Biopolymer-Based Microencapsulation of Procyanidins from Litchi Peel and Coffee Pulp: Characterization, Bioactivity Preservation, and Stability During Simulated Gastrointestinal Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction and Partial Purification of Procyanidins
2.2. Microencapsulation via Spray Drying
2.3. Quantification of Total Procyanidins
2.4. Quantification of Total Polyphenols and Total Flavonoids
2.5. Antioxidant Activities
2.5.1. ABTS Assay
2.5.2. DPPH Assay
2.5.3. Lipid Oxidation Inhibition (LOI) Assay
2.5.4. Oxygen Radical Absorbance Capacity (ORAC)
2.5.5. Ferric Reducing Antioxidant Power Test (FRAP)
2.6. Phytochemical Characterization and Quantification Using UPLC-PDA-ESI-QqQ
2.7. Characterization of Procyanidins
2.7.1. Phloroglucinolysis Reaction
2.7.2. UPLC-PDA-ESI-QqQ Analysis
2.8. In Vitro Digestion
2.8.1. Simulated Oral Digestion
2.8.2. Simulated Digestion in the Stomach
2.8.3. Simulated Intestinal Digestion
2.9. In Vitro Intestinal Absorption
3. Results
3.1. Bioactive Compounds and Antioxidant Capacity
3.2. Characterization of Phytochemicals Using UPLC-PDA-ESI-QqQ
3.3. UPLC-ESI-QqQ Characterization of Procyanidins
3.4. Changes Produced in Microencapsulates During In Vitro Digestion
3.5. Absorption of Procyanidins
3.6. Changes in Antioxidant Activity During In Vitro Digestion
4. Discussion
4.1. Extraction, Purification, and Characterization of Procyanidins
4.2. Microencapsulates Bioavailability and Absorption
Compound | Concentration | Antioxidant Activity | Absorption | Study |
---|---|---|---|---|
Encapsulated litchi PCs | 94% | 68–77% | 100% | This study |
Encapsulated coffee PCs | 90% | 75–76% | 60% | |
Free anthocyanins | 23–24% | Significant decrease | Significant decrease | [18] |
Encapsulated anthocyanins | 29–40% | Significant decrease | Improved absorption | |
Free PCs | 38% | 43–81% | [19] | |
Encapsulated PCs | 67% | 82–91% | ||
Encapsulated polyphenols | 58–94% | [11] | ||
Encapsulated anthocyanins | 27–51% | |||
Free polyphenols | 45–77% | 31–69% | 40–80% | [9] |
Free polyphenols | 40% | 70% | 32.8% | [40] |
Encapsulated proanthocyanidins | 37–96% | Significant decrease | [39] |
4.3. Implications and Application Potential
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Freitas, L.C.; Barbosa, J.R.; da Costa, A.L.C.; Bezerra, F.W.F.; Pinto, R.H.H.; de Carvalho Junior, R.N. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resour. Conserv. Recycl. 2021, 169, 54–66. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Shirahigue, L.D.; Ceccato-Antonini, S.R. Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Food Technol. 2020, 50, 20190857. [Google Scholar] [CrossRef]
- Punia, S.; Kumar, M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci. Technol. 2021, 108, 58–70. [Google Scholar] [CrossRef]
- Zhu, X.R.; Wang, H.; Sun, J.; Yang, B.; Duan, X.-w.; Jiang, Y.-m. Pericarp and seed of litchi and longan fruits: Constituent, extraction, bioactive activity, and potential utilization. J. Zhejiang Univ. Sci. B 2019, 20, 503–512. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wang, K.; Zhu, J.; Hu, Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2139–2163. [Google Scholar] [CrossRef]
- Wong Paz, J.E.; Guyot, S.; Contreras Esquivel, J.C.; Aguilar Zarate, P.; Rodriguez Herrera, R.; Aguilar, C.N. Separation of Coffee Pulp Bioactive Phenolic Compounds by MPLC Fractionation and Identification by HPLC-ESI-MS; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 217–228. [Google Scholar]
- Hou, K.; Wang, Z. Application of Nanotechnology to Enhance Adsorption and Bioavailability of Procyanidins: A Review Application of Nanotechnology to Enhance Adsorption and Bioavailability of Procyanidins: A Review. Food Rev. Int. 2021, 38, 738–752. [Google Scholar] [CrossRef]
- Ketnawa, S.; Suwannachot, J.; Ogawa, Y. In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chem. 2020, 311, 125885. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Guyot, S.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Contreras-Esquivel, J.C.; Aguilar, C.N. Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chem. 2021, 340, 127830. [Google Scholar] [CrossRef]
- Ćujić-Nikolić, N.; Stanisavljević, N.; Šavikin, K.; Kalušević, A.; Nedović, V.; Samardžić, J.; Janković, T. Chokeberry polyphenols preservation using spray drying: Effect of encapsulation using maltodextrin and skimmed milk on their recovery following in vitro digestion. J. Microencapsul. 2019, 36, 693–703. [Google Scholar] [CrossRef]
- Li, Q.; Shi, J.; Liu, L.; McClements, D.J.; Duan, M.; Chen, X.; Liu, J. Encapsulation of fruit peel proanthocyanidins in biopolymer microgels: Relationship between structural characteristics and encapsulation/release properties. Food Hydrocoll. 2021, 117, 106693. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10, 103–131. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Kurek, M.A. Microencapsulation of Anthocyanins-Critical Review of Techniques and Wall Materials. Appl. Sci. 2021, 11, 3936. [Google Scholar] [CrossRef]
- Poozesh, S.; Bilgili, E. Scale-up of pharmaceutical spray drying using scale-up rules: A review. Int. J. Pharm. 2019, 562, 271–292. [Google Scholar] [CrossRef]
- Gómez-García, R.; Sánchez-Gutiérrez, M.; Freitas-Costa, C.; Vilas-Boas, A.A.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Prebiotic effect, bioactive compounds and antioxidant capacity of melon peel (Cucumis melo L. inodorus) flour subjected to in vitro gastrointestinal digestion and human faecal fermentation. Food Res. Int. 2022, 154, 111045. [Google Scholar] [CrossRef]
- Lang, Y.; Li, B.; Gong, E.; Shu, C.; Si, X.; Gao, N.; Zhang, W.; Cui, H.; Meng, X. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chem. 2021, 334, 127526. [Google Scholar] [CrossRef]
- Toro-Uribe, S.; López-Giraldo, L.J.; Decker, E.A. Relationship between the Physiochemical Properties of Cocoa Procyanidins and Their Ability to Inhibit Lipid Oxidation in Liposomes. J. Agric. Food Chem. 2018, 66, 4490–4502. [Google Scholar] [CrossRef]
- de Los Ángeles Vázquez-Núñez, M.; Aguilar-Zárate, M.; Gómez-García, R.; Reyes-Luna, C.; Aguilar-Zárate, P.; Michel, M.R. The Specific Encapsulation of Procyanidins from Litchi Peel and Coffee Pulp Extracts via Spray-Drying Using Green Polymers. Polymers 2023, 15, 3823. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 2, 223–230. [Google Scholar] [CrossRef]
- Nossa González, D.L.; Talero Pérez, Y.V.; Rozo Núñez, W.E. Determinación del contenido de polifenoles y actividad antioxidante de los extractos polares de comfrey (Symphytum officinale L.). Rev. Cuba. Plantas Med. 2016, 21, 125–132. [Google Scholar]
- Castro-López, C.; Bautista-Hernández, I.; González-Hernández, M.D.; Martínez-Ávila, G.C.G.; Rojas, R.; Gutiérrez-Díez, A.; Medina-Herrera, N.; Aguirre-Arzola, V.E. Polyphenolic Profile and Antioxidant Activity of Leaf Purified Hydroalcoholic Extracts from Seven Mexican Persea americana Cultivars. Molecules 2019, 24, 173. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Omidvar, V.; Jaafar, Z.H. Polyphenolic content and their antioxidant activity in leaf extract of sweet potato (Ipomoea batatas). J. Med. Plants Res. 2012, 6, 2971–2976. [Google Scholar] [CrossRef]
- Díaz-Rivas, J.O.; González-Laredo, R.F.; Chávez-Simental, J.A.; Montoya-Ayón, J.B.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E. Comprehensive Characterization of Extractable Phenolic Compounds by UPLC-PDA-ESI-QqQ of Buddleja scordioides Plants Elicited with Salicylic Acid. J. Chem. 2018, 2018, 4536970. [Google Scholar] [CrossRef]
- Sánchez-Gutiérrez, M.; Gómez-García, R.; Carrasco, E.; Bascón-Villegas, I.; Rodríguez, A.; Pintado, M. Quercus ilex leaf as a functional ingredient: Polyphenolic profile and antioxidant activity throughout simulated gastrointestinal digestion and antimicrobial activity. J. Funct. Foods 2022, 91, 105025. [Google Scholar] [CrossRef]
- Rodrigues, R.; Sousa, A.M.; Fando-Ferrerira, L.M.; Quinta, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef]
- Tobón Arroyave, N. Extracción Asistida por Ultrasonido de Compuestos Fenólicos de la Pulpa de Café (Coffea arabica L.) Variedad Castillo; Universidad Nacional de Colombia: Bogotá, Colombia, 2015. [Google Scholar]
- González-González, G.M.; Palomo-Ligas, L.; Nery-Flores, S.D.; Valdés, J.A.A.; Sáenz-Galindo, A.; Gallegos, A.C.F.; Zakaria, Z.A.; Aguilar, C.N.; Herrera, R.R. Coffee pulp as a source for polyphenols extraction using ultrasound, microwave, and green solvents. Environ. Qual. Manag. 2022, 32, 451–461. [Google Scholar] [CrossRef]
- Tran, T.M.K.; Akanbi, T.; Kirkman, T.; Nguyen, M.H.; Vuong, Q. Van Optimal Aqueous Extraction Conditions as A Green Technique for Recovery of Phenolic Antioxidants from Robusta Dried Coffee Pulp. Eur. J. Eng. Res. Sci. 2020, 5, 1069–1074. [Google Scholar] [CrossRef]
- Miranda Hernandez, A.M.; Muñiz Marquez, D.B.; Wong Paz, J.E.; Aguilar Zarate, P.; de la Rosa Hernandez, M.; Larios Cruz, R.; Aguilar, C.N. Characterization by Hplc-Esi-Ms2 of native and oxidized procyanidins from litchi (Litchi chinensis) pericarp. Food Chem. 2019, 291, 126–131. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Wu, Y.-H.; Li, D.-P.; Li, W. Evaluation of Chemical Constituents of Litchi Pericarp Extracts and Its Antioxidant Activity in Mice. Foods 2022, 11, 3837. [Google Scholar] [CrossRef]
- Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021, 10, 3152. [Google Scholar] [CrossRef]
- Zineb, O.Y.; Rashwan, A.K.; Karim, N.; Lu, Y.; Tangpong, J.; Chen, W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. Food Rev. Int. 2022, 39, 5255–5278. [Google Scholar] [CrossRef]
- Manasa, V.; Padmanabhan, A.; Appaiah, K.A.A. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Manag. 2021, 120, 762–771. [Google Scholar] [CrossRef]
- Aristizábal, C.E.; Vargas, A.F.; Alvarado, P.N. Numerical determination of the correct solvents to extract a phytochemical from coffee pulp using Hansen solubility parameters, risk assessment, sustainability evaluation, and economic analysis. DYNA 2019, 86, 138–147. [Google Scholar] [CrossRef]
- Santos da Silveira, J.; Durand, N.; Lacour, S.; Belleville, M.P.; Perez, A.; Loiseau, G.; Dornier, M. Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food Bioprod. Process. 2019, 115, 175–184. [Google Scholar] [CrossRef]
- Tang, C.; Tan, B.; Sun, X. Elucidation of interaction between whey proteins and proanthocyanidins and its protective effects on proanthocyanidins during in-vitro digestion and storage. Molecules 2021, 26, 5468. [Google Scholar] [CrossRef]
- Mashitoa, F.M.; Manhivi, V.E.; Akinola, S.A.; Garcia, C.; Remize, F.; Shoko, T.; Sivakumar, D. Changes in phenolics and antioxidant capacity during fermentation and simulated in vitro digestion of mango puree fermented with different lactic acid bacteria. J. Food Process. Preserv. 2021, 45, 15937. [Google Scholar] [CrossRef]
Parameter | Litchi | Coffee |
---|---|---|
Feed Flow Rate mL/min | 6 | 4.5 |
Inlet Air temperature °C | 150 | 175 |
Inlet Air Flow m3/h | 35 | 40 |
Sample | Flavonoids | Polyphenols | Procyanidins | |
---|---|---|---|---|
mEq cat/mL | µg EAG/mL | µg PC/mL | ||
Litchi peel | Crude extract | 643.5 ± 86.4 a | 4651.21 ± 10.23 a | 1537.09 ± 3.57 a |
Ethanol fraction | ND | 229.12 ± 2.32 c | 203.69 ± 0.12 c | |
Acetone fraction | 224.00 ± 2.00 b | 1670.90 ± 6.77 b | 1310.2 ± 0.97 b | |
Coffee pulp | Crude extract | 365.50 ± 20.90 b | 3806.11 ± 11.22 d | 1260.81 ± 3.67 b |
Ethanol fraction | ND | 115.14 ± 3.45 f | 78.24 ± 0.98 e | |
Acetone fraction | 117.87 ± 12.65 c | 1623.25 ± 2.78 e | 1128.3 ± 2.12 d |
Sample | LOI | DPPH | ABTS | FRAP | ORAC | |
---|---|---|---|---|---|---|
Inhibition (%) | µg EGA/mL | mEqTrolox/mL | mEqTrolox/mL | mEqTrolox/mL | ||
Litchi peel | Crude extract | 80.50 ± 0.27 a | 60.90 ± 0.13 a | 47.62 ± 0.03 a | 134.54 ± 2.42 a | 3080.7 ± 73.49 a |
Acetone fraction | 67.60 ± 0.77 b | 59.40 ± 0.82 b | 21.84 ± 1.34 b | 54.56 ± 0.34 b | 1739.2 ± 110.42 b | |
Coffee pulp | Crude extract | 78.60 ± 0.55 a | 61.10 ± 0.14 ac | 45.54 ± 0.96 a | 142.52 ± 1.40 a | 3545.7 ± 96.15 c |
Acetone fraction | 55.3 ± 0.39 b | 53.10 ± 0.98 c | 40.79 ± 0.17 a | 49.93 ± 0.58 b | 1218.10 ± 16.30 d |
Compounds | Coffee Pulp | Litchi Peel | ||
---|---|---|---|---|
Extract | Acetone Fraction | Extract | Acetone Fraction | |
Hydroxycinnamic acids | ||||
Quinic acid | 48.70 ± 1.37 a | TR | 7.04 ± 0.79 b | TR |
Chlorogenic acid | 52.95 ± 7.02 a | TR | TR | TR |
Caffeic acid | 0.089 ± 0.00 a | ND | TR | ND |
Caffeoylquinic acid | 48.11 ± 7.13 a | 0.14 ± 0.06 b | 0.18 ± 0.04 b | 0.66 ± 0.19 c |
Dipheoylquinic acid | 17.82 ± 0.70 a | ND | 3.75 ± 0.03 b | ND |
Hydroxybenzoic acids | ||||
Shikimic acid | 0.65 ± 0.00 a | 0.71 ± 0.08 a | 54.91 ± 2.61 b | 4.19 ± 0.81 c |
Gallic acid | 12.22 ± 0.58 a | ND | 0.11 ± 0.01 b | ND |
Benzoic acid | 3.43 ± 0.83 a | 0.66 ± 0.44 b | 0.34 ± 0.01 b | 1.88 ± 0.5 a |
4-hydroxybenzoic acid | TR | ND | TR | TR |
Flavan-3-ols | ||||
Procyanidin B2 | TR | TR | 4.30 ± 0.18 a | TR |
Epicatechin | TR | TR | 18.05 ± 1.92 a | TR |
Catechin | TR | TR | TR | TR |
Flavonols | ||||
Rutin | 1.11 ± 0.16 a | TR | 14.32 ± 1.86 b | 0.121 ± 0.06 c |
Quercetin | 0.02 ± 0.00 a | TR | 0.17 ± 0.05 b | TR |
Taxifolin | TR | TR | TR | TR |
Quercetin-3-O-glucoside | 0.209 ± 0.01 a | TR | 0.760 ± 0.14 a | TR |
Flavanones | ||||
Naringenin | TR | ND | TR | ND |
Naringin | TR | ND | TR | ND |
Dihydrochalcones | ||||
Hesperidin | 0.627 ± 0.23 a | TR | TR | ND |
Phlorizin | TR | TR | TR | ND |
Compound | RT (min) | Transitions (m/z) | λ Max (nm) | Coffee µg/mg | Litchi µg/mg |
---|---|---|---|---|---|
Catechin (C) | 2.8 | 289 > 203 > 123 | 278.86 | 0.0268 ± 0.000 | 0.079 ± 0.003 |
Epicatechin (EC) | 3.51 | 289 > 203 > 123 | 278.86 | 1.5521 ± 0.146 | 4.447 ± 0.543 |
(−)-Epicatequina galato (ECG) | 4.56 | 441 > 289 > 169 | 266.86 | 0.032 ± 0.001 | ND |
(+)-Gallocatechin (GC) | 1.37 | 305 > 179 > 124.9 | 266.86 | 0.009 ± 0.000 | 0.0015 ± 0.000 |
(−)-Epigallocatechin (EGC) | 7.32 | 305 > 179 > 124.9 | 276.86 | 0.026 ± 0.001 | 0.045 ± 0.005 |
Catechin 4-phloroglucinol (C-PHL) | 2.07 | 413.3 > 261.1 > 125 | 277.86 | ND | 0.118 ± 0.011 |
Epicatechin 4-phloroglucinol (EC-PHL) | 2.21 | 413.3 > 261.1 > 125 | 276.86 | 1.670 ± 0.120 | 5.337 ± 0.281 |
Procyanidin B1 | 2.52 | 577.1 > 425.1 > 289 | 270.86 | 0.029 ± 0.002 | ND |
Procyanidin B2 | 3.22 | 577.1 > 425.1 > 289 | 280 | 0.437 ± 0.055 | 2.276 ± 0.498 |
Unknown | 4.54 | 577.1 > 425.1 > 290 | 265.86 | 0.089 ± 0.013 | 1.429 ± 0.248 |
(+)-Catechin gallate (CG) | 5.36 | 441 > 289 > 169 | 275.86 | 0.039 ± 0.003 | ND |
Mean degree of polymerization (mDP) | 1.7 ± 0.040 | 1.2 ± 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Nuñez, M.d.l.Á.; Rocha-Guzmán, N.E.; Aguilar-Zárate, P.; Rojas, R.; Martínez-Ávila, G.C.G.; Reyes, A.; Michel, M.R. Biopolymer-Based Microencapsulation of Procyanidins from Litchi Peel and Coffee Pulp: Characterization, Bioactivity Preservation, and Stability During Simulated Gastrointestinal Digestion. Polymers 2025, 17, 687. https://doi.org/10.3390/polym17050687
Vázquez-Nuñez MdlÁ, Rocha-Guzmán NE, Aguilar-Zárate P, Rojas R, Martínez-Ávila GCG, Reyes A, Michel MR. Biopolymer-Based Microencapsulation of Procyanidins from Litchi Peel and Coffee Pulp: Characterization, Bioactivity Preservation, and Stability During Simulated Gastrointestinal Digestion. Polymers. 2025; 17(5):687. https://doi.org/10.3390/polym17050687
Chicago/Turabian StyleVázquez-Nuñez, María de los Ángeles, Nuria E. Rocha-Guzmán, Pedro Aguilar-Zárate, Romeo Rojas, Guillermo Cristian G. Martínez-Ávila, Abigail Reyes, and Mariela R. Michel. 2025. "Biopolymer-Based Microencapsulation of Procyanidins from Litchi Peel and Coffee Pulp: Characterization, Bioactivity Preservation, and Stability During Simulated Gastrointestinal Digestion" Polymers 17, no. 5: 687. https://doi.org/10.3390/polym17050687
APA StyleVázquez-Nuñez, M. d. l. Á., Rocha-Guzmán, N. E., Aguilar-Zárate, P., Rojas, R., Martínez-Ávila, G. C. G., Reyes, A., & Michel, M. R. (2025). Biopolymer-Based Microencapsulation of Procyanidins from Litchi Peel and Coffee Pulp: Characterization, Bioactivity Preservation, and Stability During Simulated Gastrointestinal Digestion. Polymers, 17(5), 687. https://doi.org/10.3390/polym17050687