Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of IL–Silica Microcapsules
2.3. Characterizations
3. Results and Discussion
3.1. Properties of IL–Silica Capsules
3.2. Stability of Flame-Retardant Paint Systems
3.3. Flame-Retardant Properties of Emulsion Paint Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y. Recent advances in fire-retardant polymers and composites. J. Appl. Polym. Sci. 2020, 137, 48548. [Google Scholar] [CrossRef]
- Ma, R.; Shen, R.; Quan, Y.; Wang, Q. Preparation of Graphene Quantum Dots Decorated Montmorillonite to Reinforce Fire Retardancy of Polystyrene. Ind. Eng. Chem. Res. 2023, 62, 13510–13518. [Google Scholar] [CrossRef]
- Lai, L.; Liu, J.; Lv, Z.; Gao, T.; Luo, Y. Recent advances for flame retardant rubber composites: Mini-review. Adv. Ind. Eng. Polym. Res. 2023, 6, 156–164. [Google Scholar] [CrossRef]
- Quan, Y.; Shen, R.; Ma, R.; Zhang, Z.; Wang, Q. Sustainable and Efficient Manufacturing of Metal-Organic Framework-Based Polymer Nanocomposites by Reactive Extrusion. ACS Sustain. Chem. Eng. 2022, 10, 7216–7222. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, H.; Quan, Y.; Ma, R.; Pentzer, E.B.; Green, M.J.; Wang, Q. Thermal Stability and Flammability Studies of MXene–Organic Hybrid Polystyrene Nanocomposites. Polymers 2022, 14, 1213. [Google Scholar] [CrossRef] [PubMed]
- Yogui, G.T.; Sericano, J.L. Polybrominated diphenyl ether flame retardants in the U.S. marine environment: A review. Environ. Int. 2009, 35, 655–666. [Google Scholar] [CrossRef]
- McGrath, T.J.; Ball, A.S.; Clarke, B.O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. Environ. Pollut. 2017, 230, 741–757. [Google Scholar] [CrossRef]
- Xiong, P.; Yan, X.; Zhu, Q.; Qu, G.; Shi, J.; Liao, C.; Jiang, G. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. Environ. Sci. Technol. 2019, 53, 13551–13569. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Rybyan, A.A.; Bilichenko, J.V.; Kireev, V.V.; Kolenchenko, A.A.; Chistyakov, E.M. Curing of DER-331 Epoxy Resin with Arylaminocyclotriphosphazenes Based on o-, m-, and p-methylanilines. Polymers 2022, 14, 5334. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, I.V.; Chistyakov, E.M.; Filatov, S.N.; Deev, I.S.; Kurshev, E.V.; Lonskii, S.L. Factors Influencing the Fire-Resistance of Epoxy Compositions Modified with Epoxy-Containing Phosphazenes. Inorg. Mater. Appl. Res. 2019, 10, 1429–1435. [Google Scholar] [CrossRef]
- Konstantinova, A.; Yudaev, P.; Shapagin, A.; Panfilova, D.; Palamarchuk, A.; Chistyakov, E. Non-Flammable Epoxy Composition Based on Epoxy Resin DER-331 and 4-(β-Carboxyethenyl)phenoxy-phenoxycyclotriphosphazenes with Increased Adhesion to Metals. Sci 2024, 6, 30. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Yang, X.; Ge, N.; Hu, L.; Gui, H.; Wang, Z.; Ding, Y. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym. Adv. Technol. 2013, 24, 568–575. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Li, W.; Hu, S.; Song, J.; Jiang, T.; Han, B. Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific Ionic Liquid. Angew. Chem. Int. Ed. 2008, 47, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, M.; Livi, S.; Duchet-Rumeau, J. Ionic liquids: A new way for the compatibilization of thermoplastic blends. Chem. Eng. J. 2014, 255, 513–524. [Google Scholar] [CrossRef]
- Shi, Y.; Fu, T.; Xu, Y.; Li, D.; Wang, X.; Wang, Y. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 2018, 354, 208–219. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, D.; Fu, T.; Wang, X.; Wang, Y. A highly-effective ionic liquid flame retardant towards fire-safety waterborne polyurethane (WPU) with excellent comprehensive performance. Polymer 2020, 205, 122780. [Google Scholar] [CrossRef]
- Dollemore, D. Acrylic Emulsion Technology: From Plastics to Paints, It Changed Our World; American Chemical Society: Washington, DC, USA, 2008. [Google Scholar]
- Li, C.; Ma, C.; Li, J. Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). Polym. Adv. Technol. 2020, 31, 1765–1775. [Google Scholar] [CrossRef]
- Ma, R.; Zeng, M.; Huang, D.; Wang, J.; Cheng, Z.; Wang, Q. Amphiphilicity-adaptable graphene quantum dots to stabilize pH-responsive pickering emulsions at a very low concentration. J. Colloid. Interface Sci. 2021, 601, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Shen, R.; Quan, Y.; Wang, Q. Tunable flammability studies of graphene quantum dots-based polystyrene nanocomposites using microscale combustion calorimeter. J. Therm. Anal. Calorim. 2022, 147, 10383–10390. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, X.; Wu, W. Application of fourier transform infrared (FTIR) spectroscopy in sample preparation: Material characterization and mechanism investigation. Adv. Sample Prep. 2024, 11, 100122. [Google Scholar] [CrossRef]
- Wu, C.; Wu, G.; Yang, X.; Liu, Y.; Gao, C.; Ji, Q.; Wang, M.; Chen, H. Preparation of Mannitol@Silica core–shell capsules via an interfacial polymerization process from water-in-oil emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 487–494. [Google Scholar] [CrossRef]
- Zhou, W.; Dong, J.H.; Qiu, K.Y.; Wei, Y. Effect of 3-aminopropyltriethoxysilane on properties of poly(butyl acrylate-co-maleic anhydride)/silica hybrid materials. J. Appl. Polym. Sci. 1999, 73, 419–424. [Google Scholar] [CrossRef]
- Sehlleier, Y.; Abdali, A.; Schnurre, S.; Wiggers, H.; Schulz, C. Surface functionalization of microwave plasma-synthesized silica nanoparticles for enhancing the stability of dispersions. J. Nanoparticle Res. 2014, 16, 2557. [Google Scholar] [CrossRef]
- Hao, L.; Yegin, C.; Oh, J.K.; Chen, I.C.; Nagabandi, N.; Talari, J.; Zhang, L.; Akbulut, M.; Jiang, B. Solid-shelled microemulsion with capabilities of confinement-induced release for improving permeability of reservoirs. Chem. Eng. J. 2017, 323, 243–251. [Google Scholar] [CrossRef]
- Xiao, F.; Wu, K.; Luo, F.; Guo, Y.; Zhang, S.; Du, X.; Zhu, Q.; Lu, M. An efficient phosphonate-based ionic liquid on flame retardancy and mechanical property of epoxy resin. J. Mater. Sci. 2017, 52, 13992–14003. [Google Scholar] [CrossRef]
Sample | Peak HRR (W/g) | Total HR (kJ/g) | Temperature (C) |
---|---|---|---|
Fabric | 210.6 | 10.8 | 390.2 |
Fabric + 2.5% silica | 111.2 | 7 | 390 |
Fabric + 5% silica | 111.6 | 6.9 | 391.9 |
Fabric + 7.5% silica | 128.9 | 8 | 391.2 |
Fabric + 2.5% C12-IL–silica capsules | 129.3 | 7.5 | 385 |
Fabric + 5% C12-IL–silica capsules | 103.7 | 6.3 | 382.3 |
Fabric + 7.5% C12-IL–silica capsules | 97.13 | 6.7 | 379.1 |
Fabric + 2.5% C18-IL–silica capsules | 121 | 7.2 | 389 |
Fabric + 5% C18-IL–silica capsules | 102 | 6.1 | 389.7 |
Fabric + 7.5% C18-IL–silica capsules | 106 | 6.3 | 389.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Wu, B.; Wang, Q. Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems. Polymers 2025, 17, 626. https://doi.org/10.3390/polym17050626
Ma R, Wu B, Wang Q. Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems. Polymers. 2025; 17(5):626. https://doi.org/10.3390/polym17050626
Chicago/Turabian StyleMa, Rong, Bingqian Wu, and Qingsheng Wang. 2025. "Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems" Polymers 17, no. 5: 626. https://doi.org/10.3390/polym17050626
APA StyleMa, R., Wu, B., & Wang, Q. (2025). Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems. Polymers, 17(5), 626. https://doi.org/10.3390/polym17050626