Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kissin, Y.V. Isospecific Polymerization of Olefins; Springer: New York, NY, USA, 1985. [Google Scholar]
- Busico, V. Giulio Natta and the Development of Stereoselective Propene Polymerization. In Polyolefins: 50 Years After Ziegler and Natta I; Advances in Polymer Science; Kaminsky, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 257. [Google Scholar]
- Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143–1170. [Google Scholar] [CrossRef]
- Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Selectivity in Propene Polymerization with Metallocene Catalysts. Chem. Rev. 2000, 100, 1253–1346. [Google Scholar] [CrossRef] [PubMed]
- Busico, V.; Cipullo, R. Microstructure of Polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar] [CrossRef]
- Cipullo, R.; Mellino, S.; Busico, V. Identification and Count of the Active Sites in Olefin Polymerization Catalysis by Oxygen Quench. Macromol. Chem. Phys. 2014, 215, 1728–1734. [Google Scholar] [CrossRef]
- Yu, Y.; Cipullo, R.; Boisson, C. Alkynyl Ether Labeling: A Selective and Efficient Approach to Count Active Sites of Olefin Polymerization Catalysts. ACS Catal. 2019, 9, 3098–3103. [Google Scholar] [CrossRef]
- Yu, Y.; Busico, V.; Budzelaar, P.H.M.; Vittoria, A.; Cipullo, R. Of Poisons and Antidotes in Polypropylene Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8590–8594. [Google Scholar] [CrossRef]
- Chammingkwan, P.; Thang, V.Q.; Terano, M.; Taniike, T. MgO/MgCl2/TiCl4 Core-Shell Catalyst for Establishing Structure-Performance Relationship in Ziegler-Natta Olefin Polymerization. Top. Catal. 2014, 57, 911–917. [Google Scholar] [CrossRef]
- Nelsen, D.L.; Anding, B.J.; Sawicki, J.L.; Christianson, M.D.; Arriola, D.J.; Landis, C.R. Chromophore Quench-Labeling: An Approach to Quantifying Catalyst Speciation As Demonstrated for (EBI)ZrMe2/B(C6F5)3-Catalyzed Polymerization of 1-Hexene. ACS Catal. 2016, 6, 7398–7408. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Anding, B.J.; Landis, C.R. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods. J. Am. Chem. Soc. 2017, 139, 11903–11912. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Landis, C.R. Selective Quench-Labeling of the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene in the Presence of Trialkyl-Aluminum Chain-Transfer Reagents. ACS Catal. 2018, 8, 11605–11614. [Google Scholar] [CrossRef]
- Cueny, E.S.; Nieszala, M.R.; Froese, R.D.J.; Landis, C.R. Nature of the Active Catalyst in the Hafnium-Pyridyl Amido-Catalyzed Alkene Polymerization. ACS Catal. 2021, 11, 4301–4309. [Google Scholar] [CrossRef]
- Cueny, E.S.; Sita, L.R.; Landis, C.R. Quantitative Validation of the Living Coordinative Chain-Transfer Polymerization of 1-Hexene Using Chromophore Quench Labeling. Macromolecules 2020, 53, 5816–5825. [Google Scholar] [CrossRef]
- Cueny, E.S.; Landis, C.R. The Hafnium-Pyridyl Amido-Catalyzed Copolymerization of Ethene and 1-Octene: How Small Amounts of Ethene Impact Catalysis. ACS Catal. 2019, 9, 3338–3348. [Google Scholar] [CrossRef]
- Natta, G. Kinetic Studies of Alpha-Olefin Polymerization. J. Polym. Sci. 1959, 34, 21–48. [Google Scholar] [CrossRef]
- Natta, G.; Pasquon, I. The Kinetics of the Stereospecific Polymerization of α-Olefins. Adv. Catal. 1959, 11, 1–66. [Google Scholar]
- Shiono, T.; Ohgizawa, M.; Soga, K. Reaction between Carbon Monoxide and a Ti-Polyethylene Bond with a MgCl2-Supported TiCl4 Catalyst System. Die Makromol. Chem. 1993, 194, 2075–2085. [Google Scholar] [CrossRef]
- Feldman, C.F.; Perry, E. Active Centers in the Polymerization of Ethylene Using Titanium Tetrachloride–Alkylaluminum Catalysts. J. Polym. Sci. 1960, 46, 217–231. [Google Scholar] [CrossRef]
- Yaluma, A.K.; Tait, P.J.T.; Chadwick, J.C. Active Center Determinations on MgCl2-Supported Fourth- and Fifth-Generation Ziegler–Natta Catalysts for Propylene Polymerization. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1635–1647. [Google Scholar] [CrossRef]
- Mejzlík, J.; Lesná, M.; Kratochvíla, J. Determination of the Number of Active Centers in Ziegler-Natta Polymerizations of Olefins. In Catalytical and Radical Polymerization; Springer: Berlin/Heidelberg, Germany, 1986; pp. 83–120. [Google Scholar]
- Budzelaar, P.H.M. CO/Ethene Copolymerization at Zirconocene Centers? Organometallics 2004, 23, 855–860. [Google Scholar] [CrossRef]
- Eisch, J.J.; Piotrowski, A.M.; Brownstein, S.K.; Gabe, E.J.; Lee, F.L. Organometallic Compounds of Group III. Part 41. Direct Observation of the Initial Insertion of an Unsaturated Hydrocarbon into the Titanium-Carbon Bond of the Soluble Ziegler Polymerization Catalyst Cp2TiCl2-MeAlCl2. J. Am. Chem. Soc. 1985, 107, 7219–7221. [Google Scholar] [CrossRef]
- Clarke, T.C.; Yannoni, C.S.; Katz, T.J. Mechanism of Ziegler-Natta Polymerization of Acetylene: A Nutation NMR Study. J. Am. Chem. Soc. 1983, 105, 7787–7789. [Google Scholar] [CrossRef]
- Keii, T.; Terano, M.; Kimura, K.; Ishii, K. A Kinetic Argument for a Quasi-Living Polymerization of Propene with a Magnesium Chloride-Supported Catalyst. Makromol. Chem. Rapid Commun. 1987, 8, 583–587. [Google Scholar] [CrossRef]
- Taniike, T.; Sano, S.; Ikeya, M.; Thang, V.Q.; Terano, M. Development of a Large-Scale Stopped-Flow System for Heterogeneous Olefin Polymerization Kinetics. Macromol. React. Eng. 2012, 6, 275–279. [Google Scholar] [CrossRef]
- Terano, M.; Kataoka, T. A Kinetic Study of Propene Polymerization Using MgCl2-supported Catalysts. Die Makromol. Chem. Rapid Commun. 1989, 10, 97–102. [Google Scholar] [CrossRef]
- Mori, H.; Iguchi, H.; Hasebe, K.; Terano, M. Kinetic Study of Isospecific Active Sites Formed by Various Alkylaluminiums on MgCl2-Supported Ziegler Catalyst at the Initial Stage of Propene Polymerization. Macromol. Chem. Phys. 1997, 198, 1249–1255. [Google Scholar] [CrossRef]
- Matsuoka, H.; Liu, B.; Nakatani, H.; Terano, M. Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2-Supported Ziegler Catalysts: Effect of External Electron Donors. Macromol. Rapid Commun. 2001, 22, 326–328. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, L.; Zang, D.; Fu, Z.; Fan, Z. Effects of Alkylaluminum as Cocatalyst on the Active Center Distribution of 1-Hexene Polymerization with MgCl2-Supported Ziegler–Natta Catalysts. Catal. Commun. 2015, 62, 104–106. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.G.; Luo, Q.L. Synthesis of Isonitriles from N-Substituted Formamides Using Triphenylphosphine and Iodine. Synthesis 2015, 47, 49–54. [Google Scholar]
- Wanzlick, H.W.; Lehmann-Horchler, M.; Mohrmann, S.; Gritzky, R.; Heidepriem, H.; Pankow, B. New Methods of Preparative Organic Chemistry IV. Angew. Chem. Int. Ed. Engl. 1964, 3, 401–408. [Google Scholar] [CrossRef]
- Zaccaria, F.; Vittoria, A.; Correa, A.; Ehm, C.; Budzelaar, P.H.M.; Busico, V.; Cipullo, R. Internal Donors in Ziegler-Natta Systems: Is Reduction by AlR3 a Requirement for Donor Clean-Up? ChemCatChem 2018, 10, 984–988. [Google Scholar] [CrossRef]
- Vittoria, A.; Antinucci, G.; Zaccaria, F.; Cipullo, R.; Busico, V. Monitoring the Kinetics of Internal Donor Clean-up from Ziegler–Natta Catalytic Surfaces: An Integrated Experimental and Computational Study. J. Phys. Chem. C 2020, 124, 14245–14252. [Google Scholar] [CrossRef]
- Vittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Demystifying Ziegler–Natta Catalysts: The Origin of Stereoselectivity. ACS Catal. 2017, 7, 4509–4518. [Google Scholar] [CrossRef]
- Antinucci, G.; Vittoria, A.; Cipullo, R.; Busico, V. Regioirregular Monomeric Units in Ziegler–Natta Polypropylene: A Sensitive Probe of the Catalytic Sites. Macromolecules 2020, 53, 3789–3795. [Google Scholar] [CrossRef]
- Ystenes, M. The Trigger Mechanism for Polymerization of α-Olefins with Ziegler-Natta Catalysts: A New Model Based on Interaction of Two Monomers at the Transition State and Monomer Activation of the Catalytic Centers. J. Catal. 1991, 129, 383–401. [Google Scholar] [CrossRef]
- Antinucci, G.; Cannavacciuolo, F.D.; Ehm, C.; Budzelaar, P.H.M.; Cipullo, R.; Busico, V. MgCl2-Supported Ziegler-Natta Catalysts for Propene Polymerization: Before Activation. Macromolecules 2024, 57, 5712–5719. [Google Scholar]
- Antinucci, G.; Cipullo, R.; Busico, V. Imagine Polypropylene. Nat. Catal. 2023, 6, 456–457. [Google Scholar] [CrossRef]
- Morra, E.; Giamello, E.; Van Doorslaer, S.; Antinucci, G.; D’Amore, M.; Busico, V.; Chiesa, M. Probing the Coordinative Unsaturation and Local Environment of Ti3+ Sites in an Activated High-Yield Ziegler–Natta Catalyst. Angew. Chem. Int. Ed. 2015, 54, 4857–4860. [Google Scholar] [CrossRef]
- Monrabal, B.; Romero, L.; Mayo, N.; Sancho-Tello, J. Advances in Crystallization Elution Fractionation. Macromol. Symp. 2009, 282, 14–24. [Google Scholar] [CrossRef]
- Antinucci, G.; Pucciarelli, A.; Vittoria, A.; Zaccaria, F.; Urciuoli, G.; Ehm, C.; Cannavacciuolo, F.D.; Cipullo, R.; Busico, V. Fast Analytics of High-Impact Polypropylene (HIPP). ACS Appl. Polym. Mater. 2023, 5, 3894–3897. [Google Scholar]
- Vittoria, A.; Urciuoli, G.; Costanzo, S.; Tammaro, D.; Cannavacciuolo, F.D.; Pasquino, R.; Cipullo, R.; Auriemma, F.; Grizzuti, N.; Maffettone, P.L.; et al. Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules 2022, 55, 5017–5026. [Google Scholar] [CrossRef]
Entry # | t (s) | Y (mg) | Mn (kDa) | Mw (kDa) | PDI | x* (%) |
---|---|---|---|---|---|---|
1 | 5 | 9 | 84 | 480 | 5.7 | 0.40 |
2 | 10 | 13 | 73 | 411 | 5.6 | 0.68 |
3 | 20 | 22 | 81 | 469 | 5.8 | 0.36 |
4 | 30 | 28 | 68 | 419 | 6.2 | 0.42 |
5 | 45 | 29 | 70 | 390 | 5.6 | 0.48 |
6 | 60 | 37 | 67 | 384 | 5.7 | 0.52 |
7 | 90 | 42 | 49 | 341 | 7.0 | 0.55 |
8 | 120 | 46 | 47 | 346 | 7.4 | 0.52 |
9 | 300 | 56 | 38 | 265 | 7.0 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vittoria, A.; Antinucci, G.; Cipullo, R.; Busico, V. Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts. Polymers 2025, 17, 1211. https://doi.org/10.3390/polym17091211
Vittoria A, Antinucci G, Cipullo R, Busico V. Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts. Polymers. 2025; 17(9):1211. https://doi.org/10.3390/polym17091211
Chicago/Turabian StyleVittoria, Antonio, Giuseppe Antinucci, Roberta Cipullo, and Vincenzo Busico. 2025. "Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts" Polymers 17, no. 9: 1211. https://doi.org/10.3390/polym17091211
APA StyleVittoria, A., Antinucci, G., Cipullo, R., & Busico, V. (2025). Chromophore Quench-Labeling for Active Sites Counting in Ti-Based Ziegler–Natta Catalysts. Polymers, 17(9), 1211. https://doi.org/10.3390/polym17091211