Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Crosslinking of Sago Starch
2.4. Carboxymethyl Substitution of Sago Starch
2.5. Amylose Content
2.6. Degree of Substitution of SSG Sago
2.7. NaCl Measurement of SSG Sago
2.8. Fourier Transform Infrared Spectroscopy (FTIR)
2.9. Scanning Electron Microscopy Analysis
2.10. Differential Scanning Calorimetry Analysis (DSC)
2.11. Pasting Properties
2.12. Water Solubility and Swelling Power
2.13. X-Ray Diffraction Analysis—Crystallinity
2.14. Mefenamic Acid Tablet Formulation
2.15. Evaluation of Tablets
2.16. Statistical Analysis
3. Results
3.1. Statistical and Model Fitting of SSG Derived from Sago Starch
3.2. Analysis of Variance (ANOVA)
3.3. Model Adequacy Evaluation
3.4. Effects of Three Parametric Processes on DS
3.4.1. Effect of Reaction Temperature
3.4.2. Effect of SMCA/Starch Ratio
3.4.3. Effect of Reaction Time
3.5. Model Optimization and Validation of Response Surface Methodology for Degree of Substitution
4. Discussion
4.1. Functional Characterization of Sago Starch Glycolate
4.1.1. Amylose Content, DS, and NaCl Measurement
4.1.2. Swelling Capacity and Solubility Characteristics
4.1.3. Differential Scanning Calorimetry (DSC)
4.1.4. FT-IR Spectrometer Analysis
4.1.5. Pasting Properties
4.1.6. Surface Morphology Analysis via SEM
4.1.7. X-Ray Diffraction Analysis—Crystallinity
4.1.8. Test Results for Mefenamic Acid FDT Physical Characteristics
Organoleptic Test Results
Weight Uniformity Test Results
Tablet Hardness Test Results
Tablet Friability Test Results
Disintegration Time Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Ngilirabanga, J.B.; Samsodien, H. Pharmaceutical co-crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Sel. 2021, 2, 512–526. [Google Scholar] [CrossRef]
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef]
- Putra, O.N.; Musfiroh, I.; Elisa, S.; Musa, M.; Ikram, E.H.K.; Chaidir, C.; Muchtaridi, M. Sodium Starch Glycolate (SSG) from Sago Starch (Metroxylon sago) as a Superdisintegrant: Synthesis and Characterization. Molecules 2024, 29, 151. [Google Scholar] [CrossRef]
- Paramitasari, D.; Musa, M.; Putra, O.N.; Suparman, S.; Pramana, Y.S.; Elisa, S.; Hidayat, T.; Tjahjono, A.E.; Meidiawati, D.P.; Pudjianto, K.; et al. Hydroxypropylation for functional enhancement of sago starch: The effects of low propylene oxide concentration using response surface methodology. J. Agric. Food Res. 2024, 15, 100933. [Google Scholar] [CrossRef]
- Singhal, R.S.; Kennedy, J.F.; Gopalakrishnan, S.M.; Kaczmarek, A.; Knill, C.J.; Akmar, P.F. Industrial production, processing, and utilization of sago palm-derived products. Carbohydr. Polym. 2008, 72, 1–20. [Google Scholar] [CrossRef]
- Azami, Y.I.N.; Musfiroh, I.; Muchtaridi; Pratiwi, R.; Putra, O.N. Isolation of Cellulose From Siwalan Fiber (Borassus flabellifer L.) Using Response Surface Methodology. Int. J. Appl. Pharm. 2023, 15, 48–51. [Google Scholar] [CrossRef]
- Mathew, S.R.; Yadav, B.S.; Yadav, R.B.; Attri, S. Pasting and rheological properties of α- amylase treated proso millet starch as affected by hydroxypropylation and cross-linking in its granular and gelatinized state. Food Chem. Adv. 2023, 3, 100420. [Google Scholar] [CrossRef]
- Lawal, O.S.; Storz, J.; Storz, H.; Lohmann, D.; Lechner, D.; Kulicke, W.M. Hydrogels based on carboxymethyl cassava starch cross-linked with di- or polyfunctional carboxylic acids: Synthesis, water absorbent behavior and rheological characterizations. Eur. Polym. J. 2009, 45, 3399–3408. [Google Scholar] [CrossRef]
- Achor, M.; Oyeniyi, J.Y.; Gwarzo, M.S.; Zayyanu, A. Evaluation of Sodium Carboxymethyl Starch obtained from Ipomoea Batatas. J. Appl. Pharm. Sci. 2015, 5, 132–135. [Google Scholar] [CrossRef]
- Bolhuis, G.K.; Van Kamp, H.V.; Lerk, C.F. On the similarity of sodium starch glycolate from different sources. Drug Dev. Ind. Pharm. 1986, 12, 621–630. [Google Scholar] [CrossRef]
- Bhandari, P.N.; Hanna, M.A. Continuous solventless extrusion process for producing sodium carboxymethyl starch suitable for disintegrant applications in solid dosage forms. Ind. Eng. Chem. Res. 2011, 50, 12784–12789. [Google Scholar] [CrossRef]
- Ariyantoro, A.R.; Katsuno, N.; Nishizu, T. Effects of dual modification with succinylation and annealing on physicochemical, thermal and morphological properties of corn starch. Foods 2018, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Fouladi, E.; Mohammadi Nafchi, A. Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch. Int. J. Biol. Macromol. 2014, 68, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.I.M.; Abdulmalek, E.; Zainuddin, N. Preparation and optimization of water-soluble cationic sago starch with a high degree of substitution using response surface methodology. Polymers 2020, 12, 2614. [Google Scholar] [CrossRef]
- Belhachat, D.; Mekimene, L.; Belhachat, M.; Ferradji, A.; Aid, F. Application of response surface methodology to optimize the extraction of essential oil from ripe berries of Pistacia lentiscus using ultrasonic pretreatment. J. Appl. Res. Med. Aromat. Plants 2018, 9, 132–140. [Google Scholar] [CrossRef]
- Hiremath, P.; Nuguru, K.; Agrahari, V. Material Attributes and Their Impact on Wet Granulation Process Performance; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 263–315. [Google Scholar]
- Zarmpi, P.; Flanagan, T.; Meehan, E.; Mann, J.; Fotaki, N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur. J. Pharm. Biopharm. 2017, 111, 1–15. [Google Scholar] [CrossRef]
- Wells, A. Introduction to General, Organic and Biochemistry; Cengage Learning: Belmont, CA, USA, 2024. [Google Scholar]
- Pramana, Y.S.; Sunarti, T.C.; Purwoko. Process optimization for dietary fiber production from cassava pulp using acid treatment. Acta Univ. Cibiniensis Ser. E Food Technol. 2018, 22, 21–32. [Google Scholar] [CrossRef]
- Hebeish, A.; Khalil, M.I. Chemical Factors Affecting Preparation of Carboxymethyl Starch; Wiley: Hoboken, NJ, USA, 1988. [Google Scholar]
- Bhattacharyya, D.; Singhal, R.S.; Kulkarni, P.R. A Comparative Account of Conditions for Synthesis of Sodium Carboxymethyl Starch from Corn and Amaranth Starch. Carbohydr. Polym. 1995, 27, 247–253. [Google Scholar] [CrossRef]
- Nordin, N.A.; Rahman, N.A.; Talip, N.; Yacob, N. Citric Acid Cross-Linking of Carboxymethyl Sago Starch Based Hydrogel for Controlled Release Application. Macromol. Symp. 2018, 382, 1800086. [Google Scholar] [CrossRef]
- Srichuwong, S.; Sunarti, T.C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr. Polym. 2005, 60, 529–538. [Google Scholar] [CrossRef]
- Sumardiono, S.; Rakhmawati, R.B.; Pudjihastuti, I. Physicochemical and Rheological Properties of Sago (MetroxylonSagu) Starch Modified with Lactic Acid Hydrolysis and UV Rotary Drying. ASEAN J. Chem. Eng. 2018, 18, 41–53. [Google Scholar]
- Yaacob, B.; Amin, M.C.I.M.; Hashim, K.; Bakar, B.A. Optimization of reaction conditions for carboxymethylated sago starch. Iran. Polym. J. (Engl. Ed.) 2011, 20, 195–204. [Google Scholar]
- Ahmad, F.B.; Williams, P.A.; Doublier, J.-L.; Durand, S.; Buleon, A. Physico-chemical characterisation of sago starch. Carbohydr. Polym. 1999, 38, 361–370. [Google Scholar] [CrossRef]
- Du, C.; Jiang, F.; Jiang, W.; Ge, W.; Du, S.k. Physicochemical and structural properties of sago starch. Int. J. Biol. Macromol. 2020, 164, 1785–1793. [Google Scholar] [CrossRef]
- Fang, J.M.; Fowler, P.A.; Tomkinson, J.; Hill, C.A.S. The preparation and characterisation of a series of chemically modified potato starches. Carbohydr. Polym. 2002, 47, 245–252. [Google Scholar] [CrossRef]
- Pramana, Y.S.; Pudjianto, K.; Supriyanti, A.; Elisa, S.; Paramitasari, D.; Kusarpoko, M.B.; Yunira, E.N.; Sabirin, S.; Tjahjono, A.E.; Meidiawati, D.P.; et al. Functional properties and optimization of dietary fiber concentrate from sago hampas using response surface methodology. J. Agric. Food Res. 2024, 15, 100963. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, D. Characteristics of the aqueous solution of carboxymethyl starch ether. J. Appl. Polym. Sci. 1992, 46, 369–374. [Google Scholar] [CrossRef]
- Sheskey, P.J.; Cook, W.G.; Cable, C.G. Handbook of Pharmaceutical Excipients, 8th ed.; Pharmaceutical Press and American Pharmacists Association: London, UK, 2017; pp. 468–472. [Google Scholar]
- Putra, O.N.; Auli, W.N.; Musa, M.; Paramitasari, D.; Mawarni, G.K. The effect of partially pregelatinized cassava starch as disintegrant for paracetamol tablet. Pharmaciana 2022, 12, 335. [Google Scholar] [CrossRef]
Source | Standard Deviation | Lack-of-Fit | R2 | Adjusted R2 | Predicted R2 | PRESS | p-Value | Remarks |
---|---|---|---|---|---|---|---|---|
Linear | 0.0335 | 0.0037 | 0.7872 | 0.7473 | 0.6159 | 0.0324 | <0.0001 | |
2Fl | 0.0329 | 0.0034 | 0.8334 | 0.7565 | 0.6570 | 0.0289 | 0.3476 | |
Quadratic | 0.0127 | 0.2140 | 0.9809 | 0.9637 | 0.8864 | 0.0096 | <0.0001 | Suggested |
Cubic | 0.0095 | 0.6004 | 0.9935 | 0.9794 | 0.9071 | 0.0078 | 0.1172 | Aliased |
Run | A | B | C | Response (R) of DS | |
---|---|---|---|---|---|
Reaction Temperature (°C) | SMCA Ratio | Reaction Time (min) | Experimented | Predicted | |
1 | 45 | 0.75 | 120 | 0.122 ± 0.001 | 0.1215 |
2 | 55 | 0.75 | 120 | 0.211 ± 0.001 | 0.1896 |
3 | 45 | 1.5 | 120 | 0.141 ± 0.001 | 0.1348 |
4 | 55 | 1.5 | 120 | 0.267 ± 0.002 | 0.2661 |
5 | 45 | 0.75 | 240 | 0.133 ± 0.001 | 0.1245 |
6 | 55 | 0.75 | 240 | 0.215 ± 0.002 | 0.2106 |
7 | 45 | 1.5 | 240 | 0.185 ± 0.001 | 0.1966 |
8 | 55 | 1.5 | 240 | 0.356 ± 0.001 | 0.3460 |
9 | 41.59 | 1.125 | 180 | 0.057 ± 0.001 | 0.0471 |
10 | 58.41 | 1.125 | 180 | 0.224 ± 0.001 | 0.2299 |
11 | 50 | 0.494328 | 180 | 0.142 ± 0.001 | 0.1485 |
12 | 50 | 1.75567 | 180 | 0.284 ± 0.001 | 0.2735 |
13 | 50 | 1.125 | 79.09 | 0.205 ± 0.001 | 0.2127 |
14 | 50 | 1.125 | 280.91 | 0.294 ± 0.001 | 0.2824 |
15 | 50 | 1.125 | 180 | 0.195 ± 0.001 | 0.2038 |
16 | 50 | 1.125 | 180 | 0.210 ± 0.001 | 0.2038 |
17 | 50 | 1.125 | 180 | 0.206 ± 0.001 | 0.2038 |
18 | 50 | 1.125 | 180 | 0.201 ± 0.001 | 0.2038 |
19 | 50 | 1.125 | 180 | 0.209 ± 0.001 | 0.2038 |
20 | 50 | 1.125 | 180 | 0.225 ± 0.001 | 0.2038 |
Source | Sum of Squares | DOF * | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.0826 | 9 | 0.0092 | 57.09 | <0.0001 | Significant |
A | 0.0410 | 1 | 0.0410 | 254.97 | <0.0001 | |
B | 0.0189 | 1 | 0.0189 | 117.30 | <0.0001 | |
C | 0.0064 | 1 | 0.0064 | 40.02 | <0.0001 | |
AB | 0.0020 | 1 | 0.0020 | 12.43 | 0.0055 | |
AC | 0.0002 | 1 | 0.0002 | 1.05 | 0.3292 | Not significant |
BC | 0.0017 | 1 | 0.0017 | 10.74 | 0.0083 | |
A2 | 0.0077 | 1 | 0.0077 | 47.77 | <0.0001 | |
B2 | 0.0001 | 1 | 0.0001 | 0.5745 | 0.4660 | Not significant |
C2 | 0.0034 | 1 | 0.0034 | 21.43 | 0.0009 | |
Residual | 0.0016 | 10 | 0.0002 | |||
Lack-of-Fit | 0.0011 | 5 | 0.0002 | 2.12 | 0.2140 | Not significant |
Pure Error | 0.0005 | 5 | 0.0001 | |||
Correction Total | 0.0843 | 19 | ||||
R2 | 0.9809 | |||||
Adjusted R2 | 0.9637 | |||||
Predicted R2 | 0.8864 | |||||
Adequate Precision | 33.5819 | |||||
C.V% | 6.22 |
Run | Response (R) of Na levels, DS and NaCl | ||
---|---|---|---|
Na Levels | DS | NaCl | |
1 | 8.16 ± 0.001 | 0.122 ± 0.001 | 0.082 ± 0.001 |
2 | 14.15 ± 0.001 | 0.211 ± 0.001 | 0.248 ± 0.001 |
3 | 9.34 ± 0.001 | 0.141 ± 0.001 | 0.041 ± 0.001 |
4 | 16.77 ± 0.002 | 0.267 ± 0.002 | 1.242 ± 0.001 |
5 | 8.86 ± 0.001 | 0.133 ± 0.001 | 0.124 ± 0.001 |
6 | 13.77 ± 0.002 | 0.215 ± 0.002 | 0.248 ± 0.002 |
7 | 12.04 ± 0.002 | 0.185 ± 0.001 | 0.248 ± 0.001 |
8 | 21.47 ± 0.002 | 0.356 ± 0.001 | 0.621 ± 0.002 |
9 | 3.93 ± 0.001 | 0.057 ± 0.001 | 0.248 ± 0.001 |
10 | 14.31 ± 0.002 | 0.224 ± 0.001 | 0.497 ± 0.001 |
11 | 9.40 ± 0.001 | 0.142 ± 0.001 | 0.124 ± 0.001 |
12 | 17.68 ± 0.001 | 0.284 ± 0.001 | 1.988 ± 0.002 |
13 | 13.20 ± 0.002 | 0.205 ± 0.001 | 1.739 ± 0.002 |
14 | 18.23 ± 0.004 | 0.294 ± 0.001 | 0.497 ± 0.001 |
15 | 12.60 ± 0.002 | 0.195 ± 0.001 | 0.124 ± 0.001 |
16 | 13.53 ± 0.002 | 0.210 ± 0.001 | 0.124 ± 0.001 |
17 | 13.29 ± 0.001 | 0.206 ± 0.001 | 2.174 ± 0.001 |
18 | 12.98 ± 0.001 | 0.201 ± 0.001 | 0.248 ± 0.001 |
19 | 13.42 ± 0.002 | 0.209 ± 0.001 | 2.236 ± 0.001 |
20 | 14.39 ± 0.002 | 0.225 ± 0.001 | 0.372 ± 0.001 |
SSG Gujarat | 19.69 ± 0.002 | 0.322 ± 0.001 | 3.852 ± 0.002 |
Characteristics | NSS | CRL-SS | SSG-S | SSG-GJ |
---|---|---|---|---|
Amylose Content (%) | 20.70 ± 0.08 a | 6.10 ± 0.12 b | 4.10 ± 0.08 a | 3.898 ± 0.08 a |
Swelling Power (g/g) | 16.50 ± 0.27 b | 3.73 ± 0.12 b | 25.49 ± 0.09 b | 28.05 ± 0.14 b |
Solubility (%) | 29.36 ± 0.09 b | 0.053 ± 0.08 a | 0.635 ± 0.07 b | 0.889 ± 0.08 a |
Moisture Content (%) | 16.10 ± 0.04 b | 10.21 ± 0.07 b | 8.49 ± 0.14 b | 7.08 ± 0.04 b |
pH | 6.42 ± 0.04 b | 7.11 ± 0.12 b | 7.035 ± 0.09 b | 7.16 ± 0.14 b |
Parameter | Sago Starch | |||
---|---|---|---|---|
NSS | CRL-S | SSG-S | SSG Gujarat | |
Pasting Temperature (°C) | 71.10 ± 1.00 a | 30.1 ± 1.00 a | 30.4 ± 1.00 a | 30.1 ± 1.00 a |
Peak Viscosity (BU) | 585.67 ± 12.90 b | 4.67 ± 2.90 b | 0 | 0 |
Final Viscosity (BU) | 432.33 ± 12.34 b | 2.32 ± 2.34 b | 0 | 0 |
Breakdown Viscosity (BU) | 321.5 ± 26.63 a | 2.15 ± 6.63 a | 0 | 0 |
Setback Viscosity (BU) | 175.67 ± 5.77 b | −1.67 ± 6.77 b | 616.47 ± 5.77 b | 601.37 ± 4.77 b |
Tests | Type A | Type B | Type C | SSG Sago |
---|---|---|---|---|
Definition | Sodium salt of crosslinked partly O-carboxymethylated potato starch. | Sodium salt of crosslinked partly O-carboxymethylated potato starch. | Sodium salt of a crosslinked by physical dehydration partly O-carboxymethylated starch. | Sodium salt of crosslinked partly O-carboxymethylated sago starch. |
Na | 2.8–4.2% | 2.0–3.4% | 2.8–5.0% | 2.7–4.3% |
pH | 5.5–7.5 | 3.0–5.0 | 5.5–7.5 | 6.8–7.5 |
LOD | ≤10.0% | ≤10.0% | ≤7.0% | 1.794 |
Sodium chloride | 7.0% | 7.0% | 1.0% | 0.04–2.23% |
Sodium glycolate | 2.0% | 2.0% | 2.0% | NA |
Assay (of Na) | 2.8–4.2% | 2.0–3.4% | 2.8–5.0% | 2.7–4.3% |
Size | 30–100 µm | 30–100 µm | 30–100 µm | 30–100 µm |
Identification | The IR absorption spectrum, as per reference spectrum. | Iodine—blue color. | (1) K-antimonate-White ppt. (2) Mg-Uranyl acetate-yellow ppt. | The IR absorption spectrum. as per reference spectrum. 1411 sodium salt. |
Organoleptic | Formula I | Formula II | Formula III |
---|---|---|---|
Shape | The shape is characterized by its round form with flat surfaces on both the top and the bottom. | The shape is characterized by its round form with flat surfaces on both the top and the bottom. | The shape is characterized by its round form with flat surfaces on both the top and the bottom. |
Color | Dark white. | Dark white. | Dark white. |
Surface texture | The surface is smooth and without defects. | The surface is smooth and without defects. | The surface is smooth and without defects. |
Appearance | Homogeneous, no spots or stains. | Homogeneous, no spots or stains. | Homogeneous, no spots or stains. |
Formula | Mean ± SD (kg) |
---|---|
I | 7.02 ± 1.08 |
II | 5.64 ± 0.83 |
III | 5.48 ± 0.396 |
STD | No | Initial Weight | Weight After | Percent Friability (%) | Mean ± SD (%) |
---|---|---|---|---|---|
Formula I | 1 | 7.03 | 6.94 | 1.28 | 1.32 ± 0.079 |
2 | 7.04 | 6.95 | 1.27 | ||
3 | 7.06 | 6.96 | 1.41 | ||
Formula II | 1 | 6.91 | 6.80 | 1.59 | 1.54 ± 0.086 |
2 | 6.92 | 6.81 | 1.58 | ||
3 | 6.94 | 6.84 | 1.44 | ||
Formula III | 1 | 7.02 | 6.90 | 1.71 | 1.75 ± 0.085 |
2 | 7.01 | 6.88 | 1.85 | ||
3 | 7.03 | 6.91 | 1.70 |
STD | Disintegration Time (min) | Mean ± SD (min) | |||||
---|---|---|---|---|---|---|---|
Formula I | > 0 | >30 | >30 | >30 | >30 | >30 | >30 ± 0.01 |
Formula II | 1.09 | 1.12 | 1.16 | 1.10 | 1.17 | 1.17 | 1.14 ± 0.036 |
Formula III | 1.32 | 1.36 | 1.49 | 2.00 | 2.10 | 2.24 | 1.75 ± 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putra, O.N.; Musfiroh, I.; Paramitasari, D.; Pudjianto, K.; Ikram, E.H.K.; Chaidir, C.; Muchtaridi, M. Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance. Polymers 2025, 17, 1208. https://doi.org/10.3390/polym17091208
Putra ON, Musfiroh I, Paramitasari D, Pudjianto K, Ikram EHK, Chaidir C, Muchtaridi M. Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance. Polymers. 2025; 17(9):1208. https://doi.org/10.3390/polym17091208
Chicago/Turabian StylePutra, Okta Nama, Ida Musfiroh, Derina Paramitasari, Karjawan Pudjianto, Emmy Hainida Khairul Ikram, Chaidir Chaidir, and Muchtaridi Muchtaridi. 2025. "Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance" Polymers 17, no. 9: 1208. https://doi.org/10.3390/polym17091208
APA StylePutra, O. N., Musfiroh, I., Paramitasari, D., Pudjianto, K., Ikram, E. H. K., Chaidir, C., & Muchtaridi, M. (2025). Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance. Polymers, 17(9), 1208. https://doi.org/10.3390/polym17091208