battery separator. Int. J. Hydrogen Energy 2016, 41, 324–330. [CrossRef]
- Luiso, S.; Henry, J.J.; Pourdeyhimi, B.; Fedkiw, P.S. Meltblown polyvinylidene difluoride as a li-ion battery separator. ACS Appl. Polym. Mater. 2021, 3, 3038–3048. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrospinning for flexible sodium-ion batteries. Energy Storage Mater. 2022, 45, 704–719. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, J.; Zhang, L.; Qiu, Y. Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev. 2018, 81, 1825–1858. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Dalton, P.D. Melt electrospinning. Chem. Asian J. 2011, 6, 44–56. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Tan, Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J. Power Sources 2019, 443, 227262. [Google Scholar] [CrossRef]
- Miao, J.; Miyauchi, M.; Simmons, T.J.; Dordick, J.S.; Linhardt, R.J. Electrospinning of nanomaterials and applications in electronic components and devices. J. Nanosci. Nanotechnol. 2010, 10, 5507–5519. [Google Scholar] [CrossRef]
- Pampal, E.S.; Stojanovska, E.; Simon, B.; Kilic, A. A review of nanofibrous structures in lithium ion batteries. J. Power Sources 2015, 300, 199–215. [Google Scholar] [CrossRef]
- Leng, X.; Zeng, J.; Yang, M.; Li, C.; Vattikuti, S.V.P.; Chen, J.; Li, S.; Shim, J.; Guo, T.; Ko, T.J. Bimetallic ni–co mof@pan modified electrospun separator enhances high-performance lithium-sulfur batteries. J. Energy Chem. 2023, 82, 484–496. [Google Scholar] [CrossRef]
- Dai, Y.; Peng, W.; Ji, Y.; Wei, J.; Che, J.; Huang, Y.; Huang, W.; Yang, W.; Xu, W. A self-powered photoelectrochemical aptasensor using 3d-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water. J. Food Sci. 2024, 89, 8022–8035. [Google Scholar] [CrossRef]
- Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Recent development in separators for high-temperature lithium-ion batteries. Small 2019, 15, e1901689. [Google Scholar] [CrossRef]
- Angammana, C.J.; Jayaram, S.H. The effects of electric field on the multijet electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 2011, 47, 1028–1035. [Google Scholar] [CrossRef]
- Shin, Y.M.; Hohman, M.M.; Brenner, M.P.; Rutledge, G.C. Experimental characterization of electrospinning: The electrically forced jet and instabilities. Polymer 2001, 42, 09955–09967. [Google Scholar] [CrossRef]
- Yarin, A.L.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- Niu, H.; Wang, X.; Lin, T. Needleless electrospinning: Influences of fibre generator geometry. J. Text. Inst. 2012, 103, 787–794. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.; Wang, X.; Lin, T. Research article needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J. Nanomater. 2012, 2012, 785920. [Google Scholar] [CrossRef]
- Jing, L.X.; Sun, S.; Wang, X.; Zhang, C.Q. The research of splitting craft for air filter with sea-island superfine fiber needled fabrics. Appl. Mech. Mater. 2013, 303–306, 2567–2571. [Google Scholar] [CrossRef]
- Yanxia, W.; Zhiguo, Z.; Rui, W.; Zhenfeng, D.; Xiuqin, Z. Preparation and structural performance of pps/pp blend sea-island superfine fiber. Mater. China 2014, 33, 677–681. [Google Scholar]
- Correia, D.M.; Ribeiro, C.; Sencadas, V.; Vikingsson, L.; Oliver Gasch, M.; Gómez Ribelles, J.L.; Botelho, G.; Lanceros-Méndez, S. Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene fluoride). Mater. Des. 2016, 92, 674–681. [Google Scholar] [CrossRef]
- Sampath, U.G.T.M.; Ching, Y.C.; Chuah, C.H.; Sabariah, J.J.; Lin, P.-C. Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials 2016, 9, 991. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Wen, J.; Wang, C.; Ma, X.; Yang, Y.; Huang, G.; Ye, H.-M.; Xu, S. Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Mater. 2022, 51, 638–659. [Google Scholar] [CrossRef]
- Kim, M.; Hong, S.Y.; Bang, J.; Lee, S.-S. Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for high-performance lithium-ion battery applications. Mater. Today Adv. 2021, 12, 100186. [Google Scholar] [CrossRef]
- Liu, J.; Qin, J.; Mo, Y.; Wang, S.; Han, D.; Xiao, M.; Meng, Y. Polyphenylene sulfide separator for high safety lithium-ion batteries. J. Electrochem. Soc. 2019, 166, A1644. [Google Scholar] [CrossRef]
- Luo, D.; Chen, M.; Xu, J.; Yin, X.; Wu, J.; Chen, S.; Wang, L.; Wang, H. Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos. Sci. Technol. 2018, 157, 119–125. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, C.; Xu, J.; Wu, J.; Yin, X.; Chen, S.; Zhu, Z.; Wang, L.; Li, Z.-C. Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface. J. Membr. Sci. 2020, 597, 117622. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, G.; Wang, C.; Xu, J.; Wang, L.; Wang, H.; Cheng, C. Poly(amidoamine) dendrimer-induced 3d crosslinked network constructed on polyphenylene sulfide nonwoven as a battery separator: Effect of generation number on cell performance. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131100. [Google Scholar] [CrossRef]
- Zhu, G.; Jin, C.; Li, H.; Chen, M.; Xia, S.; Han, M.; Xu, J.; Yang, S.; Wu, J.; Wang, L.; et al. Construction of strengthened crosslinked polymer coating using liquid-like nanoparticle on polyphenylene sulfide nonwoven as separator: Improved cycling performance in lithium-ion battery. Colloids Surf. A Physicochem. Eng. Asp. 2024, 691, 133856. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Xu, J.; Yin, X.; Wu, J.; Chen, S.; Zhu, Z.; Wang, L.; Wang, H. Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. J. Membr. Sci. 2019, 588, 117169. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Xu, J.; Yin, X.; Wu, J.; Chen, S.; Zhu, Z.; Wang, L.; Wang, H. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydr. Polym. 2020, 248, 116753. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, G.; Zhao, L.; Xiang, H.; Hu, Z.; Xu, G.; Zhu, M. Flexible and heat-resistant polyphenylene sulfide ultrafine fiber hybrid separators for high-safety lithium-ion batteries. Chem. Eng. J. 2023, 452, 139112. [Google Scholar] [CrossRef]
- Zhou, H.; Wan, L.; Han, J.; Wu, J.-C.; Deng, Y.; Gu, J.; Wang, H.; Gao, H.; Su, Z. Dense integration of chlorocatechols crosslinked polyphenylene sulfide solid-state separator for li metal-free batteries. Chem. Eng. J. Adv. 2025, 21, 100694. [Google Scholar] [CrossRef]
- Wu, J.-C.; Shen, X.; Zhou, H.; Li, X.; Gao, H.; Ge, J.; Xu, T.; Zhou, H. Zn-in alloying powder solvent free electrode toward high-load ampere-hour aqueous zn-mn secondary batteries. Small 2024, 20, 2308541. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-S.; Choi, E.-S.; Lee, S.-Y.; Kim, J.H. Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture. J. Membr. Sci. 2012, 415–416, 513–519. [Google Scholar] [CrossRef]
- Yang, D.; He, L.; Liu, Y.; Yan, W.; Liang, S.; Zhu, Y.; Fu, L.; Chen, Y.; Wu, Y. An acetylene black modified gel polymer electrolyte for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 13679–13686. [Google Scholar] [CrossRef]
- Zhou, H.; Ling, F.; Zhou, H.; Wu, J.-c.; Li, X.; Hou, D.; Ge, J.; Xu, T.; Gao, H. Polyphenylene sulfite based solid-state separator for blocking polysulfide in sodium-ion battery with cheap fes anode. J. Alloys Compd. 2023, 941, 168886. [Google Scholar] [CrossRef]
Separator | Process | Drying Temperature (°C) | Casting Method (Mass Ratio) | Thickness (μm) | Porosity (%) | Electrolyte Uptake (%) | Ionic Conductivity (mS⋅cm−1) | Reference Number |
---|---|---|---|---|---|---|---|---|
Porous PPS separators | ||||||||
PPS/SiO2 | Particle leaching | 50 | High | [96] | ||||
PPS1-81 | TIPS | 50 (12 h) | 29 | 73.5 | 409 | 1.69 | [97] | |
PPS2-81 | TIPS | 50 (12 h) | 28 | 69.7 | 384 | 1.61 | [97] | |
PPSC | melt-blown spinning | 50 (24 h) | SiO2:PVDF-HFP:acetone:DMF = 3:5:45:5 | 114 | 57.3 | 230.1 | 1.02 | [98] |
CLN/PPS | melt-blown spinning | 60 (8 h) | PEI:PVDF-HFP:acetone:DMF = 1:15:120:30 | 95 | 65 | 197 | 0.52 | [99] |
CS@4 | melt-blown spinning | 60 (12 h) | PAMPAM:PVDF-HFP: acetone:DMF = 1:10:60:40 | 51 | 85 | 236 | 0.92 | [100] |
3D-30:1 | melt-blown spinning | 60 (12 h) | PVDF-HFP:DMF = 1:10+ silica-based fluid:methanol = 0.33:2 | 63 | 72.1 | 153.6 | 0.51 | [101] |
3D-10:1 | melt-blown spinning | 60 (12 h) | PVDF-HFP:DMF = 1:10+ silica-based fluid:methanol = 0.1:2 | 66 | 78.6 | 202.5 | 0.92 | [101] |
3D-10:3 | melt-blown spinning | 60 (12 h) | PVDF-HFP:DMF = 1:10+ silica-based fluid:methanol = 0.3:2 | 70 | 68.4 | 172.9 | 0.65 | [101] |
ANFs/PPS | melt-blown spinning | 60 (24 h) | PPS:ANFs = 100:15 | 50 | 65.9 | 240.7 | 1.43 | [102] |
CFs/PPS | melt-blown spinning | 80 (24 h) | PPS:CFs = 1:1 | 61.1 | 259.6 | 1.26 | [103] | |
PPS-mGNFs | sea-island spinning | 100 (8 h) | PPS: mGNFs = 100:20 | 34 | 65.9 | 253 | 1.43 | [104] |
Non-porous PPS separators | ||||||||
PPS-CSSS | dry-film forming process | 100 (12 h) | Crystalline PPS: fibrillated PTFE = 94:6 | 30 | 6% | 10% | 0.3 | [39] |
PPS-SSS | dry-film forming process | 100 (12 h) | Crystalline PPS: fibrillated PTFE = 94:6 | 18 | 3% | 5% | 0.2 | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Zhou, H.; Zhou, H.; Gu, J.; Wang, C.; Liao, Q.; Gao, H.; Wu, J.; Huo, X. Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries. Polymers 2025, 17, 1237. https://doi.org/10.3390/polym17091237
Wan L, Zhou H, Zhou H, Gu J, Wang C, Liao Q, Gao H, Wu J, Huo X. Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries. Polymers. 2025; 17(9):1237. https://doi.org/10.3390/polym17091237
Chicago/Turabian StyleWan, Lianlu, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu, and Xiangdong Huo. 2025. "Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries" Polymers 17, no. 9: 1237. https://doi.org/10.3390/polym17091237
APA StyleWan, L., Zhou, H., Zhou, H., Gu, J., Wang, C., Liao, Q., Gao, H., Wu, J., & Huo, X. (2025). Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries. Polymers, 17(9), 1237. https://doi.org/10.3390/polym17091237