Redox-Initiated RAFT Emulsion Polymerization-Induced Self-Assembly of β-Ketoester Functional Monomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PPEGMAn-CEPA Macro-CTAs
2.3. Redox-Initiated RAFT Emulsion Polymerization of AEMA
2.4. Kinetics of Redox-Initiated RAFT Emulsion Polymerization of PPEGMA12-PAEMA100
2.5. Preparation of AIE-Active Polymer Assemblies
2.6. In Vitro Cytotoxicity Assay
2.7. Characterization
3. Results and Discussion
3.1. Synthesis of PPEGMAn-CEPA Macro-CTAs
3.2. Kinetic Process of Redox-Initiated RAFT Emulsion Polymerization of AEMA
3.3. Morphological Evolution of Block Copolymer Assemblies in Redox-Initiated RAFT Emulsion Polymerization
3.4. Preparation of AIE-Active Polymer Assemblies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PISA | polymerization-induced self-assembly |
RAFT | reversible addition–fragmentation chain transfer |
Macro-CTA | macromolecular chain transfer agent |
DP | degree of polymerization |
tBA | tert-butyl acrylate |
GlyMA | glycidyl methacrylate |
AEMA | 2-(acetoacetoxy)ethyl methacrylate |
PPEGMA | poly(poly(ethylene glycol) methyl ether methacrylate) |
AIBN | azobisisobutyronitrile |
NaAs | L-Ascorbic acid sodium salt |
KPS | potassium persulfate |
CEPA | 4-cyano-4-(ethylthiocarbonothioylthio) pentanoic acid |
NMR | nuclear magnetic resonance |
TEM | transmission electron microscopy |
GPC | gel permeation chromatography |
DSC | dynamic light scattering |
ACQ | aggregation-caused quenching |
AIE | aggregation-induced emission |
TPE | tetraphenylethylene |
DMF | dimethylformamide |
THF | tetrahydrofuran |
References
- Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ganesan, K.; Yang, P.; Kulak, A.N.; Borukhin, S.; Pechook, S.; Ribeiro, L.; Kröger, R.; Eichhorn, S.J.; Armes, S.P.; et al. An Artificial Biomineral Formed by Incorporation of Copolymer Micelles in Calcite Crystals. Nat. Mater. 2011, 10, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Liu, S. Functional Block Copolymer Assemblies Responsive to Tumor and Intracellular Microenvironments for Site-Specific Drug Delivery and Enhanced Imaging Performance. Chem. Soc. Rev. 2013, 42, 7289–7325. [Google Scholar] [CrossRef]
- Thompson, K.L.; Mable, C.J.; Cockram, A.; Warren, N.J.; Cunningham, V.J.; Jones, E.R.; Verber, R.; Armes, S.P. Are Block Copolymer Worms More Effective Pickering Emulsifiers than Block Copolymer Spheres? Soft Matter 2014, 10, 8615–8626. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Cao, J.; Chen, Y.; Zhang, L.; Tan, J. Thermoresponsive Block Copolymer Vesicles by Visible Light-Initiated Seeded Polymerization-Induced Self-Assembly for Temperature-Regulated Enzymatic Nanoreactors. ACS Macro Lett. 2020, 9, 533–539. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Liu, X.; Guan, W.; Lu, C. Aggregation-Induced Emission-Active Micelles: Synthesis, Characterization, and Applications. Chem. Soc. Rev. 2023, 52, 1456–1490. [Google Scholar] [CrossRef]
- Zheng, D.; Tao, J.; Jiang, L.; Zhang, X.; He, H.; Shen, X.; Sang, Y.; Liu, Y.; Yang, Z.; Nie, Z. Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy. J. Am. Chem. Soc. 2024, 147, 998–1007. [Google Scholar] [CrossRef]
- Lv, C.; He, C.; Pan, X. Oxygen-Initiated and Regulated Controlled Radical Polymerization under Ambient Conditions. Angew. Chem. Int. Ed. 2018, 57, 9430–9433. [Google Scholar] [CrossRef]
- Zhang, W.; He, J.; Lv, C.; Wang, Q.; Pang, X.; Matyjaszewski, K.; Pan, X. Atom Transfer Radical Polymerization Driven by Near-Infrared Light with Recyclable Upconversion Nanoparticles. Macromolecules 2020, 53, 4678–4684. [Google Scholar] [CrossRef]
- Zashikhina, N.; Levit, M.; Dobrodumov, A.; Gladnev, S.; Lavrentieva, A.; Tennikova, T.; Korzhikova-Vlakh, E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers 2022, 14, 1677. [Google Scholar] [CrossRef]
- Vagenas, D.; Pispas, S. Four-Component Statistical Copolymers by RAFT Polymerization. Polymers 2024, 16, 1321. [Google Scholar] [CrossRef]
- Wan, W.; Hong, C.; Pan, C. One-Pot Synthesis of Nanomaterials via RAFT Polymerization Induced Self-Assembly and Morphology Transition. Chem. Commun. 2009, 5883–5885. [Google Scholar] [CrossRef]
- Wang, G.; Schmitt, M.; Wang, Z.; Lee, B.; Pan, X.; Fu, L.; Yan, J.; Li, S.; Xie, G.; Bockstaller, M.R.; et al. Polymerization-Induced Self-Assembly (PISA) Using ICAR ATRP at Low Catalyst Concentration. Macromolecules 2016, 49, 8605–8615. [Google Scholar] [CrossRef]
- Tan, J.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; He, J.; Xu, Q.; Zhang, L. Enzyme-Assisted Photoinitiated Polymerization-Induced Self-Assembly: An Oxygen-Tolerant Method for Preparing Block Copolymer Nano-Objects in Open Vessels and Multiwell Plates. Macromolecules 2017, 50, 5798–5806. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, H.; Liu, Y.; Wang, J.; Zhou, P.; Cao, M.; Wang, G. Development of ICAR ATRP–Based Polymerization-Induced Self-Assembly and Its Application in the Preparation of Organic–Inorganic Nanoparticles. Macromol. Rapid Commun. 2019, 40, 1900547. [Google Scholar] [CrossRef]
- Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M.W.; Lecommandoux, S.; Bonduelle, C. Aqueous Ring-Opening Polymerization-Induced Self-Assembly (ROPISA) of N-Carboxyanhydrides. Angew. Chem. Int. Ed. 2020, 59, 622–626. [Google Scholar] [CrossRef]
- Jimaja, S.; Varlas, S.; Xie, Y.; Foster, J.C.; Taton, D.; Dove, A.P.; O’Reilly, R.K. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(Aryl Isocyanide)s. ACS Macro Lett. 2020, 9, 226–232. [Google Scholar] [CrossRef]
- Cai, W.; Liu, D.; Chen, Y.; Zhang, L.; Tan, J. Enzyme-Assisted Photoinitiated Polymerization-Induced Self-Assembly in Continuous Flow Reactors with Oxygen Tolerance. Chin. J. Polym. Sci. 2021, 39, 1127–1137. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, Z.; Bai, W.; Hong, C. Greatly Enhanced Accessibility and Reproducibility of Worm-like Micelles by In Situ Crosslinking Polymerization-Induced Self-Assembly. Angew. Chem. Int. Ed. 2022, 61, e202211792. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, W.; Zhang, L.; Sheng, X.; Tan, J. Synthesis of Self-Assembled Star/Linear Block Copolymer Blends via Aqueous RAFT Dispersion Polymerization. Chin. J. Chem. 2024, 42, 1606–1614. [Google Scholar] [CrossRef]
- Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A.J.; Armes, S.P. Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles? J. Am. Chem. Soc. 2011, 133, 16581–16587. [Google Scholar] [CrossRef] [PubMed]
- Charleux, B.; Delaittre, G.; Rieger, J.; D’Agosto, F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 2012, 45, 6753–6765. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, R.; Sun, H.; Zhang, L.; Tan, J. Blue Light-Initiated Alcoholic RAFT Dispersion Polymerization of Benzyl Methacrylate: A Detailed Study. Polymers 2019, 11, 1284. [Google Scholar] [CrossRef]
- Phan, H.; Cavanagh, R.; Jacob, P.; Destouches, D.; Vacherot, F.; Brugnoli, B.; Howdle, S.; Taresco, V.; Couturaud, B. Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly. Polymers 2023, 15, 3070. [Google Scholar] [CrossRef]
- Yeow, J.; Xu, J.; Boyer, C. Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Lett. 2015, 4, 984–990. [Google Scholar] [CrossRef]
- Qu, Q.; Liu, G.; Lv, X.; Zhang, B.; An, Z. In Situ Cross-Linking of Vesicles in Polymerization-Induced Self-Assembly. ACS Macro Lett. 2016, 5, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Huo, F.; Gao, C.; Dan, M.; Xiao, X.; Su, Y.; Zhang, W. Seeded Dispersion RAFT Polymerization and Synthesis of Well-Defined ABA Triblock Copolymer Flower-like Nanoparticles. Polym. Chem. 2014, 5, 2736–2746. [Google Scholar] [CrossRef]
- Bauri, K.; Narayanan, A.; Haldar, U.; De, P. Polymerization-Induced Self-Assembly Driving Chiral Nanostructured Materials. Polym. Chem. 2015, 6, 6152–6162. [Google Scholar] [CrossRef]
- Fan, L.; Zeng, Z.; Zhu, R.; Liu, A.; Che, H.; Huo, M. Polymerization-Induced Self-Assembly Toward Micelle-Crosslinked Tough and Ultrastretchable Hydrogels. Chem. Mater. 2022, 34, 6408–6419. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, L.; Tan, J. Room-Temperature Heterogeneous Reversible Deactivation Radical Polymerization. Acta Polym. Sin. 2023, 54, 761–777. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, J.; Zhao, X.; Shi, S.; Li, S.; Wang, Y.; Song, Q.; Cheng, X.; Zhang, W. Chiral Polymer Micro/Nano-Objects: Evolving Preparation Strategies in Heterogeneous Polymerization. Sci. China Chem. 2024. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, W. Polymerization-Induced Chiral Self-Assembly for the In Situ Construction, Modulation, Amplification and Applications of Asymmetric Suprastructures. Angew. Chem. Int. Ed. 2024, 63, e202414332. [Google Scholar] [CrossRef]
- Dai, X.; Yu, L.; Zhang, Y.; Zhang, L.; Tan, J. Polymerization-Induced Self-Assembly via RAFT-Mediated Emulsion Polymerization of Methacrylic Monomers. Macromolecules 2019, 52, 7468–7476. [Google Scholar] [CrossRef]
- Boissé, S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M.-H.; Charleux, B. Amphiphilic Block Copolymer Nano-Fibers via RAFT-Mediated Polymerization in Aqueous Dispersed System. Chem. Commun. 2010, 46, 1950–1952. [Google Scholar] [CrossRef]
- Pham, B.T.T.; Nguyen, D.; Huynh, V.T.; Pan, E.H.; Shirodkar-Robinson, B.; Carey, M.; Serelis, A.K.; Warr, G.G.; Davey, T.; Such, C.H.; et al. Aqueous Polymeric Hollow Particles as an Opacifier by Emulsion Polymerization Using Macro-RAFT Amphiphiles. Langmuir 2018, 34, 4255–4263. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Dai, X.; Zhang, Y.; Yu, L.; Sun, H.; Zhang, L. Photoinitiated Polymerization-Induced Self-Assembly via Visible Light-Induced RAFT-Mediated Emulsion Polymerization. ACS Macro Lett. 2019, 8, 205–212. [Google Scholar] [CrossRef]
- Maiti, B.; Ruidas, B.; De, P. Dynamic Covalent Cross-Linked Polymer Gels through the Reaction between Side-Chain β-Keto Ester and Primary Amine Groups. React. Funct. Polym. 2015, 93, 148–155. [Google Scholar] [CrossRef]
- Sims, M.B.; Lessard, J.J.; Bai, L.; Sumerlin, B.S. Functional Diversification of Polymethacrylates by Dynamic β-Ketoester Modification. Macromolecules 2018, 51, 6380–6386. [Google Scholar] [CrossRef]
- Efstathiou, S.; Ma, C.; Coursari, D.; Patias, G.; Al-Shok, L.; Eissa, A.M.; Haddleton, D.M. Functional pH-Responsive Polymers Containing Dynamic Enaminone Linkages for the Release of Active Organic Amines. Polym. Chem. 2022, 13, 2362–2374. [Google Scholar] [CrossRef]
- Hutchison, J.B.; Stark, P.F.; Hawker, C.J.; Anseth, K.S. Polymerizable Living Free Radical Initiators as a Platform To Synthesize Functional Networks. Chem. Mater. 2005, 17, 4789–4797. [Google Scholar] [CrossRef]
- Papaphilippou, P.; Loizou, L.; Popa, N.C.; Han, A.; Vekas, L.; Odysseos, A.; Krasia-Christoforou, T. Superparamagnetic Hybrid Micelles, Based on Iron Oxide Nanoparticles and Well-Defined Diblock Copolymers Possessing β-Ketoester Functionalities. Biomacromolecules 2009, 10, 2662–2671. [Google Scholar] [CrossRef] [PubMed]
- Lessard, J.J.; Garcia, L.F.; Easterling, C.P.; Sims, M.B.; Bentz, K.C.; Arencibia, S.; Savin, D.A.; Sumerlin, B.S. Catalyst-Free Vitrimers from Vinyl Polymers. Macromolecules 2019, 52, 2105–2111. [Google Scholar] [CrossRef]
- Yamamoto, M.; Ando, K.; Inoue, M.; Kanoh, H.; Yamagami, M.; Wakiya, T.; Iida, E.; Taniguchi, T.; Kishikawa, K.; Kohri, M. Poly-β-Ketoester Particles as a Versatile Scaffold for Lanthanide-Doped Colorless Magnetic Materials. ACS Appl. Polym. Mater. 2020, 2, 2170–2178. [Google Scholar] [CrossRef]
- Zhou, W.; Qu, Q.; Yu, W.; An, Z. Single Monomer for Multiple Tasks: Polymerization Induced Self-Assembly, Functionalization and Cross-Linking, and Nanoparticle Loading. ACS Macro Lett. 2014, 3, 1220–1224. [Google Scholar] [CrossRef]
- Huang, J.; Liu, D.; Chen, Y.; Zhang, L.; Tan, J. Preparation of Block Copolymer Nano-Objects with Embedded β-Ketoester Functional Groups by Photoinitiated RAFT Dispersion Polymerization. Macromol. Rapid Commun. 2021, 42, 2000720. [Google Scholar] [CrossRef]
- Samanta, S.; Sarkar, S.; Singha, N.K. Multifunctional Layer-by-Layer Coating Based on a New Amphiphilic Block Copolymer via RAFT-Mediated Polymerization-Induced Self-Assembly Process. ACS Appl. Mater. Interfaces 2023, 15, 24812–24826. [Google Scholar] [CrossRef] [PubMed]
- Moad, G.; Chong, Y.; Postma, A.; Rizzardo, E.; Thang, S.H. Advances in RAFT Polymerization: The Synthesis of Polymers with Defined End-Groups. Polymer 2005, 46, 8458–8468. [Google Scholar]
- Tan, J.; Bai, Y.; Zhang, X.; Zhang, L. Room Temperature Synthesis of Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate)-Based Diblock Copolymer Nano-Objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Polym. Chem. 2016, 7, 2372–2380. [Google Scholar] [CrossRef]
- Guan, S.; Chen, A. One-Pot Synthesis of Cross-Linked Block Copolymer Nanowires via Polymerization-Induced Hierarchical Self-Assembly and Photodimerization. ACS Macro Lett. 2020, 9, 14–19. [Google Scholar] [CrossRef]
- Warren, N.J.; Mykhaylyk, O.O.; Mahmood, D.; Ryan, A.J.; Armes, S.P. RAFT Aqueous Dispersion Polymerization Yields Poly(Ethylene Glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. [Google Scholar] [CrossRef]
- Czajka, A.; Armes, S.P. In Situ SAXS Studies of a Prototypical RAFT Aqueous Dispersion Polymerization Formulation: Monitoring the Evolution in Copolymer Morphology during Polymerization-Induced Self-Assembly. Chem. Sci. 2020, 11, 11443–11454. [Google Scholar] [CrossRef]
- Czajka, A.; Armes, S.P. Time-Resolved Small-Angle X-Ray Scattering Studies during Aqueous Emulsion Polymerization. J. Am. Chem. Soc. 2021, 143, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Deane, O.J.; Musa, O.M.; Fernyhough, A.; Armes, S.P. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-Free RAFT Emulsion Polymerization. Macromolecules 2020, 53, 1422–1434. [Google Scholar] [CrossRef]
- Canning, S.L.; Smith, G.N.; Armes, S.P. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016, 49, 1985–2001. [Google Scholar] [CrossRef] [PubMed]
- Blanazs, A.; Ryan, A.J.; Armes, S.P. Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration. Macromolecules 2012, 45, 5099–5107. [Google Scholar] [CrossRef]
- Derry, M.J.; Fielding, L.A.; Armes, S.P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016, 52, 1–18. [Google Scholar] [CrossRef]
- Tan, J.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; He, J.; Xu, Q.; Zhang, X.; Zhang, L. An Insight into Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) for the Preparation of Diblock Copolymer Nano-Objects. Polym. Chem. 2017, 8, 1315–1327. [Google Scholar] [CrossRef]
- Cao, J.; Li, Y.; Tan, Y.; Zhang, L.; Tan, J. From RAFT Emulsion Polymerization to RAFT Dispersion Polymerization: A Facile Approach to Tuning Dispersities and Behaviors of Self-Assembled Block Copolymers. Polym. Chem. 2024, 15, 106–117. [Google Scholar] [CrossRef]
- Warren, N.J.; Mykhaylyk, O.O.; Ryan, A.J.; Williams, M.; Doussineau, T.; Dugourd, P.; Antoine, R.; Portale, G.; Armes, S.P. Testing the Vesicular Morphology to Destruction: Birth and Death of Diblock Copolymer Vesicles Prepared via Polymerization-Induced Self-Assembly. J. Am. Chem. Soc. 2015, 137, 1929–1937. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, R.; Zhang, Y.; Chen, Y.; Zhang, L.; Tan, J. Two Polymersome Evolution Pathways in One Polymerization-Induced Self-Assembly (PISA) System. Macromolecules 2020, 53, 8982–8991. [Google Scholar] [CrossRef]
- Li, K.; Liu, B. Polymer-Encapsulated Organic Nanoparticles for Fluorescence and Photoacoustic Imaging. Chem. Soc. Rev. 2014, 43, 6570–6597. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.B.; Lam, J.W.Y.; Tang, B.Z. Recent Progress in AIE-Active Polymers. Chin. J. Polym. Sci. 2019, 37, 289–301. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef]
- Huo, M.; Ye, Q.; Che, H.; Wang, X.; Wei, Y.; Yuan, J. Polymer Assemblies with Nanostructure-Correlated Aggregation-Induced Emission. Macromolecules 2017, 50, 1126–1133. [Google Scholar] [CrossRef]
- Hu, R.; Wang, J.; Qin, A.; Tang, B.Z. Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules 2022, 23, 2185–2196. [Google Scholar] [CrossRef]
- Cao, S.; Shao, J.; Abdelmohsen, L.K.E.A.; van Hest, J.C.M. Amphiphilic AIEgen-Polymer Aggregates: Design, Self-Assembly and Biomedical Applications. Aggregate 2022, 3, e128. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, L.; Yang, S.; Liu, M.; Huang, H.; Wen, Y.; Deng, F.; Li, Y.; Zhang, X.; Wei, Y. Synthesis and Biological Imaging of Fluorescent Polymeric Nanoparticles with AIE Feature via the Combination of RAFT Polymerization and Post-Polymerization Modification. Dyes Pigments 2018, 158, 79–87. [Google Scholar] [CrossRef]
- Zhong, H.; Zhao, B.; Deng, J. Synthesis and Application of Fluorescent Polymer Micro- and Nanoparticles. Small 2023, 19, 2300961. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Han, M.; Shen, X.; Song, Q.; Liu, D.; Zhang, W. Redox-Initiated RAFT Emulsion Polymerization-Induced Self-Assembly of β-Ketoester Functional Monomers. Polymers 2025, 17, 870. https://doi.org/10.3390/polym17070870
Wu Y, Han M, Shen X, Song Q, Liu D, Zhang W. Redox-Initiated RAFT Emulsion Polymerization-Induced Self-Assembly of β-Ketoester Functional Monomers. Polymers. 2025; 17(7):870. https://doi.org/10.3390/polym17070870
Chicago/Turabian StyleWu, Yanfei, Min Han, Xianrong Shen, Qingping Song, Dongdong Liu, and Wei Zhang. 2025. "Redox-Initiated RAFT Emulsion Polymerization-Induced Self-Assembly of β-Ketoester Functional Monomers" Polymers 17, no. 7: 870. https://doi.org/10.3390/polym17070870
APA StyleWu, Y., Han, M., Shen, X., Song, Q., Liu, D., & Zhang, W. (2025). Redox-Initiated RAFT Emulsion Polymerization-Induced Self-Assembly of β-Ketoester Functional Monomers. Polymers, 17(7), 870. https://doi.org/10.3390/polym17070870