In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Consumables Used for This Study
2.2. Hydrogel Rheological Characterization Method
2.3. Product Antioxidant Capacity Determination Methods
2.3.1. Cupric Reducing Antioxidant Capacity Determination
2.3.2. Oxygen Radical Antioxidant Capacity Determination
2.3.3. Ferric Reducing Antioxidant Power Determination
2.4. Hydrogel Biological Evaluation in an In Vitro Dermal Fibroblast Model
2.5. Clinical Evaluation of IRA Safety and Efficacy in Periocular Prejuvenation
2.6. Statistical Analyses and Data Presentation
3. Results and Discussion
3.1. Formulation Design Considerations and Rheology Characterization
- IRA or “HA-PN complex” is a bio-regenerative product designed to boost, regenerate, and protect the skin, indicated for full-face and décolleté treatments, including pre-laser care. It targets fine lines, acne scars, and general skin regeneration. It smooths fine lines, restores elasticity, boosts collagen and elastin production, hydrates, and repairs damaged skin, promoting overall firmness, smoothness, and plumpness;
- NCTF is indicated for cutaneous revitalization and for intense hydration of tired or dull skin, the filling of superficial wrinkles, and the re-plumping of mature skin or skin that lacks firmness;
- SCG is indicated for injection in the epidermis or dermis, enhancing microcirculation, improving skin structure, and reducing dryness or hyperkeratosis. It treats photoaging and hyperpigmentation, including melasma and chloasma;
3.2. Antioxidant Capacity Assessments
3.3. Bio-Stimulatory Attribute Assessments in a Skin Cell Model
3.4. Clinical Case Reports on the Efficacy of IRA in Periocular Prejuvenation
3.5. Clinical Perspectives on the Functions of IRA
3.6. Study Limitations and Future Research Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPH | 2,2′-azobis(2-amidinopropane) dihydrochloride |
CUPRAC | Cupric reducing antioxidant capacity |
DMEM | Dulbecco’s modified Eagle medium |
DNA | Deoxyribonucleic acid |
ECM | Extracellular matrix |
ELISA | Enzyme-linked immunosorbent assay |
FBS | Fetal bovine serum |
FRAP | Ferrous reduction antioxidant power |
G′ | Storage modulus |
G″ | Loss modulus |
HA | Hyaluronic acid |
IRA | Innovyal Regenerative Action product |
min | Minute |
MW | Molecular weight |
NA | Non-applicable |
NCTF | NCTF 135 HA product |
ns | Non-significant |
ORAC | Oxygen radical antioxidant capacity |
Pa | Pascals |
Pa·s | Pascal seconds |
PBS | Phosphate-buffered saline |
PDRN | Polydeoxyribonucleotide |
PN | Polynucleotide |
RFMN | Radiofrequency microneedling |
ROS | Reactive oxygen species |
s | Second |
SCG | Suisselle Cellbooster Glow product |
USA | United States of America |
UV | Ultraviolet |
VEGF | Vascular endothelial growth factor |
References
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef]
- Navarro, C.; Salazar, J.; Díaz, M.P.; Chacin, M.; Santeliz, R.; Vera, I.; D’Marco, L.; Parra, H.; Bernal, M.C.; Castro, A.; et al. Intrinsic and environmental basis of aging: A narrative review. Heliyon 2023, 9, e18239. [Google Scholar] [CrossRef]
- Shin, J.W.; Kwon, S.H.; Choi, J.Y.; Na, J.I.; Huh, C.H.; Choi, H.R.; Park, K.C. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef] [PubMed]
- Varani, J.; Dame, M.K.; Rittie, L.; Fligiel, S.E.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006, 168, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Schikowski, T.; Morita, A.; Berneburg, M. Environmentally-induced (extrinsic) skin aging: Exposomal factors and underlying mechanisms. J. Investig. Dermatol. 2021, 141, 1096–1103. [Google Scholar] [CrossRef]
- Kammeyer, A.; Luiten, R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Fussell, J.C.; Kelly, F.J. Oxidative contribution of air pollution to extrinsic skin ageing. Free Radic. Biol. Med. 2020, 151, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; He, X.; Liu, N.; Deng, H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div. 2024, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Russel, S.M.; Clark, J.M. Periorbital rejuvenation in the clinic: A state-of-the-art review. World J. Otorhinolaryngol. 2023, 9, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Mobayed, N.; Nguyen, J.K.; Jagdeo, J. Minimally invasive facial cosmetic procedures for the millennial aesthetic patient. J. Drugs Dermatol. 2020, 19, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Galderma. NEXT. Available online: https://www.galderma.com/sites/default/files/2024-02/Next_Digest_DIGITAL_spreads.pdf (accessed on 6 January 2025).
- Hwang, C.J. Periorbital injectables: Understanding and avoiding complications. J. Cutan. Aesthet. Surg. 2016, 9, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Succi, I.B.; da Silva, R.T.; Orofino-Costa, R. Rejuvenation of periorbital area: Treatment with an injectable non-animal, non-crosslinked glycerol-added hyaluronic acid preparation. Dermatol. Surg. 2012, 38, 192–198. [Google Scholar] [CrossRef]
- Siquier-Dameto, G.; Boadas-Vaello, P.; Verdú, E. Intradermal treatment with a hyaluronic acid complex supplemented with amino acids and antioxidant vitamins improves cutaneous hydration and viscoelasticity in healthy subjects. Antioxidants 2024, 13, 770. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Niu, H.; Liu, Y.; Tan, Y.; Gao, H.; Ren, S.; Wang, L. Clinical efficacy and safety of non-cross-linked hyaluronic acid combined with l-carnosine for horizontal neck wrinkles treatment. Aesthetic Plast. Surg. 2021, 45, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Sparavigna, A.; Tenconi, B.; De Ponti, I. Antiaging, photoprotective, and brightening activity in biorevitalization: A new solution for aging skin. Clin. Cosmet. Investig. Dermatol. 2015, 8, 57–65. [Google Scholar] [CrossRef]
- Arora, G.; Arora, S. Periorbital rejuvenation: A study on the use of dermal threads as monotherapy, with a review of literature. J. Cutan. Aesthet. Surg. 2022, 15, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Porcello, A.; Cerrano, M.; Hadjab, F.; Chemali, M.; Lourenço, K.; Hadjab, B.; Raffoul, W.; Applegate, L.A.; Laurent, A.E. From polydeoxyribonucleotides (PDRNs) to polynucleotides (PNs): Bridging the gap between scientific definitions, molecular insights, and clinical applications of multifunctional biomolecules. Biomolecules 2025, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, M.; Bartoletti, E.; Maioli, L.; Massirone, A.; Pia Palmieri, I.; Papagni, M.; Priori, M.; Trocchi, G. Consensus report on the use of PN-HPTTM (Polynucleotides Highly Purified Technology) in aesthetic medicine. J. Cosmet. Dermatol. 2021, 20, 922–928. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, H.T.; Lee, Y.J.; Paik, S.H.; Moon, Y.S.; Lee, J.W.; Chang, S.E.; Lee, M.W.; Choi, J.H.; Jung, J.M.; et al. Comparison of the effects of polynucleotide and hyaluronic acid fillers on periocular rejuvenation: A randomized, double-blind, split-face trial. J. Dermatol. Treat. 2022, 33, 254–260. [Google Scholar] [CrossRef]
- Rho, N.K.; Han, K.H.; Cho, M.; Kim, H.S. A survey on the cosmetic use of injectable polynucleotide: The pattern of practice among Korean dermatologists. J. Cosmet. Dermatol. 2023, 23, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Galeano, M.; Bitto, A.; Altavilla, D.; Minutoli, L.; Polito, F.; Calò, M.; Lo Cascio, P.; d’Alcontres, F.S.; Squadrito, F. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Repair Regen. 2008, 16, 208–217. [Google Scholar] [CrossRef]
- Altavilla, D.; Squadrito, F.; Polito, F.; Irrera, N.; Calò, M.; Lo Cascio, P.; Galeano, M.; La Cava, L.; Minutoli, L.; Marini, H.; et al. Activation of adenosine A2A receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice. Surgery 2011, 149, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.T.; Lee, S.S.; Han, S.H.; Sherchan, B.; Panakkal, J.J. Polydeoxyribonucleotide and polynucleotide improve tendon healing and decrease fatty degeneration in a rat cuff repair model. Tissue Eng. Regen. Med. 2021, 18, 1009–1020. [Google Scholar] [CrossRef]
- Shin, S.M.; Baek, E.J.; Kim, K.H.; Kim, K.J.; Park, E.J. Polydeoxyribonucleotide exerts opposing effects on ERK activity in human skin keratinocytes and fibroblasts. Mol. Med. Rep. 2023, 28, 148. [Google Scholar] [CrossRef]
- Lee, K.W.A.; Chan, K.W.L.; Lee, A.; Lee, C.H.; Wan, J.; Wong, S.; Yi, K.H. Polynucleotides in aesthetic medicine: A review of current practices and perceived effectiveness. Int. J. Mol. Sci. 2024, 25, 8224. [Google Scholar] [CrossRef] [PubMed]
- Yogya, Y.; Wanitphakdeedecha, R.; Wongdama, S.; Nanchaipruek, Y.; Yan, C.; Rakchart, S. Efficacy and safety of using noninsulated microneedle radiofrequency alone versus in combination with polynucleotides for treatment of periorbital wrinkles. Dermatol. Ther. 2022, 12, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Szabó, A.; Szabó, B.; Balogh, E.; Zelkó, R.; Antal, I. Structural elucidation of hyaluronic acid gels after heat sterilisation. Polym. Test. 2013, 32, 1322–1325. [Google Scholar] [CrossRef]
- Haridas, N.; Rosemary, M.J. Effect of steam sterilization and biocompatibility studies of hyaluronic acid hydrogel for viscosupplementation. Polymer Degrad. Stab. 2019, 163, 220–227. [Google Scholar] [CrossRef]
- Robin, S.; Fanian, F.; Courderot-Masuyer, C.; Tordjman, M.; Braccini, F.; Boisnic, S.; Philippon, V.; Grand Vincent, A.; Salomon, C.; Manfait, M.; et al. Efficacy of a biorevitalizing-filler solution on all skin aspects: 10 years approach through in vitro studies and clinical trials. J. Cosmet. Dermatol. Sci. Appl. 2021, 11, 18–37. [Google Scholar] [CrossRef]
- Suiselle CELLBOOSTER® GLOW. Available online: https://suisselle.com/product/cellbooster-glow/ (accessed on 6 January 2025).
- Agolli, E.; Diffidenti, B.; Di Zitti, N.; Massidda, E.; Patella, F.; Santerini, C.; Beatini, A.; Bianchini, M.; Bizzarri, S.; Camilleri, V.; et al. Hybrid cooperative complexes of high and low molecular weight hyaluronans (Profhilo®): Review of the literature and presentation of the VisionHA project. Esp. Dermatol. 2018, 20, 5–14. [Google Scholar] [CrossRef]
- Profhilo® What is Profhilo. Available online: https://profhilo.com.hk/what-is-profhilo/ (accessed on 6 January 2025).
- La Gatta, A.; Bedini, E.; Aschettino, M.; Finamore, R.; Schiraldi, C. Hyaluronan hydrogels: Rheology and stability in relation to the type/level of biopolymer chemical modification. Polymers 2022, 14, 2402. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Okamoto, A.; Nishinari, K. Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 1994, 31, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Porcello, A.; Bezzola, T.; Perrenoud, D.; Quinodoz, P.; Kalia, Y.; Allémann, E.; Laurent, A.; Jordan, O. Clinical perspectives on the injectability of cross-linked hyaluronic acid dermal fillers: A standardized methodology for commercial product benchmarking with inter-injector assessments. Gels 2024, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Kolaříková, A.; Kutálková, E.; Buš, V.; Witasek, R.; Hrnčiřík, J.; Ingr, M. Salt-dependent intermolecular interactions of hyaluronan molecules mediate the formation of temporary duplex structures. Carbohydr. Polym. 2022, 286, 119288. [Google Scholar] [CrossRef] [PubMed]
- Cassuto, D.; Delledonne, M.; Zaccaria, G.; Illiano, I.; Giori, A.M.; Bellia, G. Safety assessment of high- and low-molecular-weight hyaluronans (Profhilo®) as derived from worldwide postmarketing data. Biomed. Res. Int. 2020, 2020, 8159047. [Google Scholar] [CrossRef]
- Bernuzzi, M.L.; Giori, A. An Innovative Way to Thermally Sterilize Hyaluronic Acid Pre-Filled Syringes. Available online: https://fedegari.com/wp-content/uploads/2019/03/WP-Fedegari-Thermal-sterilization-PFS-with-Hyaluronic-Acidv-2.pdf (accessed on 6 January 2025).
- Huerta-Ángeles, G.; Nešporová, K.; Ambrožová, G.; Kubala, L.; Velebný, V. An effective translation: The development of hyaluronan-based medical products from the physicochemical, and preclinical aspects. Front. Bioeng. Biotechnol. 2018, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Fillmed Laboratories. Revitalize Skin Quality with NCTF. Available online: https://fillmed.com/revitalize-nctf/ (accessed on 6 January 2025).
- Fink, R.M.; Lengfelder, E. Hyaluronic acid degradation by ascorbic acid and influence of iron. Free Radic. Res. Commun. 1987, 3, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and folin-ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Nakai, K.; Tsuruta, D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef]
- Betigeri, S.; Thakur, A.; Raghavan, K. Use of 2,2′-azobis(2-amidinopropane) dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs. Pharm. Res. 2005, 22, 310–317. [Google Scholar] [CrossRef]
- Asma, U.; Bertotti, M.L.; Zamai, S.; Arnold, M.; Amorati, R.; Scampicchio, M. A kinetic approach to oxygen radical absorbance capacity (orac): Restoring order to the antioxidant activity of hydroxycinnamic acids and fruit juices. Antioxidants 2024, 13, 222. [Google Scholar] [CrossRef]
- Aguilera, S.B.; McCarthy, A.; Khalifian, S.; Lorenc, Z.P.; Goldie, K.; Chernoff, W.G. The role of calcium hydroxylapatite (radiesse) as a regenerative aesthetic treatment: A narrative review. Aesthet. Surg. J. 2023, 43, 1063–1090. [Google Scholar] [CrossRef]
- Christen, M.O. Collagen stimulators in body applications: A review focused on poly-l-lactic acid (PLLA). Clin. Cosmet. Investig. Dermatol. 2022, 15, 997–1019. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kwon, T.-R.; Lee, S.E.; Jang, Y.N.; Han, H.S.; Mun, S.K.; Kim, B.J. Comparative evaluation of the effectiveness of novel hyaluronic acid-polynucleotide complex dermal filler. Sci. Rep. 2020, 10, 5127. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Hadjab, F.; Porcello, A.; Lourenço, K.; Scaletta, C.; Abdel-Sayed, P.; Hirt-Burri, N.; Applegate, L.A.; Laurent, A. Mechanistic insights into the multiple functions of niacinamide: Therapeutic implications and cosmeceutical applications in functional skincare products. Antioxidants 2024, 13, 425. [Google Scholar] [CrossRef]
- Wessels, Q.; Pretorius, E.; Smith, C.M.; Nel, H. The potential of a niacinamide-dominated cosmeceutical formulation on fibroblast activity and wound healing in vitro. Int. Wound J. 2014, 11, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Philips, N.; Chalensouk-Khaosaat, J.; Gonzalez, S. Stimulation of the fibrillar collagen and heat shock proteins by nicotinamide or its derivatives in non-irradiated or UVA radiated fibroblasts, and direct anti-oxidant activity of nicotinamide derivatives. Cosmetics 2015, 2, 146–161. [Google Scholar] [CrossRef]
- Porcello, A.; Chemali, M.; Marques, C.; Scaletta, C.; Lourenço, K.; Abdel-Sayed, P.; Raffoul, W.; Hirt-Burri, N.; Applegate, L.A.; Laurent, A. Dual functionalization of hyaluronan dermal fillers with vitamin B3: Efficient combination of bio-stimulation properties with hydrogel system resilience enhancement. Gels 2024, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Bogdanowicz, P.; Bensadoun, P.; Noizet, M.; Béganton, B.; Philippe, A.; Alvares-Georges, S.; Doat, G.; Tourette, A.; Bessou-Touya, S.; Lemaitre, J.-M.; et al. Senomorphic activity of a combination of niacinamide and hyaluronic acid: Correlation with clinical improvement of skin aging. Sci. Rep. 2024, 14, 16321. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Mechanistic basis and clinical evidence for the applications of nicotinamide (niacinamide) to control skin aging and pigmentation. Antioxidants 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
Product Commercial Name | HA Concentration 1 | Total Biopolymer Concentration 2 | Packaging | Main Composition 3 | Manufacturing Technology |
---|---|---|---|---|---|
Innovyal Regenerative Action® [IRA] or “HA-PN complex” | 5 mg/mL | 12.5 mg/mL | 3 mL vial | HA, PN, vitamin B3 | Boost & Shield® |
Profhilo® | 32 mg/mL | 32 mg/mL | 2 mL syringe | HA | NAHYCO® |
Suisselle Cellbooster® Glow [SCG] | 6 mg/mL | 6 mg/mL | 3 mL vial | HA, 2 vitamins, and 6 amino acids | CHAC |
NCTF® 135 HA [NCTF] | 5 mg/mL | 5 mg/mL | 5 mL vial | HA, 12 vitamins, 6 minerals, 5 nucleic acids, 24 amino acids, 6 coenzymes, glutathione, polysorbate 80, glucuronic acid, glucosamine, and dextrose | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuyousif, H.S.; Porcello, A.; Cerrano, M.; Marques, C.; Scaletta, C.; Lourenço, K.; Abdel-Sayed, P.; Chemali, M.; Raffoul, W.; Hirt-Burri, N.; et al. In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment. Polymers 2025, 17, 638. https://doi.org/10.3390/polym17050638
Abuyousif HS, Porcello A, Cerrano M, Marques C, Scaletta C, Lourenço K, Abdel-Sayed P, Chemali M, Raffoul W, Hirt-Burri N, et al. In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment. Polymers. 2025; 17(5):638. https://doi.org/10.3390/polym17050638
Chicago/Turabian StyleAbuyousif, Hanadi Sami, Alexandre Porcello, Marco Cerrano, Cíntia Marques, Corinne Scaletta, Kelly Lourenço, Philippe Abdel-Sayed, Michèle Chemali, Wassim Raffoul, Nathalie Hirt-Burri, and et al. 2025. "In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment" Polymers 17, no. 5: 638. https://doi.org/10.3390/polym17050638
APA StyleAbuyousif, H. S., Porcello, A., Cerrano, M., Marques, C., Scaletta, C., Lourenço, K., Abdel-Sayed, P., Chemali, M., Raffoul, W., Hirt-Burri, N., Applegate, L. A., & Laurent, A. E. (2025). In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment. Polymers, 17(5), 638. https://doi.org/10.3390/polym17050638