Linker-Engineered Tyrosine–Azide Coatings for Stable Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC) Functionalization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Coating with Tyrosine–Azide Derivatives on Planar Surfaces
2.3. Micromolding in Capillaries (MIMIC)
2.4. Microcontact Printing (µCP)
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Baskin, J.M.; Prescher, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Miller, I.A.; Lo, A.; Codelli, J.A.; Bertozzi, C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 16793–16797. [Google Scholar] [CrossRef]
- Ning, X.; Guo, J.; Wolfert, M.A.; Boons, G.-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew. Chem. Int. Ed. 2008, 47, 2253–2255. [Google Scholar] [CrossRef]
- Debets, M.F.; van Berkel, S.S.; Schoffelen, S.; Rutjes, F.P.J.T.; van Hest, J.C.M.; van Delft, F.L. Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. Chem. Commun. 2010, 46, 97–99. [Google Scholar] [CrossRef]
- Jewett, J.C.; Sletten, E.M.; Bertozzi, C.R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 2010, 132, 3688–3690. [Google Scholar] [CrossRef] [PubMed]
- Dommerholt, J.; Schmidt, S.; Temming, R.; Hendriks, L.J.A.; Rutjes, F.P.J.T.; van Hest, J.C.M.; Lefeber, D.J.; Friedl, P.; van Delft, F.L. Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. 2010, 49, 9422–9425. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Quiñones, N.C.; López-Méndez, L.J.; Cruz-Hernández, C.; Guadarrama, P. Click chemistry as an efficient toolbox for coupling sterically hindered molecular systems to obtain advanced materials for nanomedicine. Int. J. Mol. Sci. 2025, 26, 36. [Google Scholar] [CrossRef]
- VanBrunt, M.P.; Shanebeck, K.; Caldwell, Z.; Johnson, J.; Thompson, P.; Martin, T.; Dong, H.; Li, G.; Xu, H.; D’Hooge, F.; et al. Bowen and M. Marelli. Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody−drug conjugates using click cycloaddition chemistry. Bioconjug. Chem. 2015, 26, 2249–2260. [Google Scholar] [CrossRef]
- Kuzmin, A.; Poloukhtine, A.; Wolfert, M.A.; Popik, V.V. Surface functionalization using catalyst-free azide−alkyne cycloaddition. Bioconjug. Chem. 2010, 21, 2076–2085. [Google Scholar] [CrossRef]
- Zeng, D.; Lee, N.S.; Liu, Y.; Zhou, D.; Dence, C.S.; Wooley, K.L.; Katzenellenbogen, J.A.; Welch, M.J. 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 2012, 6, 5209–5219. [Google Scholar] [CrossRef] [PubMed]
- DeForest, C.A.; Anseth, K.S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 2012, 51, 1816–1819. [Google Scholar] [CrossRef]
- Jonker, A.M.; Borrmann, A.; van Eck, E.R.H.; van Delft, F.L.; Löwik, D.W.P.M.; van Hest, J.C.M. A fast and activatable cross-linking strategy for hydrogel formation. Adv. Mater. 2015, 27, 1235–1240. [Google Scholar] [CrossRef]
- Han, I.; Kim, S.Y.; Hong, S.-P.; Choi, I.S.; Cho, W.K. Functional surfaces with zwitterionic carboxybetaine L-3,4-dihydroxyphenylalanine: Synthesis, coating, and antifouling applications. Prog. Org. Coat. 2023, 184, 107860. [Google Scholar] [CrossRef]
- Sun, F.; Wu, K.; Hung, H.-C.; Zhang, P.; Che, X.; Smith, J.; Lin, X.; Li, B.; Jain, P.; Yu, Q.; et al. Paper sensor coated with a poly(carboxybetaine)-multiple DOPA conjugate via dip-coating for biosensing in complex media. Anal. Chem. 2017, 89, 10999–11004. [Google Scholar] [CrossRef]
- Kim, B.J.; Cho, H.; Park, J.H.; Mano, J.F.; Choi, I.S. Strategic advances in formation of cell-in-shell structures: From syntheses to applications. Adv. Mater. 2018, 30, 1706063. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, W.I.; Youn, W.; Seo, J.; Kim, B.J.; Lee, J.K.; Choi, I.S. Enzymatic film formation of nature-derived phenolic amines. Nanoscale 2018, 10, 13351–13355. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Park, S.; Bisht, H.; Park, S.; Jeong, J.; Hong, Y.; Chu, D.; Koh, M.; Hong, D. Melanin-inspired maleimide coatings on various substrates for rapid thiol functionalization. Macromol. Biosci. 2025, 25, 2400616. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Bisht, H.; Park, S.; Hong, Y.; Shin, G.; Hong, D. Formation of antifouling brushes on various substrates using a melanin-inspired initiator film. Langmuir 2023, 39, 7598–7604. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, B.; Jeong, J.; Bisht, H.; Park, S.; Hong, D. Antifouling surface coating on various substrates by inducing tyrosinase-mediated oxidation of a tyrosine-conjugated sulfobetaine derivative. Biomacromolecules 2022, 23, 4349–4356. [Google Scholar] [CrossRef]
- Bisht, H.; Hong, Y.; Park, S.; Hwang, Y.; Hong, D. Fabrication of versatile antifouling coatings inspired by melanogenesis using a tyrosine-conjugated carboxybetaine derivative. Langmuir 2025, 41, 2082–2088. [Google Scholar] [CrossRef]
- Declas, N.; Maynard, J.R.J.; Menin, L.; Gasilova, N.; Götze, S.; Sprague, J.L.; Stallforth, P.; Matile, S.; Waser, J. Tyrosine bioconjugation with hypervalent iodine. Chem. Sci. 2022, 13, 12808–12817. [Google Scholar] [CrossRef]
- Madl, C.M.; Heilshorn, S.C. Tyrosine-selective functionalization for bio-orthogonal cross-linking of engineered protein hydrogels. Bioconjug. Chem. 2017, 28, 724–730. [Google Scholar] [CrossRef]
- Wang, P.; Silverman, S.K. DNA-catalyzed introduction of azide at tyrosine for peptide modification. Angew. Chem. Int. Ed. 2016, 55, 10052–10056. [Google Scholar] [CrossRef]
- Bisht, H.; Jeong, J.; Hong, Y.; Park, S.; Hong, D. Development of universal and clickable film by mimicking melanogenesis: On-demand oxidation of tyrosine-based azido derivative by tyrosinase. Macromol. Rapid Commun. 2022, 43, 2200089. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Na, Y.S.; Choi, S.; Song, I.T.; Kim, W.Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012, 22, 4711–4717. [Google Scholar] [CrossRef]
- Yang, W.; Liu, C.; Chen, Y. Stability of polydopamine coatings on gold substrates inspected by surface plasmon resonance imaging. Langmuir 2018, 34, 3565–3571. [Google Scholar] [CrossRef]
- Kang, S.M.; You, I.; Cho, W.K.; Shon, H.K.; Lee, T.G.; Choi, I.S.; Karp, J.M.; Lee, H. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed. 2010, 49, 9401–9404. [Google Scholar] [CrossRef]
- Hong, S.; Wang, Y.; Park, S.Y.; Lee, H. Progressive fuzzy cation-π assembly of biological catecholamines. Sci. Adv. 2018, 4, eaat7457. [Google Scholar] [CrossRef]
- Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: In vitro, in vivo, and ex vivo. Chem. Sci. 2019, 10, 7835–7851. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S.; Lee, J.K.; Kim, W.-J.; Jung, Y.H.; Sim, S.J.; Lee, J.; Choi, I.S. Surface-initiated, atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate and subsequent click chemistry for bioconjugation. Biomacromolecules 2007, 8, 744–749. [Google Scholar] [CrossRef]
- Al-Bataineh, S.A.; Luginbuehl, R.; Textor, M.; Yan, M. Covalent immobilization of antibacterial furanones via photochemical activation of perfluorophenylazide. Langmuir 2009, 25, 7432–7437. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Choi, S.; Jwa, D.G.; Kim, M.; Kang, S.M. Mussel-inspired, one-step thiol functionalization of solid surfaces. Langmuir 2020, 36, 1608–1614. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Rozkiewicz, D.I.; Jańczewski, D.; Verboom, W.; Ravoo, B.J.; Reinhoudt, D.N. “Click” chemistry by microcontact printing. Angew. Chem. Int. Ed. 2006, 45, 5292–5296. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.M.; Rho, J.; Choi, I.S.; Messersmith, P.B.; Lee, H. Norepinephrine: Material-independent, multifunctional surface modification reagent. J. Am. Chem. Soc. 2009, 131, 13224–13225. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Kim, N.; Youn, W.; Yun, G.; Han, S.Y.; Nguyen, D.T.; Choi, I.S. Cell-in-catalytic-shell nanoarchitectonics: Catalytic empowerment of individual living cells by single-cell nanoencapsulation. Adv. Mater. 2022, 34, 2201247. [Google Scholar] [CrossRef] [PubMed]
- Zamaleeva, A.I.; Sharipova, I.R.; Shamagsumova, R.V.; Ivanov, A.N.; Evtugyn, G.A.; Ishmuchametova, D.G.; Fakhrullin, R.F. A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal. Methods 2011, 3, 509–513. [Google Scholar] [CrossRef]
- Oh, J.; Kumari, N.; Kim, D.; Kumar, A.; Lee, I.S. Ultrathin silica-tiling on living cells for chemobiotic catalysis. Nat. Commun. 2024, 15, 5773. [Google Scholar] [CrossRef]
- Han, S.Y.; Nguyen, D.T.; Kim, B.J.; Kim, N.; Kang, E.K.; Park, J.H.; Choi, I.S. Cytoprotection of probiotic Lactobacillus acidophilus with artificial nanoshells of nature-derived eggshell membrane hydrolysates and coffee melanoidins in single-cell nanoencapsulation. Polymers 2023, 15, 1104. [Google Scholar] [CrossRef]
- Wang, B.; Liu, P.; Jiang, W.; Pan, H.; Xu, X.; Tang, R. Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. 2008, 47, 3560–3564. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Kang, S.M.; Lee, K.-B.; Chung, T.D.; Lee, H.; Choi, I.S. Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 2011, 133, 2795–2797. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Wu, Y.; Liu, Y. Design and application of antifouling bio-coatings. Polymers 2025, 17, 793. [Google Scholar] [CrossRef]
- Skigin, P.; Robin, P.; Kavand, A.; Mensi, M.; Gerber-Lemaire, S. “Grafting-from” and “grafting-to” poly(N-isopropyl acrylamide) functionalization of glass for DNA biosensors with improved properties. Polymers 2024, 16, 2873. [Google Scholar] [CrossRef] [PubMed]
- Rheem, H.B.; Kim, N.; Nguyen, D.T.; Baskoro, G.A.; Roh, J.H.; Lee, J.K.; Kim, B.J.; Choi, I.S. Single-cell nanoencapsulation: Chemical synthesis of artificial cell-in-shell spores. Chem. Rev. 2025, 125, 6366–6396. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Bisht, H.; Park, J.; Park, S.; Hong, Y.; Chu, D.; Koh, M.; Lee, H.; Hong, D. Linker-Engineered Tyrosine–Azide Coatings for Stable Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC) Functionalization. Polymers 2025, 17, 2969. https://doi.org/10.3390/polym17222969
Park S, Bisht H, Park J, Park S, Hong Y, Chu D, Koh M, Lee H, Hong D. Linker-Engineered Tyrosine–Azide Coatings for Stable Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC) Functionalization. Polymers. 2025; 17(22):2969. https://doi.org/10.3390/polym17222969
Chicago/Turabian StylePark, Suho, Himani Bisht, Jiwoo Park, Seongchul Park, Yubin Hong, Daeun Chu, Minseob Koh, Hojae Lee, and Daewha Hong. 2025. "Linker-Engineered Tyrosine–Azide Coatings for Stable Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC) Functionalization" Polymers 17, no. 22: 2969. https://doi.org/10.3390/polym17222969
APA StylePark, S., Bisht, H., Park, J., Park, S., Hong, Y., Chu, D., Koh, M., Lee, H., & Hong, D. (2025). Linker-Engineered Tyrosine–Azide Coatings for Stable Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC) Functionalization. Polymers, 17(22), 2969. https://doi.org/10.3390/polym17222969

