Comparative Analysis and Predictive Modeling of Wear Performance of Glass- and Bamboo Fiber-Reinforced Nanoclay–Epoxy Composites Using RSM and ANN
Abstract
1. Introduction
2. Methodology
2.1. Materials
2.2. Composites Preparation
2.3. Wear Test
2.4. Design of Experiments
2.5. Artificial Neural Network Modeling
2.6. SEM Analysis
3. Results and Discussion
3.1. Response Surface Methodology (RSM)—Box–Behnken Experimental Design
3.1.1. Analysis of Variance (ANOVA)
3.1.2. Regression Equation
3.1.3. Residual Plots
3.1.4. Main Effects Plot
3.1.5. Interaction Plot
3.1.6. Surface Plot
3.2. Artificial Neural Network
3.3. Comparison Data
3.4. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Navaratnam, S.; Selvaranjan, K.; Jayasooriya, D.; Rajeev, P.; Sanjayan, J. Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment. J. Build. Eng. 2023, 66, 105835. [Google Scholar] [CrossRef]
- Damanik, W.S.; Siregar, M.A.; Lubis, S. Evaluation of the effect of variations in resin and fiber composition on tensile and compressive properties of natural material composites. Hybrid Adv. 2025, 10, 100434. [Google Scholar] [CrossRef]
- Dhairiyasamy, R.; Bassi, W.; Algethami, A.A.; Saleh, B.; Jaganathan, S.; Varshney, D.; Singh, S. Advanced epoxy composites for tribological Applications: Investigating the role of hybrid ceramic and lubricant fillers. Polym. Test. 2025, 150, 108932. [Google Scholar] [CrossRef]
- Pulikkalparambil, H.; Babu, A.; Thilak, A.; Vighnesh, N.P.; Mavinkere Rangappa, S.; Siengchin, S. A review on sliding wear properties of sustainable biocomposites: Classifications, fabrication and discussions. Heliyon 2023, 9, e14381. [Google Scholar] [CrossRef]
- Korku, M.; İlhan, R.; Feyzullahoğlu, E. Investigation of effects of environmental conditions on wear behaviors of glass fiber reinforced polyester composite materials. Polym. Compos. 2025, 46, 355–371. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, R.R.; Karsh, P.K.; Kumar, M.K.; Mandal, G.S.; Ali, H.M.S. Investigation on tribological and mechanical behaviour of GFRP composites with varying weight percentages of nano-graphite powders. Sci. Rep. 2025, 15, 34924. [Google Scholar] [CrossRef]
- Katiyar, J.K.; Jena, H. The role of synthetic fibers in the tribological behavior of polymeric materials. In Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2023; pp. 173–194. [Google Scholar]
- Shettigar, S.; Gowrishankar, M.C.; Shettar, M. Review on Aging Behavior and Durability Enhancement of Bamboo Fiber-Reinforced Polymer Composites. Molecules 2025, 30, 3062. [Google Scholar] [CrossRef]
- Milosevic, M.; Valášek, P.; Ruggiero, A. Tribology of Natural Fibers Composite Materials: An Overview. Lubricants 2020, 8, 42. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Petrů, M.; Hassan, A.; Nirmal, U.; Othman, N.; Ilyas, R.A. Effect of Nanofillers on Tribological Properties of Polymer Nanocomposites: A Review on Recent Development. Polymers 2021, 13, 2867. [Google Scholar] [CrossRef]
- Shettar, M.; Bhat, A.; Katagi, N.N.; Gowrishankar, M.C. Experimental Investigation on Mechanical Properties of Glass Fiber–Nanoclay–Epoxy Composites Under Water-Soaking: A Comparative Study Using RSM and ANN. J. Compos. Sci. 2025, 9, 195. [Google Scholar] [CrossRef]
- Ramesh, M.; Rajeshkumar, L.N.; Srinivasan, N.; Kumar, D.V.; Balaji, D. Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers 2022, 22, 898–916. [Google Scholar] [CrossRef]
- Karthik, K.; Elavarasan, K.; Nagappan, B.; Dash, S.; Shukla, K.K.; Arora, A.; Reddy V, V.R.; Kumar, K.P. Experimental investigation on modelling and prediction of optimal process parameters for the wear behaviour of hybrid polymer matrix composite. Results Eng. 2025, 27, 105871. [Google Scholar] [CrossRef]
- Karuppusamy, M.; Thirumalaisamy, R.; Palanisamy, S.; Nagamalai, S.; El Sayed Massoud, E.; Ayrilmis, N. A review of machine learning applications in polymer composites: Advancements, challenges, and future prospects. J. Mater. Chem. A 2025, 13, 16290–16308. [Google Scholar] [CrossRef]
- Raza, Y.; Raza, H.; Ahmed, A.; Quazi, M.M.; Jamshaid, M.; Anwar, M.T.; Bashir, M.N.; Younas, T.; Jafry, A.T.; Soudagar, M.E.M. Integration of response surface methodology (RSM), machine learning (ML), and artificial intelligence (AI) for enhancing properties of polymeric nanocomposites—A review. Polym. Compos. 2025, 46, 13591–13627. [Google Scholar] [CrossRef]
- Singh, M.; Dodla, S.; Gautam, R.K.; Chauhan, V. Enhancement of mechanical and tribological properties in glass fiber-reinforced polymer composites with multi-walled carbon nanotubes and ANN-based COF prediction. Compos. Interfaces 2025, 32, 439–459. [Google Scholar] [CrossRef]
- Divya, G.S.; Keshavamurthy, R.; Siddaraju, C.; Murthy, K.V.S. Investigation on Sliding Wear Properties of Nano Metallic Particle Reinforced Hybrid Composites Through Design of Experiments and ANN. J. Inst. Eng. Ser. D 2024, 105, 1551–1562. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Gowrishankar, M.C.; Shettar, M. Experimental investigation of mechanical properties and morphology of bamboo-glass fiber- nanoclay reinforced epoxy hybrid composites properties and morphology of bamboo-glass. Cogent Eng. 2023, 10, 2279209. [Google Scholar] [CrossRef]
- ASTM G99-17; Standard Test Method for Wear and Friction Testing with a Pin-on-Disk or Ball-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 14 November 2023. [CrossRef]
- Patro, B.P.; Sahoo, B.P.; Pradhan, S.K.; Dash, M.; Rath, P.; Das, D. Effects of sea water aging and cold treatment on properties and three-body abrasion behaviour of FRP composites: Regression analysis, ANOVA and GRA embedded VIKOR multi-response optimization. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 239, 9916–9934. [Google Scholar] [CrossRef]
- Arunachalam, S.J.; Saravanan, R.; Sathish, T.; Parthiban, A. Effect of nano-particle weight percent on the flexural strength of Jute/kenaf/glass fiber composite using RSM. Interactions 2024, 245, 83. [Google Scholar] [CrossRef]
- Nazari, A. An experimental investigation on the flexural and wear properties of multiscale nanoclay/basalt fiber/epoxy composites. Polym. Compos. 2021, 42, 5755–5762. [Google Scholar] [CrossRef]
- Raju, P.; Raja, K.; Lingadurai, K.; Maridurai, T.; Prasanna, S.C. Mechanical, wear, and drop load impact behavior of glass/Caryota urens hybridized fiber-reinforced nanoclay/SiC toughened epoxy multihybrid composite. Polym. Compos. 2021, 42, 1486–1496. [Google Scholar] [CrossRef]
- Jumahat, A.; Talib, A.A.A.; Sharudin, H.; Zulfikli, N.W.M. Tribological behavior of nanoclay-filled basalt fiber-reinforced polymer composites. In Tribology of Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 143–162. [Google Scholar]
- Naik, M.; Thakur, D.G.; Chandel, S.; Salunkhe, S.; Hussein, H.M.A. Effect of Load and Fiber Orientation on Wear Properties of Additively Manufactured Continuous CFRP Composites under Dry Sliding Conditions. Crystals 2022, 12, 1481. [Google Scholar] [CrossRef]
- Bhagavatula, G.K.; Leena, S.; Nanoth, R.; Pegoretti, A.; Karingamanna, J. Enhancement in fracture toughness and tribological stability of epoxy facilitated by heterogeneous 0D-0D nanofiller networks: An experimental and analytical evaluation. Results Eng. 2025, 28, 107760. [Google Scholar] [CrossRef]
- Kumar, N.; Setia, G.; Singh, V.; Bansal, A.; Nanda, T.; Mehta, R. Tribological performance and microstructural insights of epoxy-based GFRP nanocomposites reinforced with ceramic nanoclays for wear-resistant applications. J. Manuf. Process. 2025, 151, 460–475. [Google Scholar] [CrossRef]
- Al-Tameemi, H.A.; Ali, A.A.H.; Hussein, B. Investigation of wear resistance for variable configurations of woven glass-fiber reinforced composite materials. Mater. Res. Express 2020, 7, 095303. [Google Scholar] [CrossRef]
- Talib, A.A.A.; Jumahat, A.; Jawaid, M.; Sapiai, N.; Leao, A.L. Effect of Wear Conditions, Parameters and Sliding Motions on Tribological Characteristics of Basalt and Glass Fibre Reinforced Epoxy Composites. Materials 2021, 14, 701. [Google Scholar] [CrossRef]
- Fidan, S.; Ürgün, S.; Özsoy, M.İ.; Bora, M.Ö.; Güleç, E. Tribological Response of Glass Fiber/Polyester Composites After Pressurized Water-Immersion Aging Assessed by Reciprocating and Ball-on-Disc Wear Testing. Polymers 2025, 17, 2503. [Google Scholar] [CrossRef]
- Sahin, A.E.; Yarar, E.; Bora, M.O.; Yilmaz, T. Investigation of the effect of thermal aging and wear test parameters on the wear behavior of glass fiber (GF) reinforced epoxy composites. Polym. Compos. 2024, 45, 7820–7832. [Google Scholar] [CrossRef]
- Yin, Q.; Jiang, L.; Wang, Z.; Xue, K.; Duan, G. Effects of bamboo fiber substitution for glass fibers on mechanical and erosive wear properties of high-density polyethylene composites. BioResources 2025, 20, 4033–4043. [Google Scholar] [CrossRef]
- Mallampati, S.C.; Gujjala, R.; Manne, A.A.; Niranjan Kumar, M.S.R.; Kanakam, R.; Suresh Babu, V.; Banea, M.D. A study on the effect of nanoclay addition on the erosion wear characteristics of S-glass/sisal reinforced hybrid polymer composites. Discov. Mater. 2024, 4, 82. [Google Scholar] [CrossRef]
- Manickam, S.; Kannan, T.K.; Simon, B.L.; Rathanasamy, R.; Raj, S.S. Influence of Nanoclay on the technical properties of Glass-Abaca hybrid Epoxy composite. Polímeros 2020, 30, e2020038. [Google Scholar] [CrossRef]












| Type of Factors | Factors | Levels | ||
|---|---|---|---|---|
| Level 1 | Level 2 | Level 3 | ||
| Continuous | Nanoclay (wt.%) | 0 | 2 | 4 |
| Load (kg) | 4 | 5 | 6 | |
| Speed (rpm) | 100 | 200 | 300 | |
| Time (min) | 15 | 20 | 25 | |
| Categorical | Composite type | GFEC | BFEC | |
| Nanoclay (wt.%) | Load (kg) | Speed (rpm) | Time (min) | Composite Type | Mass Loss (mg) |
|---|---|---|---|---|---|
| 2 | 6 | 200 | 15 | GFEC | 15 |
| 4 | 5 | 200 | 25 | BFEC | 17 |
| 0 | 5 | 100 | 20 | BFEC | 20 |
| 0 | 4 | 200 | 20 | GFEC | 13 |
| 4 | 5 | 200 | 15 | GFEC | 11 |
| 2 | 4 | 200 | 25 | BFEC | 16 |
| 2 | 5 | 100 | 25 | BFEC | 18 |
| 2 | 6 | 200 | 15 | BFEC | 22 |
| 0 | 5 | 200 | 25 | BFEC | 24 |
| 2 | 4 | 300 | 20 | GFEC | 12 |
| 2 | 5 | 200 | 20 | BFEC | 19 |
| 2 | 4 | 200 | 15 | BFEC | 14 |
| 2 | 5 | 200 | 20 | BFEC | 19 |
| 2 | 4 | 100 | 20 | GFEC | 10 |
| 2 | 6 | 300 | 20 | BFEC | 23 |
| 2 | 6 | 300 | 20 | GFEC | 16 |
| 2 | 5 | 100 | 15 | GFEC | 11 |
| 0 | 5 | 200 | 15 | GFEC | 15 |
| 4 | 5 | 100 | 20 | GFEC | 10 |
| 2 | 4 | 300 | 20 | BFEC | 17 |
| 2 | 4 | 200 | 15 | GFEC | 10 |
| 0 | 6 | 200 | 20 | BFEC | 26 |
| 2 | 5 | 300 | 15 | GFEC | 14 |
| 2 | 6 | 200 | 25 | GFEC | 16 |
| 2 | 5 | 300 | 25 | GFEC | 15 |
| 4 | 5 | 200 | 25 | GFEC | 12 |
| 4 | 6 | 200 | 20 | GFEC | 13 |
| 0 | 6 | 200 | 20 | GFEC | 18 |
| 2 | 5 | 300 | 25 | BFEC | 22 |
| 2 | 5 | 200 | 20 | GFEC | 13 |
| 4 | 4 | 200 | 20 | GFEC | 9 |
| 2 | 5 | 100 | 15 | BFEC | 15 |
| 4 | 6 | 200 | 20 | BFEC | 18 |
| 2 | 5 | 100 | 25 | GFEC | 13 |
| 2 | 6 | 100 | 20 | GFEC | 14 |
| 0 | 5 | 100 | 20 | GFEC | 14 |
| 2 | 5 | 200 | 20 | GFEC | 13 |
| 2 | 4 | 200 | 25 | GFEC | 11 |
| 4 | 4 | 200 | 20 | BFEC | 13 |
| 2 | 4 | 100 | 20 | BFEC | 14 |
| 0 | 5 | 300 | 20 | GFEC | 17 |
| 0 | 5 | 200 | 25 | GFEC | 16 |
| 4 | 5 | 200 | 15 | BFEC | 16 |
| 2 | 5 | 200 | 20 | GFEC | 13 |
| 4 | 5 | 300 | 20 | BFEC | 18 |
| 0 | 5 | 200 | 15 | BFEC | 21 |
| 0 | 5 | 300 | 20 | BFEC | 25 |
| 4 | 5 | 300 | 20 | GFEC | 12 |
| 2 | 5 | 200 | 20 | BFEC | 19 |
| 0 | 4 | 200 | 20 | BFEC | 19 |
| 2 | 6 | 100 | 20 | BFEC | 20 |
| 4 | 5 | 100 | 20 | BFEC | 14 |
| 2 | 6 | 200 | 25 | BFEC | 23 |
| 2 | 5 | 300 | 15 | BFEC | 20 |
| Source | DF | Adj SS | Adj MS | F-Value | p-Value | |
|---|---|---|---|---|---|---|
| Model | 19 | 907.329 | 47.754 | 254.69 | 0.000 | |
| Linear | 5 | 883.417 | 176.683 | 942.31 | 0.000 | |
| Nanoclay (wt.%) | 1 | 176.042 | 176.042 | 938.89 | 0.000 | |
| Load (kg) | 1 | 181.500 | 181.500 | 968.00 | 0.000 | |
| Speed (rpm) | 1 | 60.167 | 60.167 | 320.89 | 0.000 | |
| Time (min) | 1 | 15.042 | 15.042 | 80.22 | 0.000 | |
| Composite Type | 1 | 450.667 | 450.667 | 2403.56 | 0.000 | |
| Square | 4 | 2.912 | 0.728 | 3.88 | 0.011 | |
| Nanoclay (wt.%) × Nanoclay (wt.%) | 1 | 1.338 | 1.338 | 7.14 | 0.012 | |
| Load (kg) × Load (kg) | 1 | 0.463 | 0.463 | 2.47 | 0.125 | |
| Speed (rpm) × Speed (rpm) | 1 | 0.074 | 0.074 | 0.40 | 0.534 | |
| Time (min) × Time (min) | 1 | 0.116 | 0.116 | 0.62 | 0.437 | |
| 2-Way Interaction | 10 | 21.000 | 2.100 | 11.20 | 0.000 | |
| Nanoclay (wt.%) × Load (kg) | 1 | 1.125 | 1.125 | 6.00 | 0.020 | |
| Nanoclay (wt.%) × Speed (rpm) | 1 | 0.500 | 0.500 | 2.67 | 0.112 | |
| Nanoclay (wt.%) × Time (min) | 1 | 0.500 | 0.500 | 2.67 | 0.112 | |
| Nanoclay (wt.%) × Composite Type | 1 | 7.042 | 7.042 | 37.56 | 0.000 | |
| Load (kg) × Speed (rpm) | 1 | 0.000 | 0.000 | 0.00 | 1.000 | |
| Load (kg) × Time (min) | 1 | 0.125 | 0.125 | 0.67 | 0.420 | |
| Load (kg) × Composite Type | 1 | 6.000 | 6.000 | 32.00 | 0.000 | |
| Speed (rpm) × Time (min) | 1 | 0.500 | 0.500 | 2.67 | 0.112 | |
| Speed (rpm) × Composite Type | 1 | 4.167 | 4.167 | 22.22 | 0.000 | |
| Time (min) × Composite Type | 1 | 1.042 | 1.042 | 5.56 | 0.024 | |
| Error | 34 | 6.375 | 0.188 | |||
| Lack-of-Fit | 30 | 6.375 | 0.213 | |||
| Pure Error | 4 | 0.000 | 0.000 | |||
| Total | 53 | 913.704 | ||||
| S—0.433013 | R-sq—99.30% | R-sq (adj)—98.91% | R-sq (pred)—98.91% | |||
| Composite Type | |||
|---|---|---|---|
| GFEC | Mass Loss (mg) | = | −12.03 + 0.250 Nanoclay + 5.21 Load + 0.0275 Speed + 0.225 Time + 0.0885 Nanoclay × Nanoclay − 0.208 Load × Load − 0.000008 Speed × Speed + 0.00417 Time × Time − 0.1875 Nanoclay × Load − 0.001250 Nanoclay × Speed − 0.0250 Nanoclay × Time + 0.00000 Load × Speed − 0.0250 Load × Time − 0.000500 Speed × Time |
| BFEC | Mass Loss (mg) | = | −13.51 − 0.292 Nanoclay + 6.21 Load + 0.0358 Speed + 0.308 Time+ 0.0885 Nanoclay × Nanoclay − 0.208 Load × Load − 0.000008 Speed × Speed + 0.00417 Time × Time − 0.1875 Nanoclay × Load − 0.001250 Nanoclay × Speed − 0.0250 Nanoclay × Time + 0.00000 Load × Speed − 0.0250 Load × Time − 0.000500 Speed × Time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.M.; Channegowda, G.M.; Shettar, M.; Bhat, A. Comparative Analysis and Predictive Modeling of Wear Performance of Glass- and Bamboo Fiber-Reinforced Nanoclay–Epoxy Composites Using RSM and ANN. Polymers 2025, 17, 3286. https://doi.org/10.3390/polym17243286
Ahmad SM, Channegowda GM, Shettar M, Bhat A. Comparative Analysis and Predictive Modeling of Wear Performance of Glass- and Bamboo Fiber-Reinforced Nanoclay–Epoxy Composites Using RSM and ANN. Polymers. 2025; 17(24):3286. https://doi.org/10.3390/polym17243286
Chicago/Turabian StyleAhmad, Syed Mansoor, Gowrishankar Mandya Channegowda, Manjunath Shettar, and Ashwini Bhat. 2025. "Comparative Analysis and Predictive Modeling of Wear Performance of Glass- and Bamboo Fiber-Reinforced Nanoclay–Epoxy Composites Using RSM and ANN" Polymers 17, no. 24: 3286. https://doi.org/10.3390/polym17243286
APA StyleAhmad, S. M., Channegowda, G. M., Shettar, M., & Bhat, A. (2025). Comparative Analysis and Predictive Modeling of Wear Performance of Glass- and Bamboo Fiber-Reinforced Nanoclay–Epoxy Composites Using RSM and ANN. Polymers, 17(24), 3286. https://doi.org/10.3390/polym17243286

