Processing of High-Performance Polymeric Materials: Modeling and Characterization
1. Introduction
2. Overview of the Published Articles
3. Conclusions and Outlook
Author Contributions
Conflicts of Interest
List of Contributions
- Höftberger, T.; Dietrich, F.; Zitzenbacher, G.; Burgstaller, C. Influence of Fiber Content and Dosing Position on the the Mechanical Properties of Short-Carbon-Fiber Polypropylene Compounds. Polymers 2022, 14, 4877. https://doi.org/10.3390/polym14224877
- Pöllinger, A.; Maurer, J.; Koch, T.; Krenn, S.; Plank, B.; Schwarz, S.; Stöger-Pollach, M.; Siakkou, E.; Smrczkova, K.; Schöbel, M. Characterization of PPS Piston and Packing Ring Materials for High-Pressure Hydrogen Applications. Polymers 2024, 16, 412. https://doi.org/10.3390/polym16030412
- Onyu, K.; Yeetsorn, R.; Gostick, J. Fabrication of Bipolar Plates from Thermoplastic Elastomer Composites for Vanadium Redox Flow Battery. Polymers 2022, 14, 2143. https://doi.org/10.3390/polym14112143
- Längauer, M.; Zitzenbacher, G.; Stadler, H.; Hochenauer, C. Enhanced Simulation of Infrared Heating of Thermoplastic Composites Prior to Forming under Consideration of Anisotropic Thermal Conductivity and Deconsolidation by Means of Novel Physical Material Models. Polymers 2022, 14, 3331. https://doi.org/10.3390/polym14163331
- Mokarizadehhaghighishirazi, M.; Buffel, B.; Lomov, S.V.; Desplentere, F. Homogenisation of the Local Thermal Conductivity in Injection-Moulded Short Fibre Reinforced Composites. Polymers 2022, 14, 3360. https://doi.org/10.3390/polym14163360
- Amstutz, C.; Weisse, B.; Haeberlin, A.; Burger, J.; Zurbuchen, A. Inverse Finite Element Approach to Identify the Post-Necking Hardening Behavior of Polyamide 12 under Uniaxial Tension. Polymers 2022, 14, 3476. https://doi.org/10.3390/polym14173476
- Boiko, Y.; Marikhin, V.; Myasnikova, L. Statistical Analysis of the Mechanical Behavior of High-Performance Polymers: Weibull’s or Gaussian Distributions? Polymers 2022, 14, 2841. https://doi.org/10.3390/polym14142841
- Siraj, S.; Al-Marzouqi, A.H.; Iqbal, M.Z.; Ahmed, W. Impact of Micro Silica Filler Particle Size on Mechanical Properties of Polymeric Based Composite Material. Polymers 2022, 14, 4830. https://doi.org/10.3390/polym14224830
- Nikolaeva, A.L.; Bugrov, A.N.; Sokolova, M.P.; Ivan’kova, E.M.; Abalov, I.V.; Vlasova, E.N.; Gofman, I.V. Metal Oxide Nanoparticles: An Effective Tool to Modify the Functional Properties of Thermally Stable Polyimide Films. Polymers 2022, 14, 2580. https://doi.org/10.3390/polym14132580
- Tong, Y.; Huang, S.; Meng, X.; Wang, Y. Aqueous-Cellulose-Solvent-Derived Changes in Cellulose Nanocrystal Structure and Reinforcing Effects. Polymers 2023, 15, 3030. https://doi.org/10.3390/polym15143030
- Chaala, M.; Sebba, F.Z.; Fuster, M.G.; Moulefera, I.; Montalbán, M.G.; Carissimi, G.; Víllora, G. Accelerated Simple Preparation of Curcumin-Loaded Silk Fibroin/Hyaluronic Acid Hydrogels for Biomedical Applications. Polymers 2023, 15, 504. https://doi.org/10.3390/polym15030504
- Park, K.H.; Lee, D.Y.; Yoon, S.H.; Kim, S.H.; Han, M.S.; Jeon, S.; Kim, Y.; Lim, Y.K.; Hwang, D.-H.; Jung, S.-H.; et al. Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers. Polymers 2022, 14, 3963. https://doi.org/10.3390/polym14193963
- Zhang, J.; Peng, Z.; Wang, M.; Li, Y.; Wu, J.; Jiang, Y.; Liu, C.; Li, G.; Xu, L.; Lan, H. Novel Airflow-Field-Driven Melt Spinning 3D Printing of Tubular Scaffolds Based on Polycaprolactone Blends. Polymers 2023, 15, 1755. https://doi.org/10.3390/polym15071755
- Pidhatika, B.; Widyaya, V.T.; Nalam, P.C.; Swasono, Y.A.; Ardhani, R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers 2022, 14, 5526. https://doi.org/10.3390/polym14245526
- Borisov, A.; Boiko, Y.; Gureva, S.; Danilova, K.; Egorov, V.; Ivan’kova, E.; Marikhin, V.; Myasnikova, L.; Novokshonova, L.; Radovanova, E.; et al. A New Approach to Estimating the Parameters of Structural Formations in HDPE Reactor Powder. Polymers 2023, 15, 3742. https://doi.org/10.3390/polym15183742
- Bembenek, M.; Kowalski, Ł.; Kosoń-Schab, A. Research on the Influence of Processing Parameters on the Specific Tensile Strength of FDM Additive Manufactured PET-G and PLA Materials. Polymers 2022, 14, 2446. https://doi.org/10.3390/polym14122446
References
- Wang, C.; Ying, S. Thermal, tensile and dynamic mechanical properties of short carbon fibre reinforced polypropylene composites. Polym. Polym. Compos. 2013, 21, 65–72. [Google Scholar] [CrossRef]
- Thomason, J.L. The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced polyamide 6, 6. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1732–1738. [Google Scholar] [CrossRef]
- Thomason, J. The influence of fibre cross section shape and fibre surface roughness on composite micromechanics. Micro 2023, 3, 353–368. [Google Scholar] [CrossRef]
- Hirsch, P.; John, M.; Leipold, D.; Henkel, A.; Gipser, S.; Schlimper, R.; Zscheyge, M. Numerical simulation and experimental validation of hybrid injection molded short and continuous fiber-reinforced thermoplastic composites. Polymers 2021, 13, 3846. [Google Scholar] [CrossRef]
- Xu, H.; Kuczynska, M.; Schafet, N.; Welschinger, F.; Hohe, J. Modeling the anisotropic temperature-dependent viscoplastic deformation behavior of short fiber reinforced thermoplastics. Compos. Sci. Technol. 2021, 213, 108958. [Google Scholar] [CrossRef]
- Tseng, H.C.; Chang, R.Y.; Hsu, C.H. Numerical prediction of fiber orientation and mechanical performance for short/long glass and carbon fiber-reinforced composites. Compos. Sci. Technol. 2017, 144, 51–56. [Google Scholar] [CrossRef]
- Andriyana, A.; Billon, N.; Silva, L. Mechanical response of a short fiber-reinforced thermoplastic: Experimental investigation and continuum mechanical modeling. Eur. J. Mech.-A/Solids 2010, 29, 1065–1077. [Google Scholar] [CrossRef]
- Mustafa, Z.; Nawi, T.I.; Fadzullah, S.H.S.M.; Shamsudin, Z.; Malingam, S.D.; Ratanawilai, T. Fatigue characteristic and Weibull analysis of sustainable rubberwood flour/recycled polypropylene composites. Int. J. Automot. Mech. Eng. 2021, 18, 9179–9187. [Google Scholar] [CrossRef]
- Nghiep Nguyen, B.A.; Bapanapalli, S.K.; Kunc, V.; Phelps, J.H.; Tucker, C.L., III. Prediction of the elastic—Plastic stress/strain response for injection-molded long-fiber thermoplastics. J. Compos. Mater. 2009, 43, 217–246. [Google Scholar] [CrossRef]
- Pegoretti, A. Recycling concepts for short-fiber-reinforced and particle-filled thermoplastic composites: A review. Adv. Ind. Eng. Polym. Res. 2021, 4, 93–104. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Ismail, H.; Saeed, A.M. A Review: Metal Filled Thermoplastic Composites. Polym.-Plast. Technol. Mater. 2021, 60, 1033–1050. [Google Scholar] [CrossRef]
- Móczó, J.; Pukánszky, B. Particulate fillers in thermoplastics. In Fillers for Polymer Applications; Rothon, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 51–93. [Google Scholar]
- Verbeek, C.J.R. The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites. Mater. Lett. 2003, 57, 1919–1924. [Google Scholar] [CrossRef]
- Miao, C.; Hamad, W.Y. Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100761. [Google Scholar] [CrossRef]
- Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 791–806. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Sanyang, M.L.; Ishak, M.R.; Zainudin, E.S. Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A review. Curr. Anal. Chem. 2018, 14, 203–225. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.S.; Chanda, S. Cellulose nanocrystal based composites: A review. Compos. Part C Open Access 2021, 5, 100164. [Google Scholar] [CrossRef]
- Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A critical review on polymeric biomaterials for biomedical applications. Polymers 2021, 13, 3015. [Google Scholar] [CrossRef]
- Biswas, M.C.; Jony, B.; Nandy, P.K.; Chowdhury, R.A.; Halder, S.; Kumar, D.; Ramakrishna, S.; Hassan, M.; Ahsan, A.; Hoque, E.; et al. Recent advancement of biopolymers and their potential biomedical applications. J. Polym. Environ. 2022, 30, 51–74. [Google Scholar] [CrossRef]
- Aronovich, D.A.; Boinovich, L.B. Structural acrylic adhesives: A critical review. Prog. Adhes. Adhes. 2021, 6, 651–708. [Google Scholar]
- Mapari, S.; Mestry, S.; Mhaske, S.T. Developments in pressure-sensitive adhesives: A review. Polym. Bull. 2021, 78, 4075–4108. [Google Scholar] [CrossRef]
- Droesbeke, M.A.; Aksakal, R.; Simula, A.; Asua, J.M.; Du Prez, F.E. Biobased acrylic pressure-sensitive adhesives. Prog. Polym. Sci. 2021, 117, 101396. [Google Scholar] [CrossRef]
- El-Ghoul, Y.; Alminderej, F.M.; Alsubaie, F.M.; Alrasheed, R.; Almousa, N.H. Recent advances in functional polymer materials for energy, water, and biomedical applications: A review. Polymers 2021, 13, 4327. [Google Scholar] [CrossRef]
- Dirauf, M.; Muljajew, I.; Weber, C.; Schubert, U.S. Recent advances in degradable synthetic polymers for biomedical applications-Beyond polyesters. Prog. Polym. Sci. 2022, 129, 101547. [Google Scholar] [CrossRef]
- Arif, U.; Haider, S.; Haider, A.; Khan, N.; Alghyamah, A.A.; Jamila, N.; Khan, M.I.; Almasry, W.A.; Kang, I.K. Biocompatible polymers and their potential biomedical applications: A review. Curr. Pharm. Des. 2019, 25, 3608–3619. [Google Scholar] [CrossRef]
- Arefin, A.M.; Khatri, N.R.; Kulkarni, N.; Egan, P.F. Polymer 3D printing review: Materials, process, and design strategies for medical applications. Polymers 2021, 13, 1499. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Diggle, B.; Tan, M.L.; Viktorova, J.; Bennett, C.W.; Connal, L.A. Extrusion 3D printing of polymeric materials with advanced properties. Adv. Sci. 2020, 7, 2001379. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- El Magri, A.; Vanaei, S.; Vaudreuil, S. An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Perform. Polym. 2021, 33, 862–880. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgstaller, C.; Zitzenbacher, G. Processing of High-Performance Polymeric Materials: Modeling and Characterization. Polymers 2025, 17, 783. https://doi.org/10.3390/polym17060783
Burgstaller C, Zitzenbacher G. Processing of High-Performance Polymeric Materials: Modeling and Characterization. Polymers. 2025; 17(6):783. https://doi.org/10.3390/polym17060783
Chicago/Turabian StyleBurgstaller, Christoph, and Gernot Zitzenbacher. 2025. "Processing of High-Performance Polymeric Materials: Modeling and Characterization" Polymers 17, no. 6: 783. https://doi.org/10.3390/polym17060783
APA StyleBurgstaller, C., & Zitzenbacher, G. (2025). Processing of High-Performance Polymeric Materials: Modeling and Characterization. Polymers, 17(6), 783. https://doi.org/10.3390/polym17060783