Morphological Characterization of High Molecular Weight Poly(styrene-b-isoprene) or PS-b-PI and Its Hydrogenated, Sulfonated Derivatives: An AFM Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
3. Results
3.1. Molecular Characterization
3.2. Morphological Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Hernández, J.; Chécot, F.; Gnanou, Y.; Lecommandoux, S. Toward ‘smart’ nano-objects by self-assembly of block copolymers in solution. Prog. Polym. Sci. 2005, 30, 691–724. [Google Scholar] [CrossRef]
- Darling, S.B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 2007, 32, 1152–1204. [Google Scholar] [CrossRef]
- Kim, J.K.; Yang, S.Y.; Lee, Y.; Kim, Y. Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35, 1325–1349. [Google Scholar] [CrossRef]
- Mavroudis, A.; Avgeropoulos, A.; Hadjichristidis, N.; Thomas, E.L.; Lohse, D.J. Synthesis and Morphological Behavior of Model Linear and Miktoarm Star Copolymers of 2-Methyl-1,3-Pentadiene and Styrene. Chem. Mater. 2003, 15, 1976–1983. [Google Scholar] [CrossRef]
- Winey, K.I.; Thomas, E.L.; Fetters, L.J. The ordered bicontinuous double-diamond morphology in diblock copolymer/homopolymer blends. Macromolecules 1992, 25, 422–428. [Google Scholar] [CrossRef]
- Avgeropoulos, A.; Dair, B.J.; Hadjichristidis, N.; Thomas, E.L. Tricontinuous Double Gyroid Cubic Phase in Triblock Copolymers of the ABA Type. Macromolecules 1997, 30, 5634–5642. [Google Scholar] [CrossRef]
- Breiner, U.; Krappe, U.; Thomas, E.L.; Stadler, R. Structural Characterization of the “Knitting Pattern” in Polystyrene-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) Triblock Copolymers. Macromolecules 1998, 31, 135–141. [Google Scholar] [CrossRef]
- Politakos, N.; Weinman, C.J.; Paik, M.Y.; Sundaram, H.S.; Ober, C.K.; Avgeropoulos, A. Synthesis, molecular, and morphological characterization of initial and modified diblock copolymers with organic acid chloride derivatives. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4292–4305. [Google Scholar] [CrossRef]
- Karayianni, M.; Pispas, S. Block copolymer solution self-assembly: Recent advances, emerging trends, and applications. J. Polym. Sci. 2021, 59, 1874–1898. [Google Scholar] [CrossRef]
- Doerk, G.S.; Stein, A.; Bae, S.; Noack, M.M.; Fukuto, M.; Yager, K.G. Autonomous discovery of emergent morphologies in directed self-assembly of block copolymer blends. Sci. Adv. 2023, 9, eadd3687. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Doerk, G.S. Thin film block copolymer self-assembly for nanophotonics. Nanotechnology 2022, 33, 292001. [Google Scholar] [CrossRef]
- Hu, X.-H.; Xiong, S. Fabrication of Nanodevices Through Block Copolymer Self-Assembly. Front. Nanotechnol. 2022, 4, 762996. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Q.; Li, C.; Yang, Q.; Xu, F.; Mai, Y. Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. Adv. Mater. 2023, 35, 2207684. [Google Scholar] [CrossRef] [PubMed]
- Kuperkar, K.; Tiwari, S.; Bahadur, P. Chapter 15—Self-Assembled Block Copolymer Nanoaggregates for Drug Delivery Applications. In Applications of Polymers in Drug Delivery, 2nd ed.; Misra, A., Shahiwala, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 423–447. ISBN 9780128196595. [Google Scholar] [CrossRef]
- Han, H.; Oh, J.W.; Park, J.; Lee, H.; Park, C.; Lee, S.W.; Lee, K.; Jeon, S.; Kim, S.; Park, Y.; et al. Hierarchically Ordered Perovskites with High Photo-Electronic and Environmental Stability via Nanoimprinting Guided Block Copolymer Self-Assembly. Adv. Mater. Interfaces 2022, 9, 2200082. [Google Scholar] [CrossRef]
- Gabor, A.H.; Lehner, E.A.; Mao, G.; Schneggenburger, L.A.; Ober, C.K. Synthesis and lithographic characterization of block copolymer resists consisting of both poly (styrene) blocks and hydrosiloxane-modified poly (diene) blocks. Chem. Mater. 1994, 6, 927–934. [Google Scholar] [CrossRef]
- Wan, L.; Ruiz, R.; Gao, H.; Albrecht, T.R. Self-Registered Self-Assembly of Block Copolymers. ACS Nano 2017, 11, 7666–7673. [Google Scholar] [CrossRef]
- Park, M.; Harrison, C.; Chaikin, P.M.; Register, R.A.; Adamson, D.H. Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science 1997, 276, 1401–1404. [Google Scholar] [CrossRef]
- Kim, D.H.; Suh, A.; Park, G.; Yoon, D.K.; Kim, S.Y. Nanoscratch-Directed Self-Assembly of Block Copolymer Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 5772–5781. [Google Scholar] [CrossRef]
- Yang, G.G.; Choi, H.J.; Han, K.H.; Kim, J.H.; Lee, C.W.; Jung, E.I.; Jin, H.M.; Kim, S.O. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Appl. Mater. Interfaces 2022, 14, 12011–12037. [Google Scholar] [CrossRef]
- Bal, M.; Ursache, A.; Tuominen, M.T.; Goldbach, J.T.; Russell, T.P. Nanofabrication of integrated magnetoelectronic devices using patterned self-assembled copolymer templates. Appl. Phys. Lett. 2002, 81, 3479–3481. [Google Scholar] [CrossRef]
- Huang, C.; Bai, K.; Zhu, Y.; Andelman, D.; Man, X. Design and Fabrication of Nano-Particles with Customized Properties using Self-Assembly of Block-Copolymers. Adv. Funct. Mater. 2024, 34, 2408311. [Google Scholar] [CrossRef]
- Chen, L.; Phillip, W.A.; Cussler, E.L.; Hillmyer, M.A. Robust Nanoporous Membranes Templated by a Doubly Reactive Block Copolymer. J. Am. Chem. Soc. 2007, 129, 13786–13787. [Google Scholar] [CrossRef] [PubMed]
- Hamta, A.; Ashtiani, F.Z.; Karimi, M.; Moayedfard, S. Asymmetric block copolymer membrane fabrication mechanism through self-assembly and non-solvent induced phase separation (SNIPS) process. Sci. Rep. 2022, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.A.; Hillmyer, M.A. Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration. ACS Nano 2010, 4, 3548–3553. [Google Scholar] [CrossRef] [PubMed]
- Hibi, Y.; Wiesner, U. Surface Segregation and Self-Assembly of Block-Copolymer Separation Layers on Top of Homopolymer Substructures in Asymmetric Ultrafiltration Membranes from a Single Casting Step. Adv. Funct. Mater. 2021, 31, 2009387. [Google Scholar] [CrossRef]
- Listak, J.; Hakem, I.F.; Ryu, H.J.; Rangou, S.; Politakos, N.; Misichronis, K.; Avgeropoulos, A.; Bockstaller, M.R. Effect of Chain Architecture on the Compatibility of Block Copolymer/Nanoparticle Blends. Macromolecules 2009, 42, 5766–5773. [Google Scholar] [CrossRef]
- Qi, L.; Colfen, H.; Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett. 2001, 1, 61–65. [Google Scholar] [CrossRef]
- Yang, G.G.; Choi, H.J.; Li, S.; Kim, J.H.; Kwon, K.; Jin, H.M.; Kim, B.H.; Kim, S.O. Intelligent block copolymer self-assembly towards IoT hardware components. Nat. Rev. Electr. Eng. 2024, 1, 124–138. [Google Scholar] [CrossRef]
- Alexandridis, P.; Tsianou, M. Block copolymer-directed metal nanoparticle morphogenesis and organization. Eur. Polym. J. 2011, 47, 569–583. [Google Scholar] [CrossRef]
- Kumar, L.; Singh, S.; Horechyy, A.; Fery, A.; Nandan, B. Block Copolymer Template-Directed Catalytic Systems: Recent Progress and Perspectives. Membranes 2021, 11, 318. [Google Scholar] [CrossRef]
- Jeon, E.J.; Jean-Fulcrand, A.; Kwade, A.; Garnweitner, G. A room-temperature high performance all-solid-state lithium-sulfur battery enabled by a cross-linked copolymer@ceramic hybrid solid electrolyte. Nano Energy 2022, 104 Pt A, 107912. [Google Scholar] [CrossRef]
- Angelopoulou, P.P.; Moutsios, I.; Manesi, G.-M.; Ivanov, D.A.; Sakellariou, G.; Avgeropoulos, A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog. Polym. Sci. 2022, 135, 101625. [Google Scholar] [CrossRef]
- Escobar Barrios, V.A.; Herrera Nájera, R.; Petit, A.; Pla, F. Selective hydrogenation of butadiene–styrene copolymers using a Ziegler–Natta type catalyst: 1. Kinetic study. Eur. Polym. J. 2000, 36, 1817–1834. [Google Scholar] [CrossRef]
- Kaditi, E.; Mountrichas, G.; Pispas, S. Amphiphilic block copolymers by a combination of anionic polymerization and selective post-polymerization functionalization. Eur. Polym. J. 2011, 47, 415–434. [Google Scholar] [CrossRef]
- Perin, F.; Motta, A.; Maniglio, D. Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. Mater. Sci. Eng. C 2021, 123, 111952. [Google Scholar] [CrossRef]
- Wu, M.Q.; Wu, S.; Cai, Y.F.; Wang, R.Z.; Li, T.X. Form-stable phase change composites: Preparation, performance, and applications for thermal energy conversion, storage and management. Energy Storage Mater. 2021, 42, 380–417. [Google Scholar] [CrossRef]
- Zuppolini, S.; Salama, A.; Cruz-Maya, I.; Guarino, V.; Borriello, A. Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics 2022, 14, 386. [Google Scholar] [CrossRef]
- Xu, K.; Liu, Y. Studies of probe tip materials by atomic force microscopy: A review. Beilstein J. Nanotechnol. 2022, 13, 1256–1267. [Google Scholar] [CrossRef]
- Sudersan, P.; Müller, M.; Hormozi, M.; Li, S.; Butt, H.-J.; Kappl, M. Method to Measure Surface Tension of Microdroplets Using Standard AFM Cantilever Tips. Langmuir 2023, 39, 10367–10374. [Google Scholar] [CrossRef]
- Sychev, D.; Schubotz, S.; Besford, Q.A.; Fery, A.; Auernhammer, G.K. Critical analysis of adhesion work measurements from AFM-based techniques for soft contact. J. Coll. Inter. Sci. 2023, 642, 216–226. [Google Scholar] [CrossRef]
- Navindaran, K.; Kang, J.S.; Moon, K. Techniques for characterizing mechanical properties of soft tissues. J. Mech. Behav. Biomed. Mat. 2023, 138, 105575. [Google Scholar] [CrossRef]
- Norman, M.D.A.; Ferreira, S.A.; Jowett, G.M.; Bozec, L.; Gentleman, E. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nat. Protoc. 2021, 16, 2418–2449. [Google Scholar] [CrossRef] [PubMed]
- Aldrich-Smith, G.; Jennett, N.M.; Hangen, U. Direct measurement of nanoindentation area function by metrological AFM. Int. J. Mater. Res. 2005, 96, 1267–1271. [Google Scholar] [CrossRef]
- Gisbert, V.G.; Amo, C.A.; Jaafar, M.; Asenjo, A.; Garcia, R. Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM. Nanoscale 2021, 13, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Park, H.; Yamamoto, G.; Lee, C.; Suk, J.W. Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy. Nanomaterials 2021, 11, 2575. [Google Scholar] [CrossRef]
- Torkhov, N.A.; Buchelnikova, V.A.; Mosunov, A.A.; Ivonin, I.V. AFM methods for studying the morphology and micromechanical properties of the membrane of human buccal epithelium cell. Sci. Rep. 2023, 13, 10917. [Google Scholar] [CrossRef]
- Demchenkov, E.L.; Nagdalian, A.A.; Budkevich, R.O.; Oboturova, N.P.; Okolelova, A.I. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicol. Environ. Saf. 2021, 208, 111683. [Google Scholar] [CrossRef]
- Politakos, N.; Moutsios, I.; Manesi, G.-M.; Artopoiadis, K.; Tsitoni, K.; Moschovas, D.; Piryazev, A.A.; Kotlyarskiy, D.S.; Kortaberria, G.; Ivanov, D.A.; et al. Molecular and Structure–Properties Comparison of an Anionically Synthesized Diblock Copolymer of the PS-b-PI Sequence and Its Hydrogenated or Sulfonated Derivatives. Polymers 2021, 13, 4167. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic polymerization: High vacuum techniques. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3211–3234. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters a User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2007. [Google Scholar]
- Miller-Chou, B.A.; Koenig, J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Lindvig, T.; Michelesen, M.L.; Kontogeorgis, G.M. A Flory–Huggins model based on the Hansen solubility parameters. J. Fluid Phase Equilibria 2002, 203, 247–260. [Google Scholar] [CrossRef]
- Farrell, R.A.; Fitzgerald, T.G.; Borah, D.; Holmes, J.D.; Morris, M.A. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films. Int. J. Mol. Sci. 2009, 10, 3671–3712. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Park, W.I.; Kim, M.-J.; Ross, C.A.; Jung, Y.S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Lett. 2011, 11, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Saraf, R.F. Stability of Order in Solvent-Annealed Block Copolymer Thin Films. Macromolecules 2003, 36, 2428–2440. [Google Scholar] [CrossRef]
- Shin, J.M.; Kim, Y.; Yun, H.; Yi, G.-R.; Kim, B.J. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology. ACS Nano 2017, 11, 2133–2142. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, J.; Han, Y. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012, 37, 564–594. [Google Scholar] [CrossRef]
- Miwa, Y.; Usami, K.; Yamamoto, K.; Sakaguchi, M.; Sakai, M.; Shimada, S. Direct Detection of Effective Glass Transitions in Miscible Polymer Blends by Temperature-Modulated Differential Scanning Calorimetry. Macromolecules 2005, 38, 2355–2361. [Google Scholar] [CrossRef]
- Almdal, K.; Koppi, K.A.; Bates, F.S.; Mortensen, K. Multiple ordered phases in a block copolymer melt. Macromolecules 1992, 25, 1743–1751. [Google Scholar] [CrossRef]
- Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and Phase Segregation of Spin-Casted Films of Polyfluorene/PCBM Blends. Macromolecules 2007, 40, 8291–8301. [Google Scholar] [CrossRef]
- Lai, C.; Russel, W.B.; Register, R.A.; Marchand, G.R.; Adamson, D.H. Phase Behavior of Styrene−Isoprene Diblock Derivatives with Varying Conformational Asymmetry. Macromolecules 2000, 33, 3461–3466. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Lo, T.-Y.; She, M.-S.; Ho, R.-M. Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate. ACS Appl. Mater. Interfaces 2015, 7, 16536–16547. [Google Scholar] [CrossRef]
- Albert, J.N.L.; Epps, T.H., III. Self-assembly of block copolymer thin films. Mater. Today 2010, 13, 24–33. [Google Scholar] [CrossRef]
- Luo, M.; Epps, T.H., III. Directed Block Copolymer Thin Film Self-Assembly: Emerging Trends in Nanopattern Fabrication. Macromolecules 2013, 46, 7567–7579. [Google Scholar] [CrossRef]





| Solvents Polymers | δ (MPa1/2) a (Hansen) | δ (MPa) b (Van Krelen) | δ (MPa1/2) b (Van Krelen) | δ (MPa) b (Van Krelen) |
|---|---|---|---|---|
| Solvents | ||||
| THF | 19.46 | 19.50 | ||
| Toluene | 18.16 | 18.20 | ||
| Cyclohexane | 16.80 | 16.70 | ||
| Polymer blocks | ||||
| PS | 19.07 | 19.10 | ||
| PI | 17.94 | 17.40 | ||
| PEP | 17.47 c | 16.86 d | ||
| PI/sulf | 24.88 c | 26.44 d | ||
| χAB a | 298 K (R.T.) | χSP b | THF | Toluene | Cyclohexane |
|---|---|---|---|---|---|
| χPS/PI | 0.05 | χPS | 0.09 | 0.17 | 0.36 |
| χPS/PEP | 0.10 | χPI | 0.16 | 0.04 | 0.13 |
| χPS/PI/sulf | 1.35 | χPEP | 0.20 | 0.12 | 0.16 |
| χPI/PI/sulf | 1.93 | χPI/sulf | 0.34 | 1.26 | 1.80 |
| Copolymers | ||||||
|---|---|---|---|---|---|---|
| SI | SEP | SI/sulf | ||||
| Casting Technique | ||||||
| Casting | Spin Casting | Casting | Spin Casting | Casting | Spin Casting | |
| Morphologies | Samples | Samples | Samples | |||
| Disorder | * 2C, 2F, 3C 3T, 3F, 4C 4T, 4F | 2F, 3C, 3T 4C, 4T, 4F | 3T | 2C, 4T, 4F | 2C, 2T, 4C 4T, 4F | 1F, 4C, 4T 4F |
| Lamellae | - | 3F | 1T, 2T, 2F 4T | 1T | 2F | - |
| Lamellae (not fully organized) | 1T, 1F, 2T | 1T | 1F | - | 1T, 1F | - |
| Lamellae (not fully organized) with crystallites | - | 2T | - | 3T | - | 1T, 2T, 2F |
| Network | - | - | 4C, 4F | 4C | - | 3T |
| Spherical micelles | - | 1C, 2C | 1C, 2C, 3C | 1C | 3C 3T, 3F | - |
| Spherical micelles with crystallites | - | - | - | - | - | 1C, 2C, 3F |
| Worm-like | 1C | 1F | 3F | 1F, 2T, 2F 3C | 1C | 3C |
| Worm-like with crystallites | - | - | - | 3F | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politakos, N.; Kortaberria, G.; Avgeropoulos, A. Morphological Characterization of High Molecular Weight Poly(styrene-b-isoprene) or PS-b-PI and Its Hydrogenated, Sulfonated Derivatives: An AFM Study. Polymers 2025, 17, 3047. https://doi.org/10.3390/polym17223047
Politakos N, Kortaberria G, Avgeropoulos A. Morphological Characterization of High Molecular Weight Poly(styrene-b-isoprene) or PS-b-PI and Its Hydrogenated, Sulfonated Derivatives: An AFM Study. Polymers. 2025; 17(22):3047. https://doi.org/10.3390/polym17223047
Chicago/Turabian StylePolitakos, Nikolaos, Galder Kortaberria, and Apostolos Avgeropoulos. 2025. "Morphological Characterization of High Molecular Weight Poly(styrene-b-isoprene) or PS-b-PI and Its Hydrogenated, Sulfonated Derivatives: An AFM Study" Polymers 17, no. 22: 3047. https://doi.org/10.3390/polym17223047
APA StylePolitakos, N., Kortaberria, G., & Avgeropoulos, A. (2025). Morphological Characterization of High Molecular Weight Poly(styrene-b-isoprene) or PS-b-PI and Its Hydrogenated, Sulfonated Derivatives: An AFM Study. Polymers, 17(22), 3047. https://doi.org/10.3390/polym17223047

