MCPA Optical Fiber Sensors via Molecularly Imprinted Polymers Combined with Intensity-Based and Plasmonic Platforms
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Molecularly Imprinted Polymer (MIP) and Non-Imprinted Polymer (NIP) Prepolymeric Mixture Preparation
2.3. Equipment
2.4. Model and Measuring Protocol for the Binding Tests
3. Sensor Systems
3.1. Surface Plasmon Resonance (SPR)–Plastic Optical Fiber (POF) Sensor Combined with A Molecularly Imprinted Polymer (MIP)
3.2. Optical Splitter Sensor Based on Plastic Optical Fibers (POFs) Combined with Molecularly Imprinted Polymers (MIPs)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Q.; Liu, C.-C. Development of Chemical Sensors Using Microfabrication and Micromachining Techniques. Sens. Actuators B Chem. 1993, 13, 1–6. [Google Scholar] [CrossRef]
- Suzuki, H. Microfabrication of Chemical Sensors and Biosensors for Environmental Monitoring. Mater. Sci. Eng. C 2000, 12, 55–61. [Google Scholar] [CrossRef]
- Hierlemann, A.; Brand, O.; Hagleitner, C.; Baltes, H. Microfabrication Techniques for Chemical/Biosensors. Proc. IEEE 2003, 91, 839–863. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Chen, J. Development of Biosensor Technologies for Analysis of Environmental Contaminants. Trends Environ. Anal. Chem. 2014, 2, 25–32. [Google Scholar] [CrossRef]
- Andreescu, S.; Sadik, O.A. Trends and Challenges in Biochemical Sensors for Clinical and Environmental Monitoring. Pure Appl. Chem. 2004, 76, 861–878. [Google Scholar] [CrossRef]
- Gavrilaș, S.; Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.-D. Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef]
- Becskereki, G.; Horvai, G.; Tóth, B. The Selectivity of Molecularly Imprinted Polymers. Polymers 2021, 13, 1781. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2018, 119, 94–119. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Pohanka, M. Sensors Based on Molecularly Imprinted Polymers. Int. J. Electrochem. Sci. 2017, 12, 8082–8094. [Google Scholar] [CrossRef]
- Garrido-Momparler, V.; Peris, M. Smart Sensors in Environmental/Water Quality Monitoring Using IoT and Cloud Services. Trends Environ. Anal. Chem. 2022, 35, e00173. [Google Scholar] [CrossRef]
- Parihar, A.; Sharma, P.; Choudhary, N.K.; Khan, R.; Mostafavi, E. Internet-of-Things-Integrated Molecularly Imprinted Polymer-Based Electrochemical Nano-Sensors for Pesticide Detection in the Environment and Food Products. Environ. Pollut. 2024, 351, 124029. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, M. Principles and Applications of Electrochemical and Optical Biosensors. Anal. Chim. Acta 1991, 250, 249–256. [Google Scholar] [CrossRef]
- Bilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical Sensors Based on Plastic Fibers. Sensors 2012, 12, 12184–12207. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. A Review of Advancements (2007–2017) in Plasmonics-Based Optical Fiber Sensors. Opt. Fiber Technol. 2018, 43, 20–34. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, W. Fiber-Optic Surface Plasmon Resonance Sensors and Biochemical Applications: A Review. J. Light. Technol. 2021, 39, 3781–3791. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Y.; Sun, H.; Huang, C.; Shen, X. Molecularly Imprinted Polymers Based Optical Fiber Sensors: A Review. Trends Anal. Chem. 2022, 152, 116608. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Fiber Optic Profenofos Sensor Based on Surface Plasmon Resonance Technique and Molecular Imprinting. Biosens. Bioelectron. 2016, 79, 150–157. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Fiber Optic SPR Sensor for the Detection of Melamine Using Molecular Imprinting. Sens. Actuators B Chem. 2015, 212, 404–410. [Google Scholar] [CrossRef]
- Tavoletta, I.; Arcadio, F.; Renzullo, L.P.; Oliva, G.; Del Prete, D.; Verolla, D.; Marzano, C.; Alberti, G.; Pesavento, M.; Zeni, L.; et al. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. Sensors 2024, 24, 3928. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Testa, G.; Marchetti, S.; De Maria, L.; Bernini, R.; Zeni, L.; Pesavento, M. Intensity-Based Plastic Optical Fiber Sensor with Molecularly Imprinted Polymer Sensitive Layer. Sens. Actuators B Chem. 2017, 241, 534–540. [Google Scholar] [CrossRef]
- Kumar, V.; Kim, K.-H. Use of Molecular Imprinted Polymers as Sensitive/Selective Luminescent Sensing Probes for Pesticides/Herbicides in Water and Food Samples. Environ. Pollut. 2022, 299, 118824. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.O.; Singh, B. Electrochemical Biosensors for Detection of Pesticides and Heavy Metal Toxicants in Water: Recent Trends and Progress. ACS EST Water 2021, 1, 462–478. [Google Scholar] [CrossRef]
- Fang, L.; Jia, M.; Zhao, H.; Kang, L.; Shi, L.; Zhou, L.; Kong, W. Molecularly Imprinted Polymer-Based Optical Sensors for Pesticides in Foods: Recent Advances and Future Trends. Trends Food Sci. Technol. 2021, 116, 387–404. [Google Scholar] [CrossRef]
- Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A.S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Biosensors and Their Applications in Detection of Organophosphorus Pesticides in the Environment. Arch. Toxicol. 2016, 91, 109–130. [Google Scholar] [CrossRef]
- Gandhi, K.; Khan, S.; Patrikar, M.; Markad, A.; Kumar, N.; Choudhari, A.; Sagar, P.; Indurkar, S. Exposure Risk and Environmental Impacts of Glyphosate: Highlights on the Toxicity of Herbicide Co-Formulants. Environ. Chall. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Maggi, F.; la Cecilia, D.; Tang, F.H.M.; McBratney, A. The Global Environmental Hazard of Glyphosate Use. Sci. Total Environ. 2020, 717, 137167. [Google Scholar] [CrossRef]
- Caux, P.Y.; Kent, R.A.; Bergeron, V.; Fan, G.T.; MacDonald, D.D. Environmental Fate and Effects of MCPA: A Canadian Perspective. Crit. Rev. Environ. Sci. Technol. 1995, 25, 313–376. [Google Scholar] [CrossRef]
- Li, C.; Begum, A.; Xue, J. Analytical Methods to Analyze Pesticides and Herbicides. Water Environ. Res. 2020, 92, 1770–1785. [Google Scholar] [CrossRef]
- Kaur, N.; Khunger, A.; Wallen, S.L.; Kaushik, A.; Chaudhary, G.R.; Varma, R.S. Advanced Green Analytical Chemistry for Environmental Pesticide Detection. Curr. Opin. Green Sustain. Chem. 2021, 30, 100488. [Google Scholar] [CrossRef]
- Li, Z.; Lin, H.; Wang, L.; Cao, L.; Sui, J.; Wang, K. Optical Sensing Techniques for Rapid Detection of Agrochemicals: Strategies, Challenges, and Perspectives. Sci. Total Environ. 2022, 838, 156515. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Ramanavicius, A. Development of Molecularly Imprinted Polymer Based Phase Boundaries for Sensors Design (Review). Adv. Colloid Interface Sci. 2022, 305, 102693. [Google Scholar] [CrossRef] [PubMed]
- Limaee, N.Y.; Rouhani, S.; Olya, M.E.; Najafi, F. Selective Recognition of Herbicides in Water Using a Fluorescent Molecularly Imprinted Polymer Sensor. J. Fluoresc. 2020, 30, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Arabi, M.; Chen, L. Technical Challenges of Molecular-Imprinting-Based Optical Sensors for Environmental Pollutants. Langmuir 2022, 38, 5963–5967. [Google Scholar] [CrossRef]
- Zanoni, C.; Spina, S.; Magnaghi, L.R.; Guembe-Garcia, M.; Biesuz, R.; Alberti, G. Potentiometric MIP-Modified Screen-Printed Cell for Phenoxy Herbicides Detection. Int. J. Environ. Res. Public Health 2022, 19, 16488. [Google Scholar] [CrossRef]
- Do, M.H.; Florea, A.; Farre, C.; Bonhomme, A.; Bessueille, F.; Vocanson, F.; Tran-Thi, N.-T.; Jaffrezic-Renault, N. Molecularly Imprinted Polymer-Based Electrochemical Sensor for the Sensitive Detection of Glyphosate Herbicide. Int. J. Environ. Anal. Chem. 2015, 95, 1489–1501. [Google Scholar] [CrossRef]
- Uka, B.; Kieninger, J.; Urban, G.A.; Weltin, A. Electrochemical Microsensor for Microfluidic Glyphosate Monitoring in Water Using MIP-Based Concentrators. ACS Sens. 2021, 6, 2738–2746. [Google Scholar] [CrossRef]
- Arcadio, F.; Prete, D.D.; Zeni, L.; Pesavento, M.; Alberti, G.; Marletta, V.; Andò, B.; Cennamo, N. Optical Waveguides Based on a Core of Molecularly Imprinted Polymers: An Efficient Approach for Chemical Sensing. IEEE Sens. J. 2024, 24, 27411–27420. [Google Scholar] [CrossRef]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine. Biosensors 2021, 11, 72. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Perri, C.; Arcadio, F.; Zeni, L. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water. Sensors 2018, 18, 1836. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Cennamo, N.; De Maria, L.; Chemelli, C.; Profumo, A.; Zeni, L.; Pesavento, M. Markers Detection in Transformer Oil by Plasmonic Chemical Sensor System Based on POF and MIPs. IEEE Sens. J. 2016, 16, 7663–7670. [Google Scholar] [CrossRef]
- Yu, T.; Fenelon, O.; Herdman, K.M.; Breslin, C.B. The Electrochemical Detection of 4-Chloro-2-Methylphenoxyacetic Acid (MCPA) Using a Simple Activated Glassy Carbon Electrode. J. Electrochem. Soc. 2022, 169, 037514. [Google Scholar] [CrossRef]
- Daly, R.; Narayan, T.; Diaz, F.; Shao, H.; Gutierrez Moreno, J.J.; Nolan, M.; O’Riordan, A.; Lovera, P. Electrochemical Synthesis of 2D-Silver Nanodendrites Functionalized with Cyclodextrin for SERS-Based Detection of Herbicide MCPA. Nanotechnology 2024, 35, 285704. [Google Scholar] [CrossRef]
- Si, B.M.; Yang, J.C.; Hazarika, D.; Byeon, J.W.; Lee, G.B.; Park, J. Fabrication and Sensing Properties of Fibrous-Like Chlorophenoxy Herbicide-Imprinted Polymeric Matrix via Microcontact Printing. Macromol. Res. 2022, 30, 731–736. [Google Scholar] [CrossRef]
- Haddadou, I.; Brisebois, P.; Ouellet-Plamondon, C.M.; Benetti, D.; Rosei, F. Fluorescent Chitosan Hydrogels Based on Biomass-Derived Carbon Dots for Toxic Aromatic Detection. Adv. Sustain. Syst 2025, 9, e00689. [Google Scholar] [CrossRef]
- Tavoletta, I.; Alberti, G.; Arcadio, F.; Zeni, L.; Cennamo, N. Two Sensors Based on Molecularly Imprinted Polymers and Plastic Optical Fibers for Fast and Cost-Effective MCPA Herbicide Detection in Environmental Monitoring. Talanta 2025, 298, 128842. [Google Scholar] [CrossRef]
- Morton, P.A.; Fennell, C.; Cassidy, R.; Doody, D.; Fenton, O.; Mellander, P.; Jordan, P. A Review of the Pesticide MCPA in the Land-water Environment and Emerging Research Needs. WIREs Water 2019, 7, e1402. [Google Scholar] [CrossRef]
- Mei, X.-Y.; Hong, Y.-Q.; Chen, G.-H. Review on Analysis Methodology of Phenoxy Acid Herbicide Residues. Food Anal. Methods 2015, 9, 1532–1561. [Google Scholar] [CrossRef]








| Δλ0 [nm] | Δλmax [nm] | K [μM] | n | Statistics | ||||
|---|---|---|---|---|---|---|---|---|
| Value | St. err. | Value | St. err. | Value | St. err. | Value | St. err. | R2 |
| −0.03 | 0.04 | −3.39 | 0.04 | 0.089 | 0.008 | 1 | 0 | 0.998 |
| Parameters | Value |
|---|---|
| Affinity constant [μM]−1 | 11.14 |
| Sensitivity at low concentration [nm/μM] | 37.44 |
| Limit of detection [μM] | 0.003 |
| ΔY0 [a.u.] | ΔYmax [a.u.] | K [μM] | n | Statistics | ||||
|---|---|---|---|---|---|---|---|---|
| Value | St. err. | Value | St. err. | Value | St. err. | Value | St. err. | R2 |
| 1.000 | 0.002 | 1.05 | 0.02 | 0.032 | 0.007 | 1 | 0 | 0.991 |
| Parameters | Value |
|---|---|
| Affinity constant [μM]−1 | 31.5 |
| Sensitivity at low concentration [a.u./μM] | 1.6 |
| Limit of detection [μM] | 0.003 |
| MCPA Concentration | SPR-POF Sensors | IF | Splitter Sensors | IF | ||
|---|---|---|---|---|---|---|
| |ΔλMIP|[nm] | |ΔλNIP|[nm] | ΔYMIP [a.u.] | ΔYNIP [a.u.] | |||
| 5 nM | 0.3 | 0.2 | 1.5 | 0.01 | 0.001 | 10 |
| 50 nM | 1.2 | 0.2 | 6 | 0.03 | 0.001 | 30 |
| 500 nM | 2.9 | 0.2 | 14.5 | 0.05 | 0.001 | 50 |
| Sensor | Sample | MCPA Added [nM] | MCPA Found [nM] | Recovery [%] |
|---|---|---|---|---|
| SPR-POF-MIP | distilled water | 50.0 | 50.3 | 101 |
| tap water | 50.0 | 42.5 | 85 | |
| POF-MIP splitter | distilled water | 5.0 | 5.8 | 116 |
| tap water | 5.0 | 4.1 | 82 |
| Optical–Chemical Sensors | Analyte | Behavior of the MIP-Based Sensor | Ref. |
|---|---|---|---|
| SPR-POF-MIP | DBDS | Red-shift | Cennamo et al. [45] |
| POF-MIP splitter | DBDS | Intensity decrease | Cennamo et al. [23] |
| SPR-POF-MIP | 2-FAL | Red-shift | Pesavento et al. [41] |
| POF-MIP splitter | 2-FAL | Intensity decrease | Tavoletta et al. [22] |
| SPR-POF-MIP | MCPA | Blue-shift | [This work] |
| POF-MIP splitter | MCPA | Intensity increase | [This work] |
| POF-MIP Sensors | Limit of Detection | Affinity Constant |
|---|---|---|
| SPR-POF-MIP | 3 nM | 11.14 [μM]−1 |
| POF-MIP splitter | 3 nM | 31.5 [μM]−1 |
| MCPA Sensors | Sensing Principle | Matrix | LOD | Ref. |
|---|---|---|---|---|
| Potentiometric MIP-modified screen-printed cell | Electrochemical | Phosphate buffer | 13 nM | Zanoni et al. [37] |
| Activated glassy carbon electrode | Electrochemical | Phosphate buffer | 8 nM | Yu et al. [46] |
| 2D silver nanodendrites functionalized with cyclodextrin for SERS sensing | Optical | Water | 106 nM | Daly et al. [47] |
| (F-MIP)-based QCM sensor | Optical | Water | 200 nM | Si et al. [48] |
| Fluorescent chitosan hydrogels based on biomass-derived carbon dots | Optical | Water | 4 nM | Haddadou et al. [49] |
| SPR-POF-MIP sensor | Optical | Water | 3 nM | [This work] |
| MIP core sensor | Optical | Water | 0.08 nM | Tavoletta et al. [50] |
| POF-MIP splitter | Optical | Water | 3 nM | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavoletta, I.; Arcadio, F.; Zeni, L.; Oliveira, R.; Nogueira, R.N.; Alberti, G.; Cennamo, N. MCPA Optical Fiber Sensors via Molecularly Imprinted Polymers Combined with Intensity-Based and Plasmonic Platforms. Polymers 2025, 17, 3048. https://doi.org/10.3390/polym17223048
Tavoletta I, Arcadio F, Zeni L, Oliveira R, Nogueira RN, Alberti G, Cennamo N. MCPA Optical Fiber Sensors via Molecularly Imprinted Polymers Combined with Intensity-Based and Plasmonic Platforms. Polymers. 2025; 17(22):3048. https://doi.org/10.3390/polym17223048
Chicago/Turabian StyleTavoletta, Ines, Francesco Arcadio, Luigi Zeni, Ricardo Oliveira, Rogério Nunes Nogueira, Giancarla Alberti, and Nunzio Cennamo. 2025. "MCPA Optical Fiber Sensors via Molecularly Imprinted Polymers Combined with Intensity-Based and Plasmonic Platforms" Polymers 17, no. 22: 3048. https://doi.org/10.3390/polym17223048
APA StyleTavoletta, I., Arcadio, F., Zeni, L., Oliveira, R., Nogueira, R. N., Alberti, G., & Cennamo, N. (2025). MCPA Optical Fiber Sensors via Molecularly Imprinted Polymers Combined with Intensity-Based and Plasmonic Platforms. Polymers, 17(22), 3048. https://doi.org/10.3390/polym17223048

