Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kissin, Y.V. Isospecific Polymerization of Olefins; Springer: New York, NY, USA, 1985. [Google Scholar]
- Busico, V. Giulio Natta and the Development of Stereoselective Propene Polymerization. In Polyolefins: 50 Years After Ziegler and Natta I; Advances in Polymer Science; Kaminsky, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 257. [Google Scholar]
- Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143–1170. [Google Scholar] [CrossRef]
- Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Selectivity in Propene Polymerization with Metallocene Catalysts. Chem. Rev. 2000, 100, 1253–1346. [Google Scholar] [CrossRef] [PubMed]
- Busico, V.; Cipullo, R. Microstructure of Polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar] [CrossRef]
- Cipullo, R.; Mellino, S.; Busico, V. Identification and Count of the Active Sites in Olefin Polymerization Catalysis by Oxygen Quench. Macromol. Chem. Phys. 2014, 215, 1728–1734. [Google Scholar] [CrossRef]
- Yu, Y.; Cipullo, R.; Boisson, C. Alkynyl Ether Labeling: A Selective and Efficient Approach to Count Active Sites of Olefin Polymerization Catalysts. ACS Catal. 2019, 9, 3098–3103. [Google Scholar] [CrossRef]
- Yu, Y.; Busico, V.; Budzelaar, P.H.M.; Vittoria, A.; Cipullo, R. Of Poisons and Antidotes in Polypropylene Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8590–8594. [Google Scholar] [CrossRef]
- Chammingkwan, P.; Thang, V.Q.; Terano, M.; Taniike, T. MgO/MgCl2/TiCl4 Core-Shell Catalyst for Establishing Structure-Performance Relationship in Ziegler-Natta Olefin Polymerization. Top. Catal. 2014, 57, 911–917. [Google Scholar] [CrossRef]
- Nelsen, D.L.; Anding, B.J.; Sawicki, J.L.; Christianson, M.D.; Arriola, D.J.; Landis, C.R. Chromophore Quench-Labeling: An Approach to Quantifying Catalyst Speciation As Demonstrated for (EBI)ZrMe2/B(C6F5)3-Catalyzed Polymerization of 1-Hexene. ACS Catal. 2016, 6, 7398–7408. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Anding, B.J.; Landis, C.R. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods. J. Am. Chem. Soc. 2017, 139, 11903–11912. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Landis, C.R. Selective Quench-Labeling of the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene in the Presence of Trialkyl-Aluminum Chain-Transfer Reagents. ACS Catal. 2018, 8, 11605–11614. [Google Scholar] [CrossRef]
- Cueny, E.S.; Nieszala, M.R.; Froese, R.D.J.; Landis, C.R. Nature of the Active Catalyst in the Hafnium-Pyridyl Amido-Catalyzed Alkene Polymerization. ACS Catal. 2021, 11, 4301–4309. [Google Scholar] [CrossRef]
- Cueny, E.S.; Sita, L.R.; Landis, C.R. Quantitative Validation of the Living Coordinative Chain-Transfer Polymerization of 1-Hexene Using Chromophore Quench Labeling. Macromolecules 2020, 53, 5816–5825. [Google Scholar] [CrossRef]
- Cueny, E.S.; Landis, C.R. The Hafnium-Pyridyl Amido-Catalyzed Copolymerization of Ethene and 1-Octene: How Small Amounts of Ethene Impact Catalysis. ACS Catal. 2019, 9, 3338–3348. [Google Scholar] [CrossRef]
- Natta, G. Kinetic Studies of Alpha-Olefin Polymerization. J. Polym. Sci. 1959, 34, 21–48. [Google Scholar] [CrossRef]
- Natta, G.; Pasquon, I. The Kinetics of the Stereospecific Polymerization of α-Olefins. Adv. Catal. 1959, 11, 1–66. [Google Scholar]
- Shiono, T.; Ohgizawa, M.; Soga, K. Reaction between Carbon Monoxide and a Ti-Polyethylene Bond with a MgCl2-Supported TiCl4 Catalyst System. Die Makromol. Chem. 1993, 194, 2075–2085. [Google Scholar] [CrossRef]
- Feldman, C.F.; Perry, E. Active Centers in the Polymerization of Ethylene Using Titanium Tetrachloride–Alkylaluminum Catalysts. J. Polym. Sci. 1960, 46, 217–231. [Google Scholar] [CrossRef]
- Yaluma, A.K.; Tait, P.J.T.; Chadwick, J.C. Active Center Determinations on MgCl2-Supported Fourth- and Fifth-Generation Ziegler–Natta Catalysts for Propylene Polymerization. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1635–1647. [Google Scholar] [CrossRef]
- Mejzlík, J.; Lesná, M.; Kratochvíla, J. Determination of the Number of Active Centers in Ziegler-Natta Polymerizations of Olefins. In Catalytical and Radical Polymerization; Springer: Berlin/Heidelberg, Germany, 1986; pp. 83–120. [Google Scholar]
- Budzelaar, P.H.M. CO/Ethene Copolymerization at Zirconocene Centers? Organometallics 2004, 23, 855–860. [Google Scholar] [CrossRef]
- Eisch, J.J.; Piotrowski, A.M.; Brownstein, S.K.; Gabe, E.J.; Lee, F.L. Organometallic Compounds of Group III. Part 41. Direct Observation of the Initial Insertion of an Unsaturated Hydrocarbon into the Titanium-Carbon Bond of the Soluble Ziegler Polymerization Catalyst Cp2TiCl2-MeAlCl2. J. Am. Chem. Soc. 1985, 107, 7219–7221. [Google Scholar] [CrossRef]
- Clarke, T.C.; Yannoni, C.S.; Katz, T.J. Mechanism of Ziegler-Natta Polymerization of Acetylene: A Nutation NMR Study. J. Am. Chem. Soc. 1983, 105, 7787–7789. [Google Scholar] [CrossRef]
- Keii, T.; Terano, M.; Kimura, K.; Ishii, K. A Kinetic Argument for a Quasi-Living Polymerization of Propene with a Magnesium Chloride-Supported Catalyst. Makromol. Chem. Rapid Commun. 1987, 8, 583–587. [Google Scholar] [CrossRef]
- Taniike, T.; Sano, S.; Ikeya, M.; Thang, V.Q.; Terano, M. Development of a Large-Scale Stopped-Flow System for Heterogeneous Olefin Polymerization Kinetics. Macromol. React. Eng. 2012, 6, 275–279. [Google Scholar] [CrossRef]
- Terano, M.; Kataoka, T. A Kinetic Study of Propene Polymerization Using MgCl2-supported Catalysts. Die Makromol. Chem. Rapid Commun. 1989, 10, 97–102. [Google Scholar] [CrossRef]
- Mori, H.; Iguchi, H.; Hasebe, K.; Terano, M. Kinetic Study of Isospecific Active Sites Formed by Various Alkylaluminiums on MgCl2-Supported Ziegler Catalyst at the Initial Stage of Propene Polymerization. Macromol. Chem. Phys. 1997, 198, 1249–1255. [Google Scholar] [CrossRef]
- Matsuoka, H.; Liu, B.; Nakatani, H.; Terano, M. Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2-Supported Ziegler Catalysts: Effect of External Electron Donors. Macromol. Rapid Commun. 2001, 22, 326–328. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, L.; Zang, D.; Fu, Z.; Fan, Z. Effects of Alkylaluminum as Cocatalyst on the Active Center Distribution of 1-Hexene Polymerization with MgCl2-Supported Ziegler–Natta Catalysts. Catal. Commun. 2015, 62, 104–106. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.G.; Luo, Q.L. Synthesis of Isonitriles from N-Substituted Formamides Using Triphenylphosphine and Iodine. Synthesis 2015, 47, 49–54. [Google Scholar]
- Wanzlick, H.W.; Lehmann-Horchler, M.; Mohrmann, S.; Gritzky, R.; Heidepriem, H.; Pankow, B. New Methods of Preparative Organic Chemistry IV. Angew. Chem. Int. Ed. Engl. 1964, 3, 401–408. [Google Scholar] [CrossRef]
- Zaccaria, F.; Vittoria, A.; Correa, A.; Ehm, C.; Budzelaar, P.H.M.; Busico, V.; Cipullo, R. Internal Donors in Ziegler-Natta Systems: Is Reduction by AlR3 a Requirement for Donor Clean-Up? ChemCatChem 2018, 10, 984–988. [Google Scholar] [CrossRef]
- Vittoria, A.; Antinucci, G.; Zaccaria, F.; Cipullo, R.; Busico, V. Monitoring the Kinetics of Internal Donor Clean-up from Ziegler–Natta Catalytic Surfaces: An Integrated Experimental and Computational Study. J. Phys. Chem. C 2020, 124, 14245–14252. [Google Scholar] [CrossRef]
- Vittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Demystifying Ziegler–Natta Catalysts: The Origin of Stereoselectivity. ACS Catal. 2017, 7, 4509–4518. [Google Scholar] [CrossRef]
- Antinucci, G.; Vittoria, A.; Cipullo, R.; Busico, V. Regioirregular Monomeric Units in Ziegler–Natta Polypropylene: A Sensitive Probe of the Catalytic Sites. Macromolecules 2020, 53, 3789–3795. [Google Scholar] [CrossRef]
- Ystenes, M. The Trigger Mechanism for Polymerization of α-Olefins with Ziegler-Natta Catalysts: A New Model Based on Interaction of Two Monomers at the Transition State and Monomer Activation of the Catalytic Centers. J. Catal. 1991, 129, 383–401. [Google Scholar] [CrossRef]
- Antinucci, G.; Cannavacciuolo, F.D.; Ehm, C.; Budzelaar, P.H.M.; Cipullo, R.; Busico, V. MgCl2-Supported Ziegler-Natta Catalysts for Propene Polymerization: Before Activation. Macromolecules 2024, 57, 5712–5719. [Google Scholar]
- Antinucci, G.; Cipullo, R.; Busico, V. Imagine Polypropylene. Nat. Catal. 2023, 6, 456–457. [Google Scholar] [CrossRef]
- Morra, E.; Giamello, E.; Van Doorslaer, S.; Antinucci, G.; D’Amore, M.; Busico, V.; Chiesa, M. Probing the Coordinative Unsaturation and Local Environment of Ti3+ Sites in an Activated High-Yield Ziegler–Natta Catalyst. Angew. Chem. Int. Ed. 2015, 54, 4857–4860. [Google Scholar] [CrossRef]
- Monrabal, B.; Romero, L.; Mayo, N.; Sancho-Tello, J. Advances in Crystallization Elution Fractionation. Macromol. Symp. 2009, 282, 14–24. [Google Scholar] [CrossRef]
- Antinucci, G.; Pucciarelli, A.; Vittoria, A.; Zaccaria, F.; Urciuoli, G.; Ehm, C.; Cannavacciuolo, F.D.; Cipullo, R.; Busico, V. Fast Analytics of High-Impact Polypropylene (HIPP). ACS Appl. Polym. Mater. 2023, 5, 3894–3897. [Google Scholar]
- Vittoria, A.; Urciuoli, G.; Costanzo, S.; Tammaro, D.; Cannavacciuolo, F.D.; Pasquino, R.; Cipullo, R.; Auriemma, F.; Grizzuti, N.; Maffettone, P.L.; et al. Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules 2022, 55, 5017–5026. [Google Scholar] [CrossRef]
Entry # | t (s) | Y (mg) | Mn (kDa) | Mw (kDa) | PDI | x* (%) |
---|---|---|---|---|---|---|
1 | 5 | 9 | 84 | 480 | 5.7 | 0.40 |
2 | 10 | 13 | 73 | 411 | 5.6 | 0.68 |
3 | 20 | 22 | 81 | 469 | 5.8 | 0.36 |
4 | 30 | 28 | 68 | 419 | 6.2 | 0.42 |
5 | 45 | 29 | 70 | 390 | 5.6 | 0.48 |
6 | 60 | 37 | 67 | 384 | 5.7 | 0.52 |
7 | 90 | 42 | 49 | 341 | 7.0 | 0.55 |
8 | 120 | 46 | 47 | 346 | 7.4 | 0.52 |
9 | 300 | 56 | 38 | 265 | 7.0 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vittoria, A.; Antinucci, G.; Cipullo, R.; Busico, V. Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts. Polymers 2025, 17, 1211. https://doi.org/10.3390/polym17091211
Vittoria A, Antinucci G, Cipullo R, Busico V. Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts. Polymers. 2025; 17(9):1211. https://doi.org/10.3390/polym17091211
Chicago/Turabian StyleVittoria, Antonio, Giuseppe Antinucci, Roberta Cipullo, and Vincenzo Busico. 2025. "Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts" Polymers 17, no. 9: 1211. https://doi.org/10.3390/polym17091211
APA StyleVittoria, A., Antinucci, G., Cipullo, R., & Busico, V. (2025). Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts. Polymers, 17(9), 1211. https://doi.org/10.3390/polym17091211