Preparation and Optimization of Thermochromic Microcapsules as a Ternary System of Crystal Violet Lactone: Bisphenol A: Decanol Encapsulated with Urea Formaldehyde Resin in a UV-Curable Primer
Abstract
:1. Introduction
2. Methods and Test Materials
2.1. Test Materials
2.2. Synthesis Method of Thermochromic Microcapsules
- Take microcapsule 14# for example:
2.3. The Synthesis Method of Thermochromic UV Primer
2.4. Test and Characterization
2.4.1. Yield and Encapsulation Rate Test
2.4.2. Color Changing Property and Formaldehyde Emission Test
2.4.3. Normalized Analysis
2.4.4. Microcosmographic Analysis
2.4.5. Chemical Composition Test
2.4.6. Optical Properties Test
2.4.7. Mechanical Property Test
3. Results and Discussion
3.1. Results Analysis of the Preparation of the Thermochromic Microcapsules
3.1.1. Analysis of Yield and Encapsulation Rate of Thermochromic Microcapsules Prepared by Orthogonal Test
3.1.2. Analysis of Color-Changing Property and Formaldehyde Emission of the Thermochromic Microcapsules by Orthogonal Test
3.1.3. Normalization of Orthogonal Test Results and Comprehensive Performance Analysis of the Thermochromic Microcapsules of the Single-Factor Test
3.1.4. Analysis of the Microscopic Morphology of the Thermochromic Microcapsules
3.1.5. Analysis of Chemical Composition of the Thermochromic Microcapsules
3.2. UV Primer Performance Analysis
3.2.1. Analysis of the UV Primer’s Optical Properties
3.2.2. Analysis of UV Primer Mechanical Properties
3.2.3. Analysis of UV Primer Morphology
3.2.4. Analysis of the Chemical Composition of UV Primers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Teja, A.S.; Srivastava, A.; Satrughna, J.A.K.; Tiwari, M.K.; Kanwade, A.; Yadav, S.C.; Shirage, P.M. Optimal Processing Methodology for Futuristic Natural Dye-Sensitized Solar Cells and Novel Applications. Dyes Pigments 2023, 210, 110997. [Google Scholar]
- Mohri, Y.; Kobashi, J.; Yoshida, H.; Ozaki, M. Morpho-Butterfly-Inspired Patterning of Helical Photonic Structures for Circular-Polarization-Sensitive, Wide-Angle Diffuse Reflection. Adv. Funct. Mater. 2017, 5, 1601071. [Google Scholar]
- Ergoktas, M.S.; Bakan, G.; Kovalska, E.; Le Fevre, L.W.; Fields, R.P.; Steiner, P.; Yu, X.X.; Salihoglu, O.; Balci, S.; Fal’ko, V.I.; et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 2021, 15, 493–498. [Google Scholar] [PubMed]
- Wang, H.; Zhao, L.; Song, G.L.; Tang, G.Y.; Shi, X.H. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization. Sol. Energy Mater. Sol. C 2018, 175, 102–110. [Google Scholar]
- Xu, K.N.; Luo, Y. Packaging Ink Microcapsules with High Stability and Biocompatibility Based on Natural Dye Gardenia Blue. Colloid Surf. A 2023, 658, 130778. [Google Scholar]
- Wang, X.M.; Wang, X.X.; Cui, Y.F. Methyl Red Modified Crystal Violet Lactone Microcapsules for Natural and Composite Fabrics Producing a Violet to Orange-Red Effect at Low Temperature. Mater. Chem. Phys. 2023, 305, 127901. [Google Scholar]
- Wang, X.A.; Lei, W.Y.; Zou, F.B.; Zhong, Y.W.; Guo, G.L.; Zhu, J.L. Ternary Mixture Thermochromic Microcapsules for Visible Light Absorption and Photothermal Conversion Energy Storage. Appl. Surf. Sci. 2023, 630, 157431. [Google Scholar]
- Hu, M.H.; Peil, S.; Xing, Y.W.; Doehler, D.; da Silva, L.C.; Binder, W.H.; Kappl, M.; Bannwarth, M.B. Monitoring Crack Appearance and Healing in Coatings with Damage Self-Reporting Nanocapsules. Mater. Horiz. 2018, 5, 51–58. [Google Scholar]
- Yin, C.Y.; Liu, R.F.; Zheng, Z.Y.; Ba, L. Intelligent Reversible Electrochromic Flexible Electronic Fabric Based on Electronic Ink Microcapsules. Phys. Scr. 2022, 97, 115503. [Google Scholar]
- Wang, L.; Han, Y.; Yan, X.X. Effects of Adding Methods of Fluorane Microcapsules and Shellac Resin Microcapsules on the Preparation and Properties of Bifunctional Waterborne Coatings for Basswood. Polymers 2022, 14, 3919. [Google Scholar] [CrossRef]
- Khaled, K.; Berardi, U. Current and future coating technologies for architectural glazing applications. Energy Build. 2021, 244, 111022. [Google Scholar]
- Hu, W.G.; Liu, Y.; Konukcu, A.C. Study on withdrawal load resistance of screw in wood-based materials: Experimental and numerical. Wood Mater. Sci. Eng. 2023, 18, 334–343. [Google Scholar]
- Hu, W.G.; Yu, R.Z. Mechanical and acoustic characteristics of four wood species subjected to bending load. Maderas Cienc. Tecnol. 2023, 25, 39. [Google Scholar]
- Hu, W.G.; Luo, M.Y.; Hao, M.M.; Tang, B.; Wan, C. Study on the effects of selected factors on the diagonal tensile strength of oblique corner furniture joints constructed by wood dowel. Forests 2023, 14, 1149. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.G.; Kasal, A.; Erdil, Y.Z. The State of the Art of Biomechanics Applied in Ergonomic Furniture Design. Appl. Sci. 2023, 13, 12120. [Google Scholar] [CrossRef]
- Hu, W.G.; Luo, M.Y.; Yu, R.Z.; Zhao, Y. Effects of the selected factors on cyclic load performance of T-shaped mortise-and-tenon furniture joints. Wood Mater. Sci. Eng. 2024, 18, 1–10. [Google Scholar]
- Chen, Y.; Liu, R.; Luo, J. Improvement of Anti-Aging Property of UV-Curable Coatings with Silica-Coated TiO2. Prog. Org. Coat. 2023, 179, 107479. [Google Scholar]
- Wang, S.P.; Wu, Y.G.; Dai, J.Y.; Teng, N.; Peng, Y.Y.; Cao, L.J.; Liu, X.Q. Making organic coatings greener: Renewable resource, solvent-free synthesis, UV curing and repairability. Eur. Polym. J. 2020, 123, 109439. [Google Scholar]
- Noè, C.; Tonda-Turo, C.; Carmagnola, I.; Hakkarainen, M.; Sangermano, M. UV-Cured Biodegradable Methacrylated Starch-Based Coatings. Coatings 2021, 11, 127. [Google Scholar] [CrossRef]
- Xu, R.; Wang, D.; Dou, L.H.; Cui, J.Q.; He, L.; Feng, F.Q.; Liu, F.F. Preparation and properties of self-healing polyurethane wood coatings with borate ester bonds. J. For. Eng. 2024, 9, 54–60. [Google Scholar]
- Xu, H.J.; Chen, C.B.; Xiao, J.H.; Pan, J.Q.; Shen, L.M.; Zhang, Y.; Sun, F.L. Effect of chitosan quaternary ammonium salt-modified waterborne epoxy resin on wood dimensional stability and anticorrosion/antimildew properties. J. For. Eng. 2024. [Google Scholar] [CrossRef]
- Wu, Z.H.; Chang, Y.J. Research and application of microcapsule technology in the wood industry. J. For. Eng. 2024. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Effect of Polyurethane Non-Transparent Coating Process on Paint Film Performance Applied on Modified Poplar. Coatings 2022, 12, 39. [Google Scholar] [CrossRef]
- Xue, J.X.; Xu, W.; Zhou, J.C.; Mao, W.G.; Wu, S.S. Effects of High-Temperature Heat Treatment Modification by Impregnation on Physical And Mechanical Properties of Poplar. Materials 2022, 15, 7334. [Google Scholar] [CrossRef]
- Cheng, H.J.; Wang, F.J.; Liu, H.J.; Ou, J.F.; Li, W.; Xue, R.J. Fabrication and Properties of Thermochromic Superhydrophobic Coatings. Adv. Eng. Mater. 2022, 24, 2100647. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhu, Y.Y.; Yang, J.R.; Zhai, X.Q. Energy saving performance of thermochromic coatings with different colors for buildings. Energy Build. 2020, 215, 109920. [Google Scholar]
- Li, C.E.; Yu, H.; Song, Y.; Liang, H.; Yan, X. Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage. Energy 2019, 167, 1031–1039. [Google Scholar] [CrossRef]
- Al-Shannaq, R.; Farid, M.; Al-Muhtaseb, S.; Kurdi, J. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Sol. Energy Mater. Sol. C 2015, 132, 311–318. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Influence of the Bottom Color Modification and Material Color Modification Process on the Performance of Modified Poplar. Coatings 2021, 11, 660. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Wang, J.X.; Xu, W. Study of selective modification effect of constructed structural color layers on European beech wood surfaces. Forests 2024, 15, 261. [Google Scholar] [CrossRef]
- Weng, M.Y.; Zhu, Y.T.; Mao, W.G.; Zhou, J.C.; Xu, W. Nano-Silica/Urea-Formaldehyde Resin-Modified Fast-Growing Lumber Performance Study. Forests 2023, 14, 1440. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.Y.; Zhu, Y. Reverse design and additive manufacturing of furniture protective foot covers. Bioresources 2024, 19, 4670–4678. [Google Scholar]
- Wang, X.Y.; Liu, X.; Wu, S.S.; Xu, W. The influence of different impregnation factors on mechanical properties of silica sol-modified Populus tomentosa. Wood Fiber Sci. 2024, 56, 65–71. [Google Scholar]
- Tampucci, S.; Tofani, G.; Chetoni, P.; Di Gangi, M.; Mezzetta, A.; Paganini, V.; Burgalassi, S.; Pomelli, C.S.; Monti, D. Sporopollenin Microcapsule: Sunscreen Delivery System with Photoprotective Properties. Pharmaceutics 2022, 14, 2041. [Google Scholar] [CrossRef]
- Liu, C.; Xu, W. Effect of Coating Process on Properties of Two-Component Waterborne Polyurethane Coatings for Wood. Coatings 2022, 12, 1857. [Google Scholar] [CrossRef]
- Li, B.; Xu, F.C.; Guan, T.T.; Li, Y.; Sun, J.Q. Self-Adhesive Self-Healing Thermochromic Ionogels for Smart Windows with Excellent Environmental and Mechanical Stability, Solar Modulation, and Antifogging Capabilities. Adv. Mater. 2023, 35, 2211456. [Google Scholar] [CrossRef]
- Halahlah, A.; Piironen, V.; Mikkonen, K.S.; Ho, T.M. Wood Hemicelluloses as Innovative Wall Materials for Spray-Dried Microencapsulation of Berry Juice: Part 1-Effect of Homogenization Techniques on Their Feed Solution Properties. Food Bioprocess Technol. 2023, 16, 909–929. [Google Scholar] [CrossRef]
- Güngör Ertuğral, T.; Danışman, M.; Oral, A. Microencapsulation of N-Tridecane/n-Tetradecane Eutectic Mixture with Poly(Methyl Methacrylate) Shell for Candidate for Food Packaging Thermal Energy Storage Material. Polym.-Plast. Technol. Mater. 2023, 62, 554–562. [Google Scholar]
- Tözüm, M.S.; Aksoy, S.A.; Alkan, C. Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage. Fibers Polym. 2018, 19, 660–669. [Google Scholar]
- Huynh, B.Q.; Rajasekaran, S.; Batista, J.; Lewis, S.; Sinhoreti, M.A.C.; Pfeifer, C.S.; Fugolin, A.P. Improving Self-Healing Dental-Restorative Materials with Functionalized and Reinforced Microcapsules. Polymers 2024, 16, 2410. [Google Scholar] [CrossRef]
- Khorasani, S.N.; Ataei, S.; Neisiany, R.E. Microencapsulation of a coconut oil-based alkyd resin into poly (melamine-urea-formaldehyde) as shell for self-healing purposes. Prog. Org. Coat. 2017, 111, 99–106. [Google Scholar]
- Zhao, W.T.; Yan, X.X. Preparation of Thermochromic Microcapsules of Bisphenol A and Crystal Violet Lactone and Their Effect on Coating Properties. Polymers 2022, 14, 1393. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Jin, X.; Li, Y.; Jiang, J.Y. Mechanism of solid-liquid phase transition in coronal core-shell microcapsules phase change materials: Molecular simulations and microscopic experiments. J. Energy Storage 2025, 111, 115466. [Google Scholar]
- Liu, Q.Q.; Gao, D.; Xu, W. Effect of Sanding Processes on the Surface Properties of Modified Poplar Coated by Primer Compared with Mahogany. Coatings 2020, 10, 856. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Effect of Paint Process on the Performance of Modified Poplar Wood Antique. Coatings 2021, 11, 1174. [Google Scholar] [CrossRef]
- Xu, W.; Fang, X.Y.; Han, J.T.; Wu, Z.H. Effect of Coating Thickness on Sound Absorption Property of Four Wood Species Commonly Used for Piano Soundboards. Wood Fiber Sci. 2020, 52, 28–43. [Google Scholar]
- GB/T 11186.3-1989; Methods for Measuring the Colour of Coating Films. Part III: Calculation of Colour Differences. Standardization Administration of the People’s Republic of China: Beijing, China, 1990.
- GB/T 4893.6-2013; Test of Surface Coatings of Furniture-Part 6: Determination of Gloss Value. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- Wang, C.; Yu, J.H.; Jiang, M.H.; Li, J.Y. Effect of selective enhancement on the bending performance of fused deposition methods 3D-printed PLA models. Bioresources 2024, 19, 2660–2669. [Google Scholar]
- Wang, C.; Zhou, Z.Y. Optical properties and lampshade design applications of PLA 3D printing materials. Bioresources 2023, 18, 1545–1553. [Google Scholar]
- Wang, C.; Yu, J.H.; Jiang, M.H.; Li, J.Y. Effect of slicing parameters on the light transmittance of 3D-printed polyethylene terephthalate glycol products. Bioresources 2024, 19, 500–509. [Google Scholar]
- Wang, C.; Zhang, C.Y.; Ding, K.Q.; Jiang, M.H. Immersion polishing post-treatment of PLA 3D printed formed parts on its surface and mechanical performance. BioResources 2023, 18, 7995–8006. [Google Scholar]
Test Materials | Molecular Formula | Molecular Mass | Purity | Manufacturer |
---|---|---|---|---|
Crystal violet lactone | C26H29N3O2 | 415.527 | AR | Wuhan Huaxiang Biotechnology Co., Ltd., Wuhan, China |
Bisphenol A | C15H16O2 | 228.286 | AR | Shanghai Haiyu Chemical Co., Ltd., Shanghai, China |
Decanol | C10H22O | 158.28 | AR | Shanghai McLean Biochemical Technology Co., Ltd., Shanghai, China |
Urea | CH4N2O | 60.06 | AR | Guangzhou Suixin Chemical Co., Ltd., Guangzhou, China |
Formaldehyde solution | CH2O | 30.03 | 37% | Shandong Xinjucheng Chemical Technology Co., Ltd., Jinan, China |
Triethanolamine | C6H15NO3 | 149.19 | AR | Shandong Chengkai New Material Co., Ltd., Linyi, China |
Citric acid monohydrate | C6H10O8 | 210.139 | AR | Jinan Xiaotian Chemical Co., Ltd., Jinan, China |
Gum Arabic powder | N/A | - | AR | Nanjing Jinyou Biotechnology Co., Ltd., Nanjing, China |
Triton X-100 | C16H26O2 | 250.376 | AR | Shandong Yusuo Chemical Technology Co., Ltd., Linyi, China |
Span-80 | C24H44O6 | 428.6 | AR | Shandong Yusuo Chemical Technology Co., Ltd., Linyi, China |
Levels | Factor A Urea Batch | Factor B WF:WU | Factor C HLB Values | Factor D Core–Wall Ratio |
---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 |
2 | B | 1.2:1 | 10.00 | 1:1.5 |
3 | C | 0.8:1 | 13.40 | 1:2 |
Sample (#) | Factor A | Factor B | Factor C | Factor D |
---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 |
2 | A | 1.2:1 | 10.00 | 1:1.5 |
3 | A | 0.8:1 | 13.40 | 1:2 |
4 | B | 1.6:1 | 10.00 | 1:2 |
5 | B | 1.2:1 | 13.40 | 1:1 |
6 | B | 0.8:1 | 8.00 | 1:1.5 |
7 | C | 1.6:1 | 13.40 | 1:1.5 |
8 | C | 1.2:1 | 8.00 | 1:2 |
9 | C | 0.8:1 | 10.00 | 1:1 |
Sample (#) | Urea Batch | Urea (g) | Formaldehyde (g) | Distilled Water for Wall Material (mL) | Gum Arabic (g) | Triton X-100 (g) | Distilled Water for Core Material (mL) | Core Materials (g) | NaCl (g) | SiO2 (g) |
---|---|---|---|---|---|---|---|---|---|---|
1 | A | 8.00 | 16.84 | 288.00 | 9.60 | - | 182.40 | 14.40 | 2.02 | 2.02 |
2 | A | 8.00 | 12.62 | 256.00 | 3.58 | 2.11 | 108.09 | 8.53 | 1.19 | 1.19 |
3 | A | 8.00 | 8.42 | 125.00 | - | 2.07 | 39.39 | 3.11 | 0.44 | 0.44 |
4 | B | 8.00 | 16.84 | 288.00 | 3.02 | 1.78 | 91.20 | 7.20 | 1.01 | 1.01 |
5 | B | 8.00 | 12.62 | 256.00 | - | 8.53 | 162.13 | 12.80 | 1.79 | 1.79 |
6 | B | 8.00 | 8.42 | 125.00 | 2.76 | - | 52.52 | 4.15 | 0.58 | 0.58 |
7 | C | 8.00 | 16.84 | 288.00 | - | 6.40 | 121.60 | 9.60 | 1.34 | 1.34 |
8 | C | 8.00 | 12.62 | 256.00 | 4.27 | - | 81.07 | 6.40 | 0.90 | 0.90 |
9 | C | 8.00 | 8.42 | 125.00 | 2.61 | 1.54 | 78.79 | 6.22 | 0.87 | 0.87 |
Sample (#) | Urea Batch | Urea (g) | Formaldehyde (g) | Distilled Water for Wall Material (mL) | Gum Arabic (g) | Span-80 (g) | Triton X-100 (g) | Distilled Water for Core Material (mL) | Core Materials (g) | NaCl (g) | SiO2 (g) |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | A | 8.00 | 8.42 | 125.00 | 1.27 | 1.49 | - | 52.52 | 4.15 | 0.58 | 0.58 |
11 | A | 8.00 | 8.42 | 125.00 | 2.01 | 0.75 | - | 52.52 | 4.15 | 0.58 | 0.58 |
12 | A | 8.00 | 8.42 | 125.00 | 2.76 | - | - | 52.52 | 4.15 | 0.58 | 0.58 |
13 | A | 8.00 | 8.42 | 125.00 | 2.25 | - | 0.51 | 52.52 | 4.15 | 0.58 | 0.58 |
14 | A | 8.00 | 8.42 | 125.00 | 1.74 | - | 1.02 | 52.52 | 4.15 | 0.58 | 0.58 |
Addition Rate (%) | Mass of the Thermochromic Microcapsules (g) | Mass of the UV Primer (g) |
---|---|---|
0 | 0.000 | 1.000 |
5 | 0.050 | 0.950 |
10 | 0.100 | 0.900 |
15 | 0.150 | 0.850 |
20 | 0.200 | 0.800 |
25 | 0.250 | 0.750 |
30 | 0.300 | 0.700 |
Sample (#) | Urea Batch | WF:WU | HLB Values | Core–Wall Ratio | Yield (%) |
---|---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 | 41.10 |
2 | A | 1.2:1 | 10.00 | 1:1.5 | 34.03 |
3 | A | 0.8:1 | 13.40 | 1:2 | 43.03 |
4 | B | 1.6:1 | 10.00 | 1:2 | 21.70 |
5 | B | 1.2:1 | 13.40 | 1:1 | 25.14 |
6 | B | 0.8:1 | 8.00 | 1:1.5 | 44.54 |
7 | C | 1.6:1 | 13.40 | 1:1.5 | 24.60 |
8 | C | 1.2:1 | 8.00 | 1:2 | 29.05 |
9 | C | 0.8:1 | 10.00 | 1:1 | 41.26 |
k1 | 39.39 | 29.13 | 38.23 | 35.83 | |
k2 | 30.46 | 29.41 | 32.33 | 34.39 | |
k3 | 31.63 | 42.94 | 30.92 | 31.26 | |
R | 8.93 | 13.81 | 7.31 | 4.57 | |
Level | A > D > B > C | ||||
Best Level | A1 | B3 | C1 | D1 | |
Best process | A1B3C1D1 |
Sample (#) | Urea Batch | WF:WU | HLB Values | Core–Wall Ratio | Encapsulation Rate (%) |
---|---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 | 71.0 |
2 | A | 1.2:1 | 10.00 | 1:1.5 | 57.0 |
3 | A | 0.8:1 | 13.40 | 1:2 | 27.0 |
4 | B | 1.6:1 | 10.00 | 1:2 | 42.0 |
5 | B | 1.2:1 | 13.40 | 1:1 | 43.0 |
6 | B | 0.8:1 | 8.00 | 1:1.5 | 47.0 |
7 | C | 1.6:1 | 13.40 | 1:1.5 | 50.0 |
8 | C | 1.2:1 | 8.00 | 1:2 | 49.0 |
9 | C | 0.8:1 | 10.00 | 1:1 | 42.0 |
k1 | 51.7 | 54.3 | 55.7 | 52.0 | |
k2 | 44.0 | 49.7 | 47.0 | 51.3 | |
k3 | 47.0 | 38.6 | 40.0 | 39.3 | |
R | 7.7 | 15.7 | 15.7 | 12.7 | |
Level | B = C > D > A | ||||
Best Level | A1 | B1 | C1 | D1 | |
Best process | A1B1C1D1 |
Sample (#) | Low-Temperature Color Difference Value (−20 °C) | High-Temperature Color Difference Value (60 °C) | ΔE | Formaldehyde Emission (mg/m3) | ||||
---|---|---|---|---|---|---|---|---|
L1 | a1 | b1 | L2 | a2 | b2 | |||
1 | 68.156 | 1.994 | 13.206 | 69.400 | 1.975 | 15.175 | 2.329 | 1.488 |
2 | 70.219 | 0.863 | 4.506 | 71.100 | 0.225 | 5.050 | 1.216 | 1.397 |
3 | 63.031 | −0.381 | −16.675 | 63.900 | −2.050 | −16.425 | 1.898 | 1.488 |
4 | 69.500 | −0.188 | 3.850 | 70.450 | −0.900 | 4.550 | 1.378 | 1.463 |
5 | 65.338 | 1.838 | −5.156 | 66.525 | 1.000 | −4.925 | 1.471 | 1.364 |
6 | 73.225 | −0.994 | −10.000 | 74.475 | −1.500 | −7.825 | 2.559 | 1.299 |
7 | 65.450 | −1.381 | −12.344 | 66.600 | −2.700 | −12.000 | 1.783 | 1.479 |
8 | 67.544 | 0.413 | −12.100 | 69.925 | −1.225 | −10.125 | 3.500 | 1.397 |
9 | 74.675 | 2.106 | −1.075 | 76.100 | 1.100 | −0.275 | 1.919 | 1.463 |
Sample (#) | Urea Batch | WF:WU | HLB Values | Core–Wall Ratio | ΔE |
---|---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 | 2.329 |
2 | A | 1.2:1 | 10.00 | 1:1.5 | 1.216 |
3 | A | 0.8:1 | 13.40 | 1:2 | 1.898 |
4 | B | 1.6:1 | 10.00 | 1:2 | 1.378 |
5 | B | 1.2:1 | 13.40 | 1:1 | 1.471 |
6 | B | 0.8:1 | 8.00 | 1:1.5 | 2.559 |
7 | C | 1.6:1 | 13.40 | 1:1.5 | 1.783 |
8 | C | 1.2:1 | 8.00 | 1:2 | 3.500 |
9 | C | 0.8:1 | 10.00 | 1:1 | 1.919 |
k1 | 1.814 | 1.830 | 2.796 | 1.906 | |
k2 | 1.803 | 2.063 | 1.504 | 1.853 | |
k3 | 2.401 | 2.125 | 1.718 | 2.259 | |
R | 0.598 | 0.295 | 1.292 | 0.406 | |
Level | C > A > D > B | ||||
Best Level | A3 | B3 | C1 | D3 | |
Best process | A3B3C1D3 |
Sample (#) | Urea Batch | WF:WU | HLB Values | Core–Wall Ratio | Positive Formaldehyde Emission Processing Data (mg/m3) |
---|---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 | 0.511 |
2 | A | 1.2:1 | 10.00 | 1:1.5 | 0.602 |
3 | A | 0.8:1 | 13.40 | 1:2 | 0.511 |
4 | B | 1.6:1 | 10.00 | 1:2 | 0.536 |
5 | B | 1.2:1 | 13.40 | 1:1 | 0.635 |
6 | B | 0.8:1 | 8.00 | 1:1.5 | 0.700 |
7 | C | 1.6:1 | 13.40 | 1:1.5 | 0.520 |
8 | C | 1.2:1 | 8.00 | 1:2 | 0.602 |
9 | C | 0.8:1 | 10.00 | 1:1 | 0.536 |
k1 | 0.541 | 0.522 | 0.604 | 0.561 | |
k2 | 0.624 | 0.613 | 0.558 | 0.607 | |
k3 | 0.553 | 0.582 | 0.555 | 0.550 | |
R | 0.083 | 0.091 | 0.049 | 0.057 | |
Level | B > A > D > C | ||||
Best Level | A2 | B2 | C1 | D2 | |
Best process | A2B2C1D2 |
Sample (#) | n | Average of Equal-Weighted Total Scores | |||
---|---|---|---|---|---|
Urea Batch | WF:WU | HLB Values | Core–Wall Ratio | ||
1 | 92.277 | 100.000 | 66.539 | 73.000 | 82.954 |
2 | 76.403 | 80.282 | 34.745 | 86.000 | 69.357 |
3 | 96.610 | 38.028 | 54.228 | 73.000 | 65.467 |
4 | 48.720 | 59.155 | 39.373 | 76.5714 | 55.955 |
5 | 56.444 | 60.563 | 42.031 | 90.714 | 62.438 |
6 | 100.000 | 66.197 | 73.110 | 100.000 | 84.827 |
7 | 55.231 | 70.422 | 50.949 | 74.286 | 62.722 |
8 | 65.222 | 69.014 | 100.000 | 86.000 | 80.059 |
9 | 92.636 | 59.155 | 54.823 | 76.571 | 70.796 |
Sample (#) | Urea Batch | WF:WU | HLB Values | Core–Wall Ratio | Average of Equal-Weighted Total Scores |
---|---|---|---|---|---|
1 | A | 1.6:1 | 8.00 | 1:1 | 82.954 |
2 | A | 1.2:1 | 10.00 | 1:1.5 | 69.357 |
3 | A | 0.8:1 | 13.40 | 1:2 | 65.467 |
4 | B | 1.6:1 | 10.00 | 1:2 | 55.955 |
5 | B | 1.2:1 | 13.40 | 1:1 | 62.438 |
6 | B | 0.8:1 | 8.00 | 1:1.5 | 84.827 |
7 | C | 1.6:1 | 13.40 | 1:1.5 | 62.722 |
8 | C | 1.2:1 | 8.00 | 1:2 | 80.059 |
9 | C | 0.8:1 | 10.00 | 1:1 | 70.796 |
k1 | 72.592 | 67.210 | 82.613 | 72.063 | |
k2 | 67.739 | 70.618 | 65.369 | 72.302 | |
k3 | 71.192 | 73.696 | 63.542 | 67.160 | |
R | 4.853 | 6.486 | 19.071 | 5.142 | |
Level | C > B > D > A | ||||
Best Level | A1 | B3 | C1 | D2 | |
Best process | A1B3C1D2 |
Sample (#) | Low-Temperature-Color Difference Value (−20 °C) | High-Temperature Color Difference Value (60 °C) | Yield (%) | Encapsulation Rate (%) | ΔE | Formaldehyde Emission (mg/m3) | ||||
---|---|---|---|---|---|---|---|---|---|---|
L1 | a1 | b1 | L2 | a2 | b2 | |||||
10 | 78.8 | 2.3 | −1.425 | 79.35 | 5.375 | −1.3 | 41.65 | 46 | 3.126 | 1.405 |
11 | 79.325 | 2.1 | −2.45 | 79.9 | 5.175 | −2.2 | 49.58 | 39 | 3.138 | 1.364 |
12 | 82.15 | 3.1 | −0.725 | 82.775 | 1.1 | 0.025 | 45.16 | 42 | 2.225 | 1.323 |
13 | 86.575 | 1.2 | 2.725 | 86.4 | 1.925 | 2.8 | 46.02 | 43 | 0.749 | 1.340 |
14 | 77.925 | 6.725 | −2.25 | 79.65 | 2.625 | −1.075 | 43.29 | 45 | 4.600 | 1.310 |
Sample (#) | n | Average of Equal-Weighted Total Scores | |||
---|---|---|---|---|---|
Yield (%) | Encapsulation Rate (%) | ΔE | Formaldehyde Emission (mg/m3) | ||
10 | 84.020 | 100.000 | 67.953 | 86.212 | 84.546 |
11 | 100.000 | 84.783 | 68.213 | 92.162 | 86.290 |
12 | 91.087 | 91.304 | 48.375 | 98.113 | 82.219 |
13 | 92.834 | 93.478 | 16.293 | 95.646 | 74.563 |
14 | 87.315 | 97.826 | 100.000 | 100.000 | 96.285 |
Wave Numbers (cm−1) | Characteristic Peak | Substance | Formation Reasons |
---|---|---|---|
3321 | -OH | Bisphenol A | Telescopic Vibration Peak |
2922 | C-CH3 | Bisphenol A | Telescopic vibration peaks |
1513 and 1463 | Benzene ring C=C | Bisphenol A | Telescopic vibration peak |
1251 | C-OH | Bisphenol A | Absorption peak |
1055 | C-O | Bisphenol A | Telescopic vibration peak |
1613 | Lactone ring carbonyl C=O | Crystal violet lactone | Telescopic vibration peak |
1177 and 1055 | Ester group C-O-C | Crystal violet lactone | Symmetric telescopic vibration peak |
1635 | The ester carbonyl of the non-endo ring structure C=O | Core materials | Absorption peak |
3321 | -OH in the carboxyl group | Core materials | Absorption peak |
3353 | N-H, O-H | Wall materials | Stretching vibration peak |
2963 | -CH2- | Wall materials | Asymmetric stretching vibration |
1566 | The N-H of the amide | Wall materials | Bending vibration |
1390 | C-N | Wall materials | Stretching vibration peak |
1136 | CH3O | Wall materials | Absorption peak |
Sample (#) | Addition Rate (%) | Glossiness (GU) | Transmittance (%) | Losing Glossiness Rate (%) | ||
---|---|---|---|---|---|---|
20° | 60° | 85° | ||||
11 | 0 | 73.7 | 112.1 | 91.6 | 94.06 | - |
5 | 15.4 | 46.7 | 43.5 | 87.73 | 58.34 | |
10 | 14.3 | 40.9 | 47.1 | 84.35 | 63.51 | |
15 | 8.6 | 35.8 | 77.2 | 81.58 | 68.06 | |
20 | 7.3 | 28.8 | 62.1 | 75.02 | 74.31 | |
25 | 11.4 | 41.0 | 57.0 | 65.31 | 63.43 | |
14 | 0 | 73.7 | 112.1 | 91.6 | 94.06 | - |
5 | 62.3 | 89.7 | 74.2 | 92.43 | 19.98 | |
10 | 62.9 | 80.3 | 55.8 | 88.33 | 28.37 | |
15 | 83.3 | 88.3 | 67.4 | 85.34 | 21.23 | |
20 | 8.6 | 35.2 | 58.4 | 81.90 | 68.60 | |
25 | 10.1 | 35.9 | 53.5 | 78.41 | 67.98 |
Sample (#) | Addition Rates (%) | e (%) | Roughness (μm) |
---|---|---|---|
11 | 0 | 10.6 | 0.089 |
5 | 13.2 | 0.468 | |
10 | 15.3 | 0.619 | |
15 | 12.8 | 0.196 | |
20 | 3.8 | 0.239 | |
25 | 1.8 | 0.310 | |
14 | 0 | 10.6 | 0.089 |
5 | 16.8 | 0.212 | |
10 | 17.4 | 0.153 | |
15 | 16.3 | 0.182 | |
20 | 6.7 | 0.201 | |
25 | 4.0 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Yan, X. Preparation and Optimization of Thermochromic Microcapsules as a Ternary System of Crystal Violet Lactone: Bisphenol A: Decanol Encapsulated with Urea Formaldehyde Resin in a UV-Curable Primer. Polymers 2025, 17, 851. https://doi.org/10.3390/polym17070851
Zou Y, Yan X. Preparation and Optimization of Thermochromic Microcapsules as a Ternary System of Crystal Violet Lactone: Bisphenol A: Decanol Encapsulated with Urea Formaldehyde Resin in a UV-Curable Primer. Polymers. 2025; 17(7):851. https://doi.org/10.3390/polym17070851
Chicago/Turabian StyleZou, Yuming, and Xiaoxing Yan. 2025. "Preparation and Optimization of Thermochromic Microcapsules as a Ternary System of Crystal Violet Lactone: Bisphenol A: Decanol Encapsulated with Urea Formaldehyde Resin in a UV-Curable Primer" Polymers 17, no. 7: 851. https://doi.org/10.3390/polym17070851
APA StyleZou, Y., & Yan, X. (2025). Preparation and Optimization of Thermochromic Microcapsules as a Ternary System of Crystal Violet Lactone: Bisphenol A: Decanol Encapsulated with Urea Formaldehyde Resin in a UV-Curable Primer. Polymers, 17(7), 851. https://doi.org/10.3390/polym17070851