Hydrogels as Suitable miRNA Delivery Systems: A Review
Abstract
:1. Introduction
2. Hydrogel Formulation
2.1. Electrostatic Interactions
2.2. Covalent Bonding
2.3. Non-Covalent Interactions
2.4. Nanocomposite Hydrogels
3. Sustained Release/Stimuli-Responsive Gels
3.1. Active Release
3.2. Passive Release
4. Hydrogel Optimizations
4.1. Stability, Release, and Cytotoxicity
4.2. Scalability and Commercialization
5. Alternative miRNA Delivery Methods
5.1. Lipid-Based Carriers
5.2. Viral Vectors
5.3. Polymeric Nanoparticles
5.4. Exosome-Based Delivery
6. Applications
6.1. Cancer
miRNA | Hydrogel Formulation | Application | Refs. |
---|---|---|---|
AgomiR-205; antimir-205; antimiR-221 | PAMAM G5 | Triple-negative breast cancer | [22] |
miR-29b | Hyaluronic acid-PEG | Osteosarcoma; tumor theranostics | [35] |
miR-96; miR-182 | PAMAM G5 (AuNP) | Breast cancer | [54] |
miR-205antimiR-221; let-7a miR-34a; miR-145 | Self-assembled RNA nano hydrogel | Triple-negative breast cancer; non-small cell lung cancer | [19,43] |
miR-205; miR-182 | RNA nano hydrogel (MnO2 NP) | Triple-negative breast cancer | [41] |
miR-192 | Alginate-polyethyleneimine | Hepatocellular carcinoma | [24] |
miR-21 | Chitosan (carbon dots) | Bioimaging | [44] |
miRNA | CMC chain (CdTeSe quantum dots) and anti-nucleolin aptamer-modified CMC | Tumor theranostics | [45] |
miR-21; miR-99a | PEG- diacrylate | Gastric cancer detection | [80] |
6.2. Tissue Regeneration
6.3. Wound Healing
6.4. Cardiovascular Diseases
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | three-dimensional |
Agomirs | modified miRNA mimics |
CdTeSe | cadmium tellurium selenide |
DEGMA | di(ethylene glycol) methyl ether methacrylate |
ECM | extracellular matrix |
Fmoc-FF | Nα-9-fuorenylmethoxycarbonyl-diphenylalanine |
GelMA | gelatin methacrylate |
GMC | glycidyl methacrylate |
GSH | glutathione |
HA | hyaluronic acid |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HPMC-C12 | hydroxypropylmethylcellulose |
IVDD | intervertebral disc degeneration |
LAP | lithium phenyl-2,4,6-trimethylbenzoylphosphinate |
MAL | maleimide |
MDA-MB-231 | human breast cancer cell line |
miR-chol | cholesterol modified miRNA |
mRNA | microRNA |
MMP | matrix metalloproteinases |
MSN | mesoporous silica nanoparticle |
NHS | N-hydroxysuccinimide |
NPs | nanoparticles |
NSCLC | non-small-cell lung cancer |
OEG | oligo-ethylene glycol |
p21 | cell-cycle regulator protein |
PAMAM | polyamidoamine |
PCL | polycaprolactone |
PDCD4 | programmed cell death protein 4 |
PEG | polyethylene glycol |
PEG-b-PLA | poly(ethylene glycol)-block-poly(lactic acid) |
PFBT | polyfluorene-alt-benzothiadiazole |
PEI | polyethyleneimine |
PLGA | poly(lactic-co-glycolic acid) |
PNIPAM | poly(N-isopropyl acrylamide) |
PNP | polymer-nanoparticle |
PPG | polypropylene glycol |
PTEN | phosphatase and tensin homolog |
PTEN/AKT | signaling pathway involved in cellular growth |
RCT | rolling circle transcription |
RISC | RNA-induced silencing complex |
RNA | ribonucleic acid |
RNAi | RNA interference |
ROS | reactive oxygen species |
SAP | self-assembling peptide |
SDS | sodium dodecyl sulfate |
SH | sulfhydryl group |
TGF-β1 | transforming growth factor beta 1 |
TMPyP4 | 5,10,15,20-Tetrakis-(N-methyl-4-pyridyl) porphine |
TMTME | too many targets for miRNA effect |
TNBC | triple-negative breast cancer |
UPy | ureido-pyrimidine moieties |
UTR | untranslated region |
UV | ultraviolet |
References
- Seyhan, A.A. Trials and tribulations of MicroRNA therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef]
- Yi, M.; Xu, L.; Jiao, Y.; Luo, S.; Li, A.; Wu, K. The role of cancer-derived microRNAs in cancer immune escape. J. Hematol. Oncol. 2020, 13, 25. [Google Scholar] [CrossRef]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in cancer (review of literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Z.; Wang, Y.; Han, T. The risks of miRNA therapeutics: In a drug target perspective. Drug Des. Devel. Ther. 2021, 15, 721–733. [Google Scholar] [CrossRef]
- Dasgupta, I.; Chatterjee, A. Recent advances in miRNA delivery systems. Methods Protoc. 2021, 4, 10. [Google Scholar] [CrossRef]
- Radmanesh, F.; Sadeghi Abandansari, H.; Ghanian, M.H.; Pahlavan, S.; Varzideh, F.; Yakhkeshi, S.; Alikhani, M.; Moradi, S.; Braun, T.; Baharvand, H. Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis. Angiogenesis 2021, 24, 657–676. [Google Scholar] [CrossRef]
- Wang, L.L.; Liu, Y.; Chung, J.J.; Wang, T.; Gaffey, A.C.; Lu, M.; Cavanaugh, C.A.; Zhou, S.; Kanade, R.; Atluri, P.; et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 2017, 1, 983–992. [Google Scholar] [CrossRef]
- Rafieian, S.; Mirzadeh, H.; Mahdavi, H.; Masoumi, M.E. A review on nanocomposite hydrogels and their biomedical applications. Sci. Eng. Comp. Mater. 2019, 26, 154–174. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and future prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Ji, D.; Park, J.M.; Oh, M.S.; Nguyen, T.L.; Shin, H.; Kim, J.S.; Kim, D.; Park, H.S.; Kim, J. Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 2022, 13, 3019. [Google Scholar] [CrossRef]
- Peers, S.; Montembault, A.; Ladavière, C. Chitosan hydrogels for sustained drug delivery. J. Control. Release 2020, 326, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Bugwandeen, A.; Singh, K.; Daniels, A.; Singh, D.; David, L.L.; Singh, M. In Vitro Cytotoxicity profiles of some Polymers and Inorganic Nanoparticles commonly used in Nanomedicine. Curr. Top. Toxicol. 2023, 19, 1–11. [Google Scholar]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar]
- Maruf, A.; Milewska, M.; Lalik, A.; Student, S.; Wandzik, I. A simple synthesis of reduction-responsive acrylamide-type nanogels for miRNA delivery. Molecules 2023, 28, 761. [Google Scholar] [CrossRef]
- Eding, J.E.; Vigil-Garcia, M.; Vink, M.; Demkes, C.J.; Versteeg, D.; Kooijman, L.; Bakker, M.H.; Schotman, M.J.; Dankers, P.Y.; van Rooij, E. Hydrogel-Based Delivery of antimiR-195 Improves Cardiac Efficacy after Ischemic Injury. Adv. Ther. 2024, 7, 2300241. [Google Scholar]
- Schulze, J.; Hendrikx, S.; Schulz-Siegmund, M.; Aigner, A. Microparticulate poly (vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles. Acta Biomater. 2016, 45, 210–222. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.; Zhao, N.; Liao, L. A novel approach in biomedical engineering: The use of polyvinyl alcohol hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration. Int. J. Biol. Macromol. 2024, 270, 132116. [Google Scholar]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar]
- Ding, L.; Li, J.; Wu, C.; Yan, F.; Li, X.; Zhang, S. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J. Mater. Chem. B 2020, 8, 3527–3533. [Google Scholar] [CrossRef]
- Falcone, N.; Ermis, M.; Tamay, D.G.; Mecwan, M.; Monirizad, M.; Mathes, T.G.; Jucaud, V.; Choroomi, A.; de Barros, N.R.; Zhu, Y.; et al. Peptide hydrogels as immunomaterials and their use in cancer immunotherapy delivery. Adv. Healthc. Mater. 2023, 12, 2301096. [Google Scholar]
- Vashist, A.; Kaushik, A.; Ghosal, A.; Bala, J.; Nikkhah-Moshaie, R.; Wani, W.A.; Manickam, P.; Nair, M. Nanocomposite hydrogels: Advances in nanofillers used for nanomedicine. Gels 2018, 4, 75. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater. 2016, 15, 353–363. [Google Scholar] [PubMed]
- Carthew, J.; Donderwinkel, I.; Shrestha, S.; Truong, V.X.; Forsythe, J.S.; Frith, J.E. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Acta Biomater. 2020, 101, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhuge, X.; Lin, W.; Yu, W.; Zhu, Y.; Shi, C.; Shi, Z. Hydrogel-based miR-192 delivery inhibits the development of hepatocellular carcinoma by suppressing the GSK3β/Wnt/β-catenin pathway. Neoplasma 2023, 7, 555–565. [Google Scholar]
- Su, Y.; Sun, B.; Gao, X.; Liu, S.; Hao, R.; Han, B. Chitosan hydrogel doped with PEG-PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis. Pharmaceutics 2020, 12, 907. [Google Scholar] [CrossRef]
- Hu, H.; Dong, L.; Bu, Z.; Shen, Y.; Luo, J.; Zhang, H.; Zhao, S.; Lv, F.; Liu, Z. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration. J. Extracell. Vesicles 2020, 9, 1778883. [Google Scholar]
- Li, B.; Wang, F.; Hu, F.; Ding, T.; Huang, P.; Xu, X.; Liang, J.; Li, C.; Zhou, Q.; Lu, M.; et al. Injectable “nano-micron” combined gene-hydrogel microspheres for local treatment of osteoarthritis. NPG Asia Mater. 2022, 14, 1. [Google Scholar]
- Van der Ven, C.F.; Tibbitt, M.W.; Conde, J.; van Mil, A.; Hjortnaes, J.; Doevendans, P.A.; Sluijter, J.P.; Aikawa, E.; Langer, R.S. Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. Nanoscale 2021, 13, 20451–20461. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Zheng, D.; Zhang, H.; Deng, L.; Cui, W.; Zhang, Y.; Santos, H.A.; Shen, H. Gene-hydrogel microenvironment regulates extracellular matrix metabolism balance in nucleus pulposus. Adv. Sci. 2020, 7, 1902099. [Google Scholar]
- Li, Y.; Chen, X.; Jin, R.; Chen, L.; Dang, M.; Cao, H.; Dong, Y.; Cai, B.; Bai, G.; Gooding, J.J.; et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 2021, 7, eabd6740. [Google Scholar]
- Dai, H.; Luo, J.; Deng, L.; Song, C.; Deng, Z.; Wu, Y.; Gu, S.; Xu, J. Hierarchically Injectable Hydrogel Sequentially Delivers AntagomiR-467a-3p-Loaded and AntagomiR-874-5p-Loaded Satellite-Cell-Targeting Bioengineered Extracellular Vesicles Attenuating Sarcopenia. Adv. Healthc. Mater. 2023, 12, 2203056. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Song, W.; Xin, H.; Yu, H.; Wang, H.; Ma, D.; Cao, X.; Wang, Y. MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration. Bioact. Mater. 2022, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shafei, S.; Khanmohammadi, M.; Ghanbari, H.; Nooshabadi, V.T.; Tafti, S.H.A.; Rabbani, S.; Kasaiyan, M.; Basiri, M.; Tavoosidana, G. Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tiss. Res. 2022, 390, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017, 58, 168–180. [Google Scholar] [CrossRef]
- Freeman, F.E.; Dosta, P.; Shanley, L.C.; Ramirez Tamez, N.; Riojas Javelly, C.J.; Mahon, O.R.; Kelly, D.J.; Artzi, N. Localized nanoparticle-mediated delivery of miR-29b normalizes the dysregulation of bone homeostasis caused by osteosarcoma whilst simultaneously inhibiting tumor growth. Adv. Mater. 2023, 35, 2207877. [Google Scholar] [CrossRef]
- Xu, Y.; Niu, Y.; Wu, B.; Cao, X.; Gong, T.; Zhang, Z.R.; Fu, Y. Extended-release of therapeutic microRNA via a host-guest supramolecular hydrogel to locally alleviate renal interstitial fibrosis. Biomaterials 2021, 275, 120902. [Google Scholar]
- Hernandez, M.J.; Gaetani, R.; Pieters, V.M.; Ng, N.W.; Chang, A.E.; Martin, T.R.; van Ingen, E.; Mol, E.A.; Dzieciatkowska, M.; Hansen, K.C.; et al. Decellularized extracellular matrix hydrogels as a delivery platform for MicroRNA and extracellular vesicle therapeutics. Adv. Ther. 2018, 1, 1800032. [Google Scholar] [CrossRef]
- Han, C.; Zhou, J.; Liu, B.; Liang, C.; Pan, X.; Zhang, Y.; Zhang, Y.; Wang, Y.; Shao, L.; Zhu, B.; et al. Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb. Mater. Sci. Eng. C 2019, 99, 322–332. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, S.; Qi, Y.; Gong, Z.; Zhang, H.; Liang, K.; Shen, P.; Huang, Y.Y.; Zhang, Z.; Ye, W.; et al. Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 2022, 8, eabk0011. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, C.; Pan, S.; Shi, C.; Wu, G.; Feng, Y.; Zhang, J.; Yu, Z.; Liang, B.; Gui, J. Injectable hyperbranched PEG cross-linked hyaluronan hydrogel microparticles containing mir-99a-3p modified subcutaneous ADSCs-derived exosomes was beneficial for long-term treatment of osteoarthritis. Mater. Today Bio 2023, 23, 100813. [Google Scholar]
- Wang, W.; Liu, X.; Ding, L.; Jin, H.J.; Li, X. RNA hydrogel combined with MnO2 nanoparticles as a nano-vaccine to treat triple negative breast cancer. Front. Chem. 2021, 9, 797094. [Google Scholar]
- Saleh, B.; Dhaliwal, H.K.; Portillo-Lara, R.; Shirzaei Sani, E.; Abdi, R.; Amiji, M.M.; Annabi, N. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. Small 2019, 15, 1902232. [Google Scholar]
- Li, J.; Yuan, D.; Zheng, X.; Zhang, X.; Li, X.; Zhang, S. A triple-combination nanotechnology platform based on multifunctional RNA hydrogel for lung cancer therapy. Sci. China Chem. 2020, 63, 546–553. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mohammadi, S.; Salimi, A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 2021, 224, 121895. [Google Scholar]
- Zheng, Y.; He, S.; Jin, P.; Gao, Y.; Di, Y.; Gao, L.; Wang, J. Construction of multifunctional carboxymethyl cellulose nanohydrogel carriers based on near-infrared DNA-templated quantum dots for tumor theranostics. RSC Adv. 2022, 12, 31869–31877. [Google Scholar]
- Gan, M.; Zhou, Q.; Ge, J.; Zhao, J.; Wang, Y.; Yan, Q.; Wu, C.; Yu, H.; Xiao, Q.; Wang, W.; et al. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater. 2021, 135, 289–303. [Google Scholar]
- Yang, H.; Qin, X.; Wang, H.; Zhao, X.; Liu, Y.; Wo, H.T.; Liu, C.; Nishiga, M.; Chen, H.; Ge, J.; et al. An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano 2019, 13, 9880–9894. [Google Scholar]
- Lei, L.; Liu, Z.; Yuan, P.; Jin, R.; Wang, X.; Jiang, T.; Chen, X. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. J. Mater. Chem. B 2019, 7, 2722–2735. [Google Scholar]
- Sun, X.; Song, W.; Teng, L.; Huang, Y.; Liu, J.; Peng, Y.; Lu, X.; Yuan, J.; Zhao, X.; Zhao, Q.; et al. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing. Bioact. Mater. 2023, 25, 640–656. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Zhang, B.; Zheng, C.; Hu, C.; Guo, C.; Kong, Q.; Wang, Y. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system. Biomaterials 2023, 298, 122132. [Google Scholar]
- Xue, S.; Li, X.; Li, S.; Chen, N.; Zhan, Q.; Long, L.; Zhao, J.; Hou, X.; Yuan, X. Bone fracture microenvironment responsive hydrogel for timing sequential release of cargoes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127413. [Google Scholar]
- Bakker, M.H.; van Rooij, E.; Dankers, P.Y. Controlled release of RNAi molecules by tunable supramolecular hydrogel carriers. Chem. Asian J. 2018, 13, 3501–3508. [Google Scholar] [PubMed]
- Qin, H.; Ji, Y.; Li, G.; Xu, X.; Zhang, C.; Zhong, W.; Xu, S.; Yin, Y.; Song, J. MicroRNA-29b/graphene oxide–polyethyleneglycol–polyethylenimine complex incorporated within chitosan hydrogel promotes osteogenesis. Front. Chem. 2022, 10, 958561. [Google Scholar]
- Gilam, A.; Conde, J.; Weissglas-Volkov, D.; Oliva, N.; Friedman, E.; Artzi, N.; Shomron, N. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat. Commun. 2016, 7, 12868. [Google Scholar]
- Wu, H.; Li, F.; Shao, W.; Gao, J.; Ling, D. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent. Sci. 2019, 5, 477–485. [Google Scholar]
- Stapleton, L.M.; Steele, A.N.; Wang, H.; Lopez Hernandez, H.; Yu, A.C.; Paulsen, M.J.; Smith, A.A.; Roth, G.A.; Thakore, A.D.; Lucian, H.J.; et al. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat. Biomed. Eng. 2019, 3, 611–620. [Google Scholar]
- Lim, J.Y.C.; Lin, Q.; Xue, K.; Loh, X.J. Recent advances in supramolecular hydrogels for biomedical applications. Mater. Today Adv. 2019, 3, 100021. [Google Scholar]
- Gholamali, I.; Vu, T.T.; Jo, S.H.; Park, S.H.; Lim, K.T. Exploring the progress of hyaluronic acid hydrogels: Synthesis, characteristics, and wide-ranging applications. Materials 2024, 17, 2439. [Google Scholar] [CrossRef]
- Yu, C.; Chen, L.; Zhou, W.; Hu, L.; Xie, X.; Lin, Z.; Panayi, A.C.; Zhan, X.; Tao, R.; Mi, B.; et al. Injectable bacteria-sensitive hydrogel promotes repair of infected fractures via sustained release of miRNA antagonist. ACS Appl. Mater. Interfaces 2022, 14, 34427–34442. [Google Scholar]
- Cidade, M.T.; Ramos, D.J.; Santos, J.; Carrelo, H.; Calero, N.; Borges, J.P. Injectable hydrogels based on pluronic/water systems filled with alginate microparticles for biomedical applications. Materials 2019, 12, 1083. [Google Scholar] [CrossRef]
- Brewer, K.; Gundsambuu, B.; Facal Marina, P.; Barry, S.C.; Blencowe, A. Thermoresponsive poly (ε-caprolactone)-poly (ethylene/propylene glycol) copolymers as injectable hydrogels for cell therapies. Polymers 2020, 12, 367. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Xu, G.; Huang, H.; Wang, K.; Wang, H.; Lang, M.; Gao, H.; Zhao, S. Sequential release of small extracellular vesicles from bilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing. ACS Nano 2021, 15, 6352–6368. [Google Scholar]
- Valipour, F.; Valioğlu, F.; Rahbarghazi, R.; Navali, A.M.; Rashidi, M.R.; Davaran, S. Thermosensitive and biodegradable PCL-based hydrogels: Potential scaffolds for cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 2023, 34, 695–714. [Google Scholar]
- Zhang, N.; Lin, J.; Lin, V.P.H.; Milbreta, U.; Chin, J.S.; Chew, E.G.Y.; Lian, M.M.; Foo, J.N.; Zhang, K.; Wu, W.; et al. A 3D fiber-hydrogel based non-viral gene delivery platform reveals that microRNAs promote axon regeneration and enhance functional recovery following spinal cord injury. Adv. Sci. 2021, 8, 2100805. [Google Scholar]
- Giuri, D.; Cenciarelli, F.; Tomasini, C. Low-molecular-weight gels from amino acid and peptide derivatives for controlled release and delivery. J. Pept. Sci. 2024, 30, e3643. [Google Scholar]
- Yang, Y.; Zhang, J.; Wu, S.; Deng, Y.; Wang, S.; Xie, L.; Li, X.; Yang, L. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials 2024, 308, 122558. [Google Scholar]
- La Manna, S.; Florio, D.; Panzetta, V.; Roviello, V.; Netti, P.A.; Di Natale, C.; Marasco, D. Hydrogelation tunability of bioinspired short peptides. Soft Matter 2022, 18, 8418–8426. [Google Scholar]
- Gallo, E.; Smaldone, G.; Cimmino, L.; Braile, M.; Orlandella, F.M.; Luciano, N.; Accardo, A.; Salvatore, G. Fmoc-FF Nanogel-Mediated Delivery of Doxorubicin and Curcumin in Thyroid Cancer Cells. Pharmaceutics 2025, 17, 263. [Google Scholar] [CrossRef]
- Tanaka, R.; Saito, Y.; Fujiwara, Y.; Jo, J.I.; Tabata, Y. Preparation of fibrin hydrogels to promote the recruitment of anti-inflammatory macrophages. Acta Biomater. 2019, 89, 152–165. [Google Scholar]
- Lolli, A.; Sivasubramaniyan, K.; Vainieri, M.L.; Oieni, J.; Kops, N.; Yayon, A.; van Osch, G.J. Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells. J. Control. Release 2019, 309, 220–230. [Google Scholar]
- Onder, O.C.; Batool, S.R.; Nazeer, M.A. Self-assembled silk fibroin hydrogels: From preparation to biomedical applications. Mater. Adv. 2022, 3, 6920–6949. [Google Scholar]
- Gribova, V.; Petit, L.; Kocgozlu, L.; Seguin, C.; Fournel, S.; Kichler, A.; Vrana, N.E.; Lavalle, P. Polyarginine as a simultaneous antimicrobial, immunomodulatory, and miRNA delivery agent within polyanionic hydrogel. Macromol. Biosci. 2022, 22, 2200043. [Google Scholar]
- Fu, Y.; Chen, J.; Huang, Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA 2019, 1, 24. [Google Scholar]
- Daniels, A.N.; Singh, M. Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine 2019, 14, 1387–1401. [Google Scholar]
- Savenkova, D.A.; Makarova, A.L.A.; Shalik, I.K.; Yudkin, D.V. miRNA pathway alteration in response to non-coding RNA delivery in viral vector-based gene therapy. Int. J. Mol. Sci. 2022, 23, 14954. [Google Scholar] [CrossRef]
- Gareev, I.; Beylerli, O.; Tamrazov, R.; Ilyasova, T.; Shumadalova, A.; Du, W.; Yang, B. Methods of miRNA delivery and possibilities of their application in neuro-oncology. Non-Coding RNA Res. 2023, 8, 661–674. [Google Scholar]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, Y.; Yang, L.; Yan, X.; Shen, Z.; Liu, J.; Xue, J.; Zhao, W.; Liu, X. miR-371b-5p-engineered exosomes enhances tumor inhibitory effect. Front. Cell Dev. Biol. 2021, 9, 750171. [Google Scholar]
- Lee, M.; Hwang, J.; Song, Y.; Kim, S.; Park, N. Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy. Biomater. Adv. 2025, 169, 214160. [Google Scholar]
- Seo, S.B.; Lim, J.; Kim, K.; Maeng, I.; Rho, H.W.; Son, H.Y.; Kim, E.; Jang, E.; Kang, T.; Jung, J.; et al. Nucleic Acid Amplification Circuit-Based Hydrogel (NACH) Assay for One-Step Detection of Metastatic Gastric Cancer-Derived Exosomal miRNA. Adv. Sci. 2024, 11, 2407621. [Google Scholar]
- Wang, Y.; Deng, M.; Wu, Y.; Hu, C.; Zhang, B.; Guo, C.; Song, H.; Kong, Q.; Wang, Y. Sustained gene delivery from inflammation-responsive anti-inflammatory hydrogels promotes extracellular matrix metabolism balance in degenerative nucleus pulposus. Compos. B Eng. 2022, 236, 109806. [Google Scholar]
- Cao, S.; Bi, Z.; Li, Q.; Zhang, S.; Singh, M.; Chen, J.D. Shape memory and antibacterial chitosan-based cryogel with hemostasis and skin wound repair. Carbohyd. Polym. 2023, 305, 120545. [Google Scholar]
miRNA | Hydrogel Formulation | Application | Ref. |
---|---|---|---|
miR-100-5p; miR-143-3p | Gelatin-norbornene-PEG | Bone-tissue engineering | [23] |
AgomiR-874 | PEG-Ag | Cartilage regeneration | [29] |
AntimiR-874-5p; antimiR-467a-3p | Sodium alginate-pluronic F127 (extracellular vesicles) | Muscle regeneration | [31] |
miR-26a | PEG | Bone regeneration | [46] |
miR-214 | Decellularized ECM | Tissue regeneration | [37] |
AntimiR-23a-3p | Gelatin-nano clay (extracellular vesicles) | Cartilage regeneration | [26] |
miR-222 | PEG- PLGA- PNIPAM (MSN) | Bone regeneration | [48] |
miR-140 | Gelatin-methylacroyl-modified polyamidoamine | Cartilage regeneration | [27] |
antimiR-221 | Fibrin-hyaluronan | Tissue regeneration | [70] |
miR-29b | Gelatin-alginate (AuNP) | Bone regeneration | [32] |
miR-29b | Chitosan (graphene oxide NP) | Bone regeneration | [53] |
miR-126; miR-146a | Alginate (exosomes) | Cardiac regeneration | [33] |
AntimiR-21 | Gelatin-phenylboric acid-cyclodextrin | Tissue regeneration | [81] |
AntimiR-21 | Glycidyl methacrylate-carboxymethyl chitosan (tannic acid NPs) | Intervertebral disc regeneration | [50] |
miR-155 | PEG-MMP7-sensitive peptides (NPs) | Bone regeneration | [51] |
miR-99b-3p | Hyperbranched PEG diacrylate-hyaluronic acid (exosomes) | Cartilage regeneration | [40] |
miR-132; miR-222; miR-431 | Polycaprolactone-collagen | Nerve regeneration | [64] |
AgomiR-29b-5p | Self-assembling peptide-bone marrow-homing peptide motif | Cartilage regeneration | [39] |
miRNA | Hydrogel Formulation | Application | Ref. |
---|---|---|---|
miRNA | Hyaluronic acid-polyarginine | Antibacterial and anti-inflammatory | [75] |
miR-223-5p | Gelatin-methacryloyl (HA NP) | Increased anti-inflammatory gene expression and decreased pro-inflammatory markers | [42] |
miR-29b-3p | Thiolated alginate-PEG diacrylate | Angiogenesis promotion and collagen deposition | [62] |
miR-24-3p | Hyaluronic acid-di(ethylene glycol) mono methyl ether methacrylate | Corneal epithelial healing | [49] |
AntimiR-26a | Collagen (polyethyleneimine ceria nanocluster) | Accelerated diabetic wound closure | [55] |
AntimiR-708-5p | Hyaluronic acid-adipic dihydrazide and hyaluronic acid-quaternary ammonium-aldehyde | Antibacterial and pro-osteogenic differentiation | [59] |
miR-21-5p | Hyaluronic acid-polydopamine-DP-7 (exosomes) | Antibacterial wound closure | [66] |
miRNA | Hydrogel Formulation | Application | Refs. |
---|---|---|---|
miR-19b; antimir-15 antimir-1; antimir-195 | UPy-PEG | Controlled release study; Cardiomyocyte proliferation | [15,52] |
miR-675 | Silk fibroin (exosomes) | Aging-induced vascular dysfunction | [38] |
miR-21-5p | PEG (MSN) | Anti-inflammatory and proangiogenic effects for myocardial infarction | [30] |
AntimiR-92a | Deoxycholic acid-modified polyethyleneimine polymeric conjugates | Ischaemic heart disease | [6] |
miR-146a | Chitosan (PEG-PLA NP) | Allergic rhinitis | [25] |
miR-214 | HPMC-C12 (PEG-b-PLA NP) | Cardiovascular diseases and cancer | [28] |
miR-302b; miR-302c; miR-29b | Cyclodextrin β-modified hyaluronic acid-adamantane-modified hyaluronic acid | Myocardial infarction; Renal interstitial fibrosis | [7,36] |
miR-199a-3p | Elastin-like protein-hyaluronic acid (PFBT NPs) | Myocardial infarction | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makada, H.; Singh, M. Hydrogels as Suitable miRNA Delivery Systems: A Review. Polymers 2025, 17, 915. https://doi.org/10.3390/polym17070915
Makada H, Singh M. Hydrogels as Suitable miRNA Delivery Systems: A Review. Polymers. 2025; 17(7):915. https://doi.org/10.3390/polym17070915
Chicago/Turabian StyleMakada, Haseena, and Moganavelli Singh. 2025. "Hydrogels as Suitable miRNA Delivery Systems: A Review" Polymers 17, no. 7: 915. https://doi.org/10.3390/polym17070915
APA StyleMakada, H., & Singh, M. (2025). Hydrogels as Suitable miRNA Delivery Systems: A Review. Polymers, 17(7), 915. https://doi.org/10.3390/polym17070915