Novel High-Efficiency Single-Site Rare Earth (RE) Catalyst System for Isoprene Polymerization
Abstract
:1. Introduction
2. Materials and Methods
The Polymerization of Isoprene
3. Results and Discussion
3.1. Preparation of the Tridentate PNP-Ligated Rare-Earth Metal Complexes 1–3
3.2. Polymerization of Isoprene with MMAO-7 Activator in Hexane and Toluene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Lv, K.; Wang, L.; Wang, Y.; Cui, D. Isoprene polymerization with aminopyridinato ligand supported rare-earth metal complexes. Switching of the regio-and stereoselectivity. Chem. Commun. 2010, 46, 6150–6152. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, L.; Sun, G.; Liu, J.; Wang, M.; Li, S.; Cui, D. 3,4-Polymerization of Isoprene by using NSN-and NPN-ligated rare earth metal precursors: Switching of stereo selectivity and mechanism. Macromolecules 2014, 47, 4971–4978. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, H.; Li, W.; Jia, X.; Zhang, X.; Gong, D. Polymerization of isoprene promoted by aminophosphine (ory)-fused bipyridine cobalt complexes: Precise control of molecular weight and cis-1, 4-alt-3, 4 sequence. Inorg. Chem. 2018, 57, 4088–4097. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xu, T.; Yang, G.-W.; Jin, K.; Lu, X.-B. Bis (oxazolinyl) phenyl-ligated rare-earth-metal complexes: Highly regioselective catalysts for cis-1, 4-polymerization of isoprene. Inorg. Chem. 2013, 52, 2802–2808. [Google Scholar] [CrossRef]
- Yang, D.; Gan, Q.; Chen, H.; Ying, W.; Zhao, J.; Jia, X.; Gong, D. Polymerization of conjugated dienes and olefins promoted by cobalt complexes supported by phosphine oxide ligands. Inorg. Chem. Acta 2019, 496, 119046. [Google Scholar] [CrossRef]
- Jing, C.; Wang, L.; Mahmood, Q.; Zhao, M.; Zhu, G.; Zhang, X.; Wang, X.; Wang, Q. Synthesis and characterization of aminopyridine iron (II) chloride catalysts for isoprene polymerization: Sterically controlled monomer enchainment. Dalton Trans. 2019, 48, 7862–7874. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, G.; Mahmood, Q.; Zhao, M.; Wang, L.; Jing, C.; Wang, X.; Wang, Q. Iminoimidazole-based Co(II) and Fe(II) complexes: Syntheses, characterization, and catalytic behaviors for isoprene polymerization. J. Polym. Sci. Pol. Chem. 2019, 57, 767–775. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Cui, D. Side-Arm Assisted Anilido-Imine Based Rare-Earth Metal Complexes for Isoprene Stereoselective Polymerization. Molecules 2021, 26, 4154. [Google Scholar] [CrossRef]
- Basalova, O.A.; Tolpygin, A.O.; Kovylina, T.A.; Cherkasov, A.V.; Fukin, G.K.; Lyssenko, K.A.; Trifonov, A.A. Bis (tetramethylaluminate) Lanthanide Complexes Supported by Amidinate Ligands with a Pendant Ph2P = X (X = O, S) Group: Application in Isoprene Polymerization. Organometallics 2021, 40, 2567–2575. [Google Scholar] [CrossRef]
- Kang, X.; Luo, Y.; Zhou, G.; Wang, X.; Yu, X.; Hou, Z.; Qu, J. Theoretical mechanistic studies on the trans-1, 4-specific polymerization of isoprene catalyzed by a cationic La–Al binuclear complex. Macromolecules 2014, 47, 4596–4606. [Google Scholar] [CrossRef]
- You, F.; Zhai, J.; So, Y.-M.; Shi, X. Rigid Acridane-Based Pincer Supported Rare-Earth Complexes for Cis-1, 4-Polymerization of 1, 3-Conjugated Dienes. Inorg. Chem. 2021, 60, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, D.; Hou, Z.; Li, W.; Li, Y. Highly cis-1, 4-selective living polymerization of 1, 3-conjugated dienes and copolymerization with ε-caprolactone by bis (phosphino) carbazolide rare-earth-metal complexes. Organometallics 2011, 30, 760–767. [Google Scholar] [CrossRef]
- Basalova, O.A.; Tolpygin, A.O.; Kovylina, T.A.; Cherkasov, A.V.; Fukin, G.K.; Trifonov, A.A. Bis (tetramethylaluminate) Lanthanide Complexes Supported by Bi-and Tridentate Amidinate Ligands: Performance in Isoprene Polymerization. Organometallics 2021, 40, 979–988. [Google Scholar] [CrossRef]
- Wang, X.-B.; Zhang, M.; Luo, L.; Hussain, M.; Luo, Y. A computational study of isoprene polymerization catalyzed by iminopyridine-supported iron complexes: Ligand-controlled selectivity. Chem. Phys. Lett. 2020, 755, 137811. [Google Scholar] [CrossRef]
- Zhang, P.; Liao, H.; Wang, H.; Li, X.; Yang, F.; Zhang, S. Cis-1, 4-Polymerization of Isoprene Catalyzed by 1, 3-Bis (2-pyridylimino) isoindoline-Ligated Rare-Earth-Metal Dialkyl Complexes. Organometallics 2017, 36, 2446–2451. [Google Scholar] [CrossRef]
- Liu, S.; Du, G.; He, J.; Long, Y.; Zhang, S.; Li, X. Cationic tropidinyl scandium catalyst: A perfectly acceptable substitute for cationic half-sandwich scandium catalysts in cis-1, 4-polymerization of isoprene and copolymerization with norbornene. Macromolecules 2014, 47, 3567–3573. [Google Scholar] [CrossRef]
- Wang, X.; Kang, X.; Zhou, G.; Qu, J.; Hou, Z.; Luo, Y. DFT studies on cis-1, 4-polymerization of dienes catalyzed by a cationic rare-earth metal complex bearing an ancillary PNP ligand. Polymers 2017, 9, 53. [Google Scholar] [CrossRef]
- Diether, D.; Tyulyunov, K.; Maichle-Mössmer, C.; Anwander, R. Fluorenyl Half-Sandwich Bis (tetramethylaluminate) Complexes of the Rare-Earth Metals: Synthesis, Structure, and Isoprene Polymerization. Organometallics 2017, 36, 4649–4659. [Google Scholar] [CrossRef]
- Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Cationic Alkyl Rare-Earth Metal Complexes Bearing an Ancillary Bis (phosphinophenyl) amido Ligand: A Catalytic System for Living cis-1, 4-Polymerization and Copolymerization of Isoprene and Butadiene. Angew. Chem. Int. Ed. 2007, 119, 1941–1945. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, D.; Yan, X.; Gao, F.; Zhang, L.; Zhang, S.; Li, X. Cis-1, 4-polymerization of isoprene by 1, 3-bis (oxazolinymethylidene) isoindoline-ligated rare-earth metal dialkyl complexes. Polymers 2017, 9, 531. [Google Scholar] [CrossRef]
- Ren, W.; Liu, H.; You, F.; Mao, P.; So, Y.-M.; Kang, X.; Shi, X. Unsymmetrical diarylamido-based rare-earth alkyl complexes: Their synthesis and catalytic performance in isoprene polymerization. Dalton Trans. 2021, 50, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Diether, D.; Meermann-Zimmermann, M.; Törnroos, K.W.; Maichle-Mössmer, C.; Anwander, R. Rare-earth metal-promoted (double) C–H-bond activation of a lutidinyl-functionalized alkoxy ligand: Formation of [ONC] pincer-type ligands and implications for isoprene polymerization. Dalton Trans. 2020, 49, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Gurina, G.; Kissel, A.; Lyubov, D.; Luconi, L.; Rossin, A.; Tuci, G.; Cherkasov, A.; Lyssenko, K.; Shavyrin, A.; Ob’Edkov, A. Bis (alkyl) scandium and yttrium complexes coordinated by an amidopyridinate ligand: Synthesis, characterization and catalytic performance in isoprene polymerization, hydroelementation and carbon dioxide hydrosilylation. Dalton Trans. 2020, 49, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, W.; Wei, N.-N.; So, Y.-M.; Li, Y.; Jiang, K.; He, G. Anilido-oxazoline-ligated rare-earth metal complexes: Synthesis, characterization and highly ci s-1, 4-selective polymerization of isoprene. Dalton Trans. 2019, 48, 3583–3592. [Google Scholar] [CrossRef]
- Song, T.; Liu, N.; Tong, X.; Li, F.; Mu, X.; Mu, Y. Half-sandwich rare-earth metal complexes bearing a C5Me4-C6H4-o-CH2NMe2 ligand: Synthesis, characterization and catalytic properties for isoprene, 1-hexene and MMA polymerization. Dalton Trans. 2019, 48, 17840–17851. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S.; Zhou, S.; Wei, Y.; Guo, L.; Zhu, X.; Zhang, L.; Gu, X.; Mu, X. Synthesis and Reactivity of Rare-Earth-Metal Monoalkyl Complexes Supported by Bidentate Indolyl Ligands and Their High Performance in Isoprene 1, 4-cis Polymerization. Organometallics 2015, 34, 4251–4261. [Google Scholar] [CrossRef]
- Zhang, L.; Nishiura, M.; Yuki, M.; Luo, Y.; Hou, Z. Isoprene Polymerization with Yttrium Amidinate Catalysts: Switching the Regio--and Stereoselectivity by Addition of AlMe3. Angew. Chem. Int. Ed. 2008, 120, 2682–2685. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Cui, D.; Zhang, X. β-diketiminato rare-earth metal complexes. Structures, catalysis, and active species for highly cis-1, 4-selective polymerization of isoprene. Organometallics 2010, 29, 2186–2193. [Google Scholar] [CrossRef]
- Luconi, L.; Lyubov, D.M.; Rossin, A.; Glukhova, T.A.; Cherkasov, A.V.; Tuci, G.; Fukin, G.K.; Trifonov, A.A.; Giambastiani, G. Organolanthanide complexes supported by thiazole-containing amidopyridinate ligands: Synthesis, characterization, and catalytic activity in isoprene polymerization. Organometallics 2014, 33, 7125–7134. [Google Scholar] [CrossRef]
- Trifonov, A.A.; Lyubov, D.M. A quarter-century long story of bis (alkyl) rare-earth (III) complexes. Coordin. Chem. Rev. 2017, 340, 10–61. [Google Scholar] [CrossRef]
- Ma, R.; Hu, H.; Li, X.; Zhou, Y.; Li, H.; Sun, X.; Zhang, X.; Mao, G.; Xin, S. PNP-Ligated Rare-Earth Metal Catalysts for Efficient Polymerization of Isoprene. Catalysts 2022, 12, 1131. [Google Scholar] [CrossRef]
- Suzuki, T.; Zhang, L.; Hou, Z. Metal Complex Containing Tridentate Ligand, and Polymerization Catalyst Comprising the Same. U.S. Patent No. 7956114 B2, 7 June 2011. [Google Scholar]
- Dunkai, N.; Nakazawa, A.; Inagaki, H. A Universal Calibration in Gel Permeation Chromatography. Bull. Inst. Chem. Res. Kyoto Univ. 1970, 48, 79–87. [Google Scholar]
- Dawkins, J.V. Calibration Procedures in Gel Permeation Chromatography. Br. Polym. J. 1972, 4, 87–101. [Google Scholar] [CrossRef]
- Crouzet, P.; Martens, P.; Mangin, P. Universal Calibration in Permeation Chromatography. Application to Polyethylene, Polypropylene, and Ethylene-Propylene Copolymers. J. Chromatogr. Sci. 1971, 9, 525–530. [Google Scholar] [CrossRef]
- Arriola, D.J.; Carnahan, E.M.; Hustad, P.D.; Kuhlman, R.L.; Wenzel, T.T. Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization. Science 2006, 312, 714–719. [Google Scholar] [CrossRef]
Run | Cat | IP/RE | Pt (min) | Tp (°C) | Conversion % | Mw a (kg/mol) | PDI a | Microstructure b | Tg c (°C) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
cis-1,4% | trans-1,4% | 3,4-cont.% | |||||||||
1 | 1 | 2000 | 5 | RT | 85.1 | 290 | 1.42 | 96.4 | / | 3.6 | −60 |
2 | 2 | 2000 | 5 | RT | 62.6 | 250 | 1.49 | 96.1 | 1.3 | 2.6 | −60 |
3 | 3 | 2000 | 5 | RT | 100 | 378 | 1.57 | 96.68 | 1.35 | 1.97 | −60 |
4 d | 3 | 2000 | 5 | RT | 90.5 | 644 | 1.18 | 99.0 | / | 1.0 | −61 |
5 e | 3 | 2000 | 5 | RT | 30.6 | 632 | 1.18 | 98.6 | / | 1.4 | −60 |
6 f | 3 | 2000 | 5 | RT | 87.4 | 115 | 1.74 | 98.8 | / | 1.2 | −61 |
7 g | 3 | 2000 | 5 | RT | 25.1 | 687 | 1.19 | 98.2 | / | 1.8 | −60 |
8 | 3 | 4000 | 5 | RT | 100 | 1036 | 1.83 | 97.52 | 0.62 | 1.86 | −60 |
9 | 3 | 8000 | 5 | RT | 96.3 | 2620 | 1.64 | 98.84 | / | 1.16 | −60 |
10 | 3 | 10,000 | 5 | RT | 62.6 | 916 | 1.33 | >99 | / | / | −61 |
11 | 3 | 2000 | 60 | 0 | 100 | 244 | 1.30 | 96.95 | 1.22 | 1.83 | −60 |
12 | 3 | 2000 | 30 | 0 | 100 | 266 | 1.32 | 97.80 | / | 2.20 | −60 |
13 | 3 | 2000 | 10 | 40 | 100 | 323 | 1.23 | 96.77 | 1.29 | 1.94 | −60 |
14 | 3 | 2000 | 3 | 80 | 100 | 335 | 1.34 | 96.35 | 1.46 | 2.19 | −60 |
15 h | 3 | 2000 | 10 | 40 | 100 | 211 | 1.21 | 98.25 | 0.58 | 1.17 | −61 |
16 | 3 | 8000 | 3 | RT | 62.6 | 743 | 1.11 | 98.62 | / | 1.38 | −61 |
17 | 3 | 8000 | 3 | 40 | 75.5 | 851 | 1.14 | 99.36 | / | 0.64 | −61 |
18 | 3 | 8000 | 3 | 60 | 79.6 | 1269 | 1.16 | 98.20 | / | 1.80 | −60 |
19 | 3 | 8000 | 3 | 80 | 88.5 | 790 | 1.19 | >99 | / | / | −61 |
20 | 3 | 8000 | 30 | 0 | 34.3 | 964 | 1.21 | >99 | / | / | −61 |
21 | 3 | 8000 | 60 | 0 | 70.3 | 986 | 1.13 | >99 | / | / | −61 |
22 | 3 | 8000 | 90 | 0 | 82.1 | 1061 | 1.10 | >99 | / | / | −61 |
23 | 3 | 8000 | 120 | 0 | 88.5 | 1255 | 1.08 | >99 | / | / | −61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Ma, R.; Hu, H.; Zhou, Y.; Mao, G.; Xin, S. Novel High-Efficiency Single-Site Rare Earth (RE) Catalyst System for Isoprene Polymerization. Polymers 2025, 17, 1219. https://doi.org/10.3390/polym17091219
Kang D, Ma R, Hu H, Zhou Y, Mao G, Xin S. Novel High-Efficiency Single-Site Rare Earth (RE) Catalyst System for Isoprene Polymerization. Polymers. 2025; 17(9):1219. https://doi.org/10.3390/polym17091219
Chicago/Turabian StyleKang, Di, Rongqing Ma, Hongfan Hu, Yi Zhou, Guoliang Mao, and Shixuan Xin. 2025. "Novel High-Efficiency Single-Site Rare Earth (RE) Catalyst System for Isoprene Polymerization" Polymers 17, no. 9: 1219. https://doi.org/10.3390/polym17091219
APA StyleKang, D., Ma, R., Hu, H., Zhou, Y., Mao, G., & Xin, S. (2025). Novel High-Efficiency Single-Site Rare Earth (RE) Catalyst System for Isoprene Polymerization. Polymers, 17(9), 1219. https://doi.org/10.3390/polym17091219