Experimental Investigation of a Waste-Derived Biopolymer for Enhanced Oil Recovery Under Harsh Conditions: Extraction and Performance Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Pomegranate Peels, Extraction Water and Brine
2.1.2. Core and Crude Oil Samples Characterization
2.2. Experimental Setup and Equipment
2.2.1. Biopolymer Extraction
2.2.2. Core-Flooding System
2.3. Experimental Procedures
2.3.1. Solution Preparation and Characterization
2.3.2. Core-Flooding
3. Results and Discussion
3.1. Biopolymer Solution
3.2. Rheological Behavior of the Pomegranate Peel-Derived Biopolymer
3.3. Interfacial Properties and Their EOR Implications
3.4. Analysis of Core-Flooding, Recovery Performance and Pressure Profiles
4. Conclusions
- The results demonstrated that pomegranate peel waste as a feedstock has significant potential for producing EOR-active biopolymers capable of enhancing oil recovery under simulated reservoir conditions, offering a sustainable alternative to conventional synthetic polymers for challenging reservoirs.
- Rheological characterization of solutions derived from 2–12% (w/v) peel concentration revealed significant shear-thinning behavior, where 7% (w/v) solution was selected for EOR experiment tests. The extracted biopolymer solution at 7% (w/v) peel concentration achieved substantial incremental oil recovery values of 10.4% (SWF, then PF) to 14.6% (PF, then trace SW) using Berea sandstone core samples at 75 °C and 165,000 ppm TDS brine. The polymer flooding experiment achieved the highest ultimate recovery among the other two scenarios performed (SWF and SWF then PF), totaling 62.2% OOIP after approximately 4.1 PV of polymer injection, followed by trace seawater.
- This performance is primarily attributed to improved mobility control, evidenced by an in situ apparent viscosity of approximately 2.02 cP at 75 °C and significant resistance factors. In addition, the interfacial tension values (11.0–13.6 mN/m) were not sufficiently low to be the dominant recovery mechanism. The biopolymer solutions consistently exhibited beneficial shear-thinning (pseudoplastic) behavior across all tested concentrations and temperatures.
- While differential pressure increases confirmed effective in situ mobility control, significant injectivity challenges were observed as high and fluctuating differential pressures during polymer injection, requiring further optimization for practical field deployment. The pressure behavior analysis revealed important operational parameters for successful field implementation of the pomegranate peel biopolymer. Therefore, strategic next steps must prioritize optimizing the biopolymer solution quality and field applicability, where actionable research priorities include:
- Developing advanced purification protocols for the pomegranate peel extract to mitigate particulate-induced plugging and improve injectivity.
- Conducting detailed chemical characterization and potential modification of the biopolymer to enhance its stability and reduce adverse rock-polymer interactions.
- Performing extended core-flood studies incorporating refined polymer solutions to rigorously assess long-term injectivity and optimize slug design for varied permeability formations and rock types.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Energy Institute. Statistical Review of World Energy 2024; Energy Institute: London, UK, 2024; Available online: https://www.energyinst.org/statistical-review/home (accessed on 6 June 2025).
- IEA. Share of Energy Demand Growth by Source, 2024; IEA: Paris, France, 2024; Available online: https://www.iea.org/data-and-statistics/charts/share-of-energy-demand-growth-by-source-2024 (accessed on 6 June 2025).
- Elsayed Abdel-Raouf, M.; Hasan El-Keshawy, M.; Hasan, A.M.A. Green Polymers and Their Uses in Petroleum Industry, Current State and Future Perspectives. In Crude Oil—New Technologies and Recent Approaches; IntechOpen: London, UK, 2022. [Google Scholar]
- Gbadamosi, A.O.; Kiwalabye, J.; Junin, R.; Augustine, A. A Review of Gas Enhanced Oil Recovery Schemes Used in the North Sea. J. Pet. Explor. Prod. Technol. 2018, 8, 1373–1387. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, J.; Yin, M. A Comprehensive Review of Polyacrylamide Polymer Gels for Conformance Control. Pet. Explor. Dev. 2015, 42, 525–532. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Patil, S.; Kamal, M.S.; Adewunmi, A.A.; Yusuff, A.S.; Agi, A.; Oseh, J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers 2022, 14, 1433. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.J.; Leonhardt, B.; Azri, N. Status of Polymer-Flooding Technology. J. Can. Pet. Technol. 2015, 54, 116–126. [Google Scholar] [CrossRef]
- El-Masry, J.F.; Maalouf, E.; Abbas, A.H.; Bou-Hamdan, K.F. Advancements in Green Materials for Chemical Enhanced Oil Recovery: A Review. Petroleum 2025, 11, 259–276. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Pye, D.J. Improved Secondary Recovery by Control of Water Mobility. J. Pet. Technol. 1964, 16, 911–916. [Google Scholar] [CrossRef]
- Sandiford, B.B. Laboratory and Field Studies of Water Floods Using Polymer Solutions to Increase Oil Recoveries. J. Pet. Technol. 1964, 16, 917–922. [Google Scholar] [CrossRef]
- Fanchi, J.R. (Ed.) 10—Rock–Fluid Interactions. In Integrated Reservoir Asset Management; Gulf Professional Publishing: Boston, MA, USA, 2010; pp. 167–185. ISBN 978-0-12-382088-4. [Google Scholar]
- Mohsenatabar Firozjaii, A.; Saghafi, H.R. Review on Chemical Enhanced Oil Recovery Using Polymer Flooding: Fundamentals, Experimental and Numerical Simulation. Petroleum 2020, 6, 115–122. [Google Scholar] [CrossRef]
- Olajire, A.A. Review of ASP EOR (Alkaline Surfactant Polymer Enhanced Oil Recovery) Technology in the Petroleum Industry: Prospects and Challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
- Zeynalli, M.; Mushtaq, M.; Al-Shalabi, E.W.; Alfazazi, U.; Hassan, A.M.; AlAmeri, W. A Comprehensive Review of Viscoelastic Polymer Flooding in Sandstone and Carbonate Rocks. Sci. Rep. 2023, 13, 17679. [Google Scholar] [CrossRef]
- Ali, A.G.; Amao, A.M.; Moawad, T.M. Citrus-Based Biopolymer for Enhanced Oil Recovery Applications in High-Salinity, High-Temperature Reservoirs. Arab. J. Sci. Eng. 2024, 49, 8643–8659. [Google Scholar] [CrossRef]
- Mishra, S.; Bera, A.; Mandal, A. Effect of Polymer Adsorption on Permeability Reduction in Enhanced Oil Recovery. J. Pet. Eng. 2014, 2014, 395857. [Google Scholar] [CrossRef]
- Al-Sharji, H.H.; Grattoni, C.A.; Dawe, R.A.; Zimmerman, R.W. Disproportionate Permeability Reduction Due to Polymer Adsorption Entanglement. In Proceedings of the SPE European Formation Damage Conference, The Hague, The Netherlands, 21 May 2001. [Google Scholar]
- Sorbie, K.S. Polymer-Improved Oil Recovery; Springer: Dordrecht, The Netherlands, 1991; ISBN 978-94-010-5354-9. [Google Scholar]
- Sheng, J.J. Polymer Viscoelastic Behavior and Its Effect on Field Facilities and Operations; Gulf Professional Publishing: Houston, TX, USA, 2011; ISBN 978-1-85617-745-0. [Google Scholar]
- Wang, D.; Cheng, J.; Yang, Q.; Gong, W.; Li, Q. Viscous-Elastic Polymer Can Increase Microscale Displacement Efficiency in Cores. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 1–4 October 2000. [Google Scholar]
- Qi, P.; Ehrenfried, D.H.; Koh, H.; Balhoff, M.T. Reduction of Residual Oil Saturation in Sandstone Cores by Use of Viscoelastic Polymers. SPE J. 2017, 22, 447–458. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Wu, W.; Xia, H.; Yin, H. The Influence of Viscoelasticity on Displacement Efficiency—From Micro- to Macroscale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007. [Google Scholar]
- Azad, M.S.; Trivedi, J.J. Novel Viscoelastic Model for Predicting the Synthetic Polymer’s Viscoelastic Behavior in Porous Media Using Direct Extensional Rheological Measurements. Fuel 2019, 235, 218–226. [Google Scholar] [CrossRef]
- Vermolen, E.C.; Haasterecht, M.J.; Masalmeh, S.K. A Systematic Study of the Polymer Visco-Elastic Effect on Residual Oil Saturation by Core Flooding. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 31 March–2 April 2014. [Google Scholar]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Sheng, J.J. Polymer Flooding-Fundamentals and Field Cases, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; ISBN 9780123865458. [Google Scholar]
- Chang, H.L.; Zhang, Z.Q.; Wang, Q.M.; Xu, Z.S.; Guo, Z.D.; Sun, H.Q.; Cao, X.L.; Qiao, Q. Advances in Polymer Flooding and Alkaline/Surfactant/Polymer Processes as Developed and Applied in the People’s Republic of China. J. Pet. Technol. 2006, 58, 84–89. [Google Scholar] [CrossRef]
- Luo, J.-H.; Pu, R.-Y.; Wang, P.-M.; Bai, F.-L. Performance Properties of Salt Tolerant Polymer KYPAM for EOR. Oilfield Chem. 2002, 19, 64–67. [Google Scholar]
- Gaillard, N.; Giovannetti, B.; Favero, C.; Caritey, J.-P.; Dupuis, G.; Zaitoun, A. New Water Soluble Anionic NVP Acrylamide Terpolymers for Use in Harsh EOR Conditions. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- Ayirala, S.C.; Uehara-Nagamine, E.; Matzakos, A.N.; Chin, R.W.; Doe, P.H.; van den Hoek, P.J. A Designer Water Process for Offshore Low Salinity and Polymer Flooding Applications. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- LoPachin, R.M. The Changing View of Acrylamide Neurotoxicity. Neurotoxicology 2004, 25, 617–630. [Google Scholar] [CrossRef]
- Wellington, S.L. Biopolymer Solution Viscosity Stabilization—Polymer Degradation and Antioxidant Use. Soc. Pet. Eng. J. 1983, 23, 901–912. [Google Scholar] [CrossRef]
- Seright, R.S.; Wavrik, K.E.; Zhang, G.; AlSofi, A.M. Stability and Behavior in Carbonate Cores for New Enhanced-Oil-Recovery Polymers at Elevated Temperatures in Hard Saline Brines. SPE Reserv. Eval. Eng. 2020, 24, 1–18. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Lu, Z.; Feng, Y. Thermoviscosifying Polymer Used for Enhanced Oil Recovery: Rheological Behaviors and Core Flooding Test. Polym. Bull. 2013, 70, 391–401. [Google Scholar] [CrossRef]
- Jang, H.Y.; Zhang, K.; Chon, B.H.; Choi, H.J. Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution. J. Ind. Eng. Chem. 2015, 21, 741–745. [Google Scholar] [CrossRef]
- Levitt, D.B.; Pope, G.A. Selection and Screening of Polymers for Enhanced-Oil Recovery. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008; Volume 3, pp. 1125–1142. [Google Scholar] [CrossRef]
- Standnes, D.C.; Skjevrak, I. Literature Review of Implemented Polymer Field Projects. J. Pet. Sci. Eng. 2014, 122, 761–775. [Google Scholar] [CrossRef]
- Sveistrup, M.; van Mastrigt, F.; Norrman, J.; Picchioni, F.; Paso, K. Viability of Biopolymers for Enhanced Oil Recovery. J. Dispers. Sci. Technol. 2016, 37, 1160–1169. [Google Scholar] [CrossRef]
- Tackie-Otoo, B.N.; Ayoub Mohammed, M.A.; Yekeen, N.; Negash, B.M. Alternative Chemical Agents for Alkalis, Surfactants and Polymers for Enhanced Oil Recovery: Research Trend and Prospects. J. Pet. Sci. Eng. 2020, 187, 106828. [Google Scholar] [CrossRef]
- Clinckspoor, K.J.; Ferreira, V.H.d.S.; Moreno, R.B.Z.L. Bulk Rheology Characterization of Biopolymer Solutions and Discussions of Their Potential for Enhanced Oil Recovery Applications. CTF—Cienc. Tecnol. Futuro 2021, 11, 123–135. [Google Scholar] [CrossRef]
- Gao, C. Application of a Novel Biopolymer to Enhance Oil Recovery. J. Pet. Explor. Prod. Technol. 2016, 6, 749–753. [Google Scholar] [CrossRef]
- Liu, Y.Z. Polymer Solution Properties and Displacement Mechanisms. In Proceedings of the Enhanced oil Recovery–Polymer Flooding; Petroleum Industry Press: Beijing, China, 2006; pp. 1–72. [Google Scholar]
- Pu, W.; Shen, C.; Wei, B.; Yang, Y.; Li, Y. A Comprehensive Review of Polysaccharide Biopolymers for Enhanced Oil Recovery (EOR) from Flask to Field. J. Ind. Eng. Chem. 2018, 61, 1–11. [Google Scholar] [CrossRef]
- Fadairo, A.; Adeyemi, G.; Onyema, O.; Adesina, A. Formulation of Bio-Waste Derived Polymer and Its Application in Enhanced Oil Recovery. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 5–7 August 2019. [Google Scholar]
- Fadairo, A.; Adeyemi, G.; Temitope, O.; Kegang, L.; Vamegh, R.; Enuice, D.; Temitope, I.; Ayoo, J. Banana Peel and Mango Kernel-Based Polymers and Their Suitability in Enhanced Oil Recovery. J. Pet. Explor. Prod. Technol. 2021, 11, 2027–2037. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Mohammadi, A.H.; Khaksar Manshad, A. Characterization and Likelihood Application of Extracted Mucilage from Hollyhocks Plant as a Natural Polymer in Enhanced Oil Recovery Process by Alkali-Surfactant-Polymer (ASP) Slug Injection into Sandstone Oil Reservoirs. J. Mol. Liq. 2020, 320, 114445. [Google Scholar] [CrossRef]
- Tengku Mohd, T.A.; Abdul Manaf, S.F.; Abd Naim, M.; Mat Shayuti, M.S.; Jaafar, M.Z. Properties of Biodegradable Polymer from Terrestrial Mushroom for Potential Enhanced Oil Recovery. Indones. J. Chem. 2020, 20, 1382. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Zhou, X.; Murtaza, M.; Kamal, M.S.; Patil, S.; Al Shehri, D.; Barri, A. Experimental Study on the Application of Cellulosic Biopolymer for Enhanced Oil Recovery in Carbonate Cores under Harsh Conditions. Polymers 2022, 14, 4621. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Konwar, J.; Das Purkayastha, M.; Kalita, S.; Mukherjee, A.; Dutta, J. Current Progress in Valorization of Food Processing Waste and By-Products for Pectin Extraction. Int. J. Biol. Macromol. 2023, 239, 124332. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, L. The Economic Contribution of South Africa’s Pomegranate Industry. Agriprobe 2021, 18, 57–64. [Google Scholar]
- Ismail, T.; Sestili, P.; Akhtar, S. Pomegranate Peel and Fruit Extracts: A Review of Potential Anti-Inflammatory and Anti-Infective Effects. J. Ethnopharmacol. 2012, 143, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and Quantification of Phenolic Compounds from Pomegranate (Punica granatum L.) Peel, Mesocarp, Aril and Differently Produced Juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Parker, D.L.; Schram, B.R.; Plude, J.L.; Moore, R.E. Effect of Metal Cations on the Viscosity of a Pectin-like Capsular Polysaccharide from the Cyanobacterium Microcystis Flos-Aquae C3-40. Appl. Environ. Microbiol. 1996, 62, 1208–1213. [Google Scholar] [CrossRef]
- Rao, D.G. Studies on Viscosity-Molecular Weight Relationship of Chitosan Solutions. J. Food Sci. Technol. 1993, 30, 66–67. [Google Scholar]
- Fakayode, O.A.; Abobi, K.E. Optimization of Oil and Pectin Extraction from Orange (Citrus sinensis) Peels: A Response Surface Approach. J. Anal. Sci. Technol. 2018, 9, 20. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and Uses of Pectin—A Review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Flutto, L. PECTIN|Properties and Determination. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 4440–4449. [Google Scholar]
- Genovese, D.B.; Ye, A.; Singh, H. High methoxyl pectin/apple particles composite gels: Effect of particle size and particle concentration on mechanical properties and gel structure. J. Texture Stud. 2010, 41, 171–189. [Google Scholar] [CrossRef]
- Tibbits, C.W.; MacDougall, A.J.; Ring, S.G. Calcium Binding and Swelling Behaviour of a High Methoxyl Pectin Gel. Carbohydr. Res. 1998, 310, 101–107. [Google Scholar] [CrossRef]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.G.C.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M.A. Characterization of Pectins Extracted from Pomegranate Peel and Their Gelling Properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef]
- Thomas, A. Essentials of Polymer Flooding; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; ISBN 9781119537588. [Google Scholar]
- Gomaa, S.; Soliman, A.A.; Nasr, K.; Emara, R.; El-hoshoudy, A.N.; Attia, A.M. Development of Artificial Neural Network Models to Calculate the Areal Sweep Efficiency for Direct Line, Staggered Line Drive, Five-Spot, and Nine-Spot Injection Patterns. Fuel 2022, 317, 123564. [Google Scholar] [CrossRef]
- Wang, C.; Liu, P.; Wang, Y.; Yuan, Z.; Xu, Z. Experimental Study of Key Effect Factors and Simulation on Oil Displacement Efficiency for a Novel Modified Polymer BD-HMHEC. Sci. Rep. 2018, 8, 3860. [Google Scholar] [CrossRef]
- Riyamol; Gada Chengaiyan, J.; Rana, S.S.; Ahmad, F.; Haque, S.; Capanoglu, E. Recent Advances in the Extraction of Pectin from Various Sources and Industrial Applications. ACS Omega 2023, 8, 46309–46324. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, L.; Li, S.; Meng, T.; Wang, L.; Zhang, W. The Effect of Sonication-Synergistic Natural Deep Eutectic Solvents on Extraction Yield, Structural and Physicochemical Properties of Pectins Extracted from Mango Peels. Ultrason. Sonochem. 2022, 86, 106045. [Google Scholar] [CrossRef] [PubMed]
- Güzel, M.; Akpınar, Ö. Valorisation of Fruit By-Products: Production Characterization of Pectins from Fruit Peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Colodel, C.; Petkowicz, C.L.d.O. Acid Extraction and Physicochemical Characterization of Pectin from Cubiu (Solanum sessiliflorum D.) Fruit Peel. Food Hydrocoll. 2019, 86, 193–200. [Google Scholar] [CrossRef]
- Akhtar, J.; Abrha, M.G.; Omre, P.K.; Gebru, G.G. Extraction And Characterization of Pectin from Lemon Peels Waste. Rjces 2020, 8, 25–37. [Google Scholar]
- Lu, J.; Li, J.; Jin, R.; Li, S.; Yi, J.; Huang, J. Extraction and Characterization of Pectin from Premna microphylla Turcz Leaves. Int. J. Biol. Macromol. 2019, 131, 323–328. [Google Scholar] [CrossRef]
- Dranca, F.; Talón, E.; Vargas, M.; Oroian, M. Microwave vs. Conventional Extraction of Pectin from Malus Domestica ‘Fălticeni’ Pomace and Its Potential Use in Hydrocolloid-Based Films. Food Hydrocoll. 2021, 121, 107026. [Google Scholar] [CrossRef]
- Van Hung, P.; Anh, M.N.T.; Hoa, P.N.; Phi, N.T.L. Extraction and Characterization of High Methoxyl Pectin from Citrus maxima Peels Using Different Organic Acids. J. Food Meas. Charact. 2021, 15, 1541–1546. [Google Scholar] [CrossRef]
- Zouambia, Y.; Youcef Ettoumi, K.; Krea, M.; Moulai-Mostefa, N. A New Approach for Pectin Extraction: Electromagnetic Induction Heating. Arab. J. Chem. 2017, 10, 480–487. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Tomar, M.; Punia, S.; Singh, S.; Patil, S.; Singh, S.; Ilakiya, T.; Kaur, C.; Kennedy, J.F. Jackfruit Seed Slimy Sheath, a Novel Source of Pectin: Studies on Antioxidant Activity, Functional Group, and Structural Morphology. Carbohydr. Polym. Technol. Appl. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Bagherian, H.; Zokaee Ashtiani, F.; Fouladitajar, A.; Mohtashamy, M. Comparisons between Conventional, Microwave- and Ultrasound-Assisted Methods for Extraction of Pectin from Grapefruit. Chem. Eng. Process. Process Intensif. 2011, 50, 1237–1243. [Google Scholar] [CrossRef]
- Hatzignatiou, D.G.; Moradi, H.; Stavland, A. Polymer Flow through Water- and Oil-Wet Porous Media. J. Hydrodyn. 2015, 27, 748–762. [Google Scholar] [CrossRef]
- Sheng, J. Modern Chemical Enhanced Oil Recovery: Theory and Practice; Gulf Professional Publishing: Houston, TX, USA, 2011; ISBN 978-1-85617-745-0. [Google Scholar]
- Li, X.; Xu, Z.; Yin, H.; Feng, Y.; Quan, H. Comparative Studies on Enhanced Oil Recovery: Thermoviscosifying Polymer Versus Polyacrylamide. Energy Fuels 2017, 31, 2479–2487. [Google Scholar] [CrossRef]
- Ürüncüoğlu, Ş.; Alba, K.; Morris, G.A.; Kontogiorgos, V. Influence of Cations, PH and Dispersed Phases on Pectin Emulsification Properties. Curr. Res. Food Sci. 2021, 4, 398–404. [Google Scholar] [CrossRef]
- Alba, K.; Bingham, R.J.; Gunning, P.A.; Wilde, P.J.; Kontogiorgos, V. Pectin Conformation in Solution. J. Phys. Chem. B 2018, 122, 7286–7294. [Google Scholar] [CrossRef]
- Morrow, N.R.; Tang, G.; Valat, M.; Xie, X. Prospects of Improved Oil Recovery Related to Wettability and Brine Composition. J. Pet. Sci. Eng. 1998, 20, 267–276. [Google Scholar] [CrossRef]
- Pereira, T.; Carvalho, M. Polymer flooding in sandstone: Adsorption and oil displacement. In Proceedings of the 25th International Congress of Mechanical Engineering, Uberlandia, Brazil, 20–25 October 2019. [Google Scholar]
- Almansour, A.O.; AlQuraishi, A.A.; AlHussinan, S.N.; AlYami, H.Q. Efficiency of Enhanced Oil Recovery Using Polymer-Augmented Low Salinity Flooding. J. Pet. Explor. Prod. Technol. 2017, 7, 1149–1158. [Google Scholar] [CrossRef]
- Gunaji, R.G.; Junin, R.; Bandyopadhyay, S. Application of Biopolymer Schizophyllan Derived from Local Sources in Malaysia for Polymer Flooding Operation. AIP Conf. Proc. 2022, 2541, 60001. [Google Scholar] [CrossRef]
- Hatzignatiou, D.G.; Moradi, H.; Stavland, A. Experimental Investigation of Polymer Flow through Water- and Oil-Wet Berea Sandstone Core Samples. In Proceedings of the EAGE Annual Conference & Exhibition incorporating SPE EUROPEC, London, UK, 10–13 June 2013. [Google Scholar]
- Braccini, I.; Pérez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- Gao, C. Viscosity of Partially Hydrolyzed Polyacrylamide under Shearing and Heat. J. Pet. Explor. Prod. Technol. 2013, 3, 203–206. [Google Scholar] [CrossRef]
- Kareem, R.; Cubillas, P.; Gluyas, J.; Bowen, L.; Hillier, S.; Greenwell, H.C. Multi-Technique Approach to the Petrophysical Characterization of Berea Sandstone Core Plugs (Cleveland Quarries, USA). J. Pet. Sci. Eng. 2017, 149, 436–455. [Google Scholar] [CrossRef]


















| Salt | Concentration (ppm) |
|---|---|
| NaCl | 128,799 |
| MgCl2 | 7408.5 |
| CaCl2 | 28,312.3 |
| NaHCO3 | 821 |
| Salt | Formation Water (FW) | Synthetic Seawater (SW) |
|---|---|---|
| Na+ | 51,059 | 11,488 |
| Cl− | 101,625 | 22,865 |
| Ca2+ | 10,212 | 2297 |
| Mg2+ | 1889 | 425 |
| HCO3− | 595 | 148.75 |
| TDS (ppm) | 165,380 | 37,224 |
| Formation | Core ID | Length (cm) | Pore Volume | Porosity (%) | Permeability (mD) |
|---|---|---|---|---|---|
| Berea | B10 | 12.3 | 27.11 | 19.3 | 160 |
| Berea | B250 | 12.8 | 30.8 | 21.1 | 118 |
| Berea | B501 | 10.17 | 20.9 | 18.0 | 58 |
| Element | Mass % | Element | Mass % |
|---|---|---|---|
| Si | 81.62211 | Mn | 0.131708 |
| Al | 7.986469 | Cu | 0.070053 |
| Ti | 0.560141 | Ga | 0.019511 |
| Ca | 0.34208 | As | 0.034362 |
| Fe | 6.196279 | Cl | 0.019945 |
| S | 0.01973 | Sr | 0.019568 |
| Zn | 0.042785 | Zr | 0.116792 |
| K | 2.818464 | Total | 100 |
| Run | Core ID | Phase 1 | Phase 2 |
|---|---|---|---|
| 1 (Base Case) | B10 | SW injection until 100% Wcut | --- |
| 2 | B250 | PF | Trace SW |
| 3 | B501 | SW injection until WBT | PF |
| Peel Concentration (%) | SFT (mN/m) | IFT (mN/m) |
|---|---|---|
| 2 | 58.80 | 12.8 |
| 5 | 52.43 | 13.6 |
| 7 | 57.10 | 11 |
| 8 | 49.55 | 11.5 |
| 10 | 51.47 | 13.3 |
| 12 | 49.60 | 11.2 |
| Run | Scenario | Oil Recovery at BT (%) | Total Oil Recovery (%) | Incremental Oil (%) |
|---|---|---|---|---|
| 1 | 100% SWF (Base Case) | 44.5 (WBT) | 47.6 | - |
| 2 | PF, then Trace SW | 40.5 (PBT) | 62.2 | 14.6 |
| 3 | SWF until WBT, then PF | 36.0 (WBT pre-PF) | 58.0 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.G.; Altawati, F.S.; Elmahdy, O.A.; Alqahtani, F.M.; Althehibey, M.T.; Moawad, T.M. Experimental Investigation of a Waste-Derived Biopolymer for Enhanced Oil Recovery Under Harsh Conditions: Extraction and Performance Evaluation. Polymers 2025, 17, 2896. https://doi.org/10.3390/polym17212896
Ali AG, Altawati FS, Elmahdy OA, Alqahtani FM, Althehibey MT, Moawad TM. Experimental Investigation of a Waste-Derived Biopolymer for Enhanced Oil Recovery Under Harsh Conditions: Extraction and Performance Evaluation. Polymers. 2025; 17(21):2896. https://doi.org/10.3390/polym17212896
Chicago/Turabian StyleAli, Ammar G., Faisal S. Altawati, Osama A. Elmahdy, Fahd M. Alqahtani, Mohammed T. Althehibey, and Taha M. Moawad. 2025. "Experimental Investigation of a Waste-Derived Biopolymer for Enhanced Oil Recovery Under Harsh Conditions: Extraction and Performance Evaluation" Polymers 17, no. 21: 2896. https://doi.org/10.3390/polym17212896
APA StyleAli, A. G., Altawati, F. S., Elmahdy, O. A., Alqahtani, F. M., Althehibey, M. T., & Moawad, T. M. (2025). Experimental Investigation of a Waste-Derived Biopolymer for Enhanced Oil Recovery Under Harsh Conditions: Extraction and Performance Evaluation. Polymers, 17(21), 2896. https://doi.org/10.3390/polym17212896

