Characterization of Holographic Gratings in PVA/AA Using Coherent Nanosecond Laser Exposure
Abstract
1. Introduction
2. Experimental Setup and Materials
3. Results and Discussion
3.1. Dye Optimization
3.2. Direct Comparison Between Continuous-Wave and Pulsed Exposure
3.3. Second Diffraction Order
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Retailleau, M.; Ibrahim, A.; Croutxé-Barghorn, C.; Allonas, X. New design of highly homogeneous photopolymer networks for shape memory materials. RSC Adv. 2016, 6, 47130–47133. [Google Scholar] [CrossRef]
- Weitzel, K.T.; Wild, U.P.; Mikhailov, V.N.; Krylov, V.N. Hologram recording in DuPont photopolymer films by use of pulse exposure. Opt. Lett. 1997, 22, 1899–1901. [Google Scholar] [CrossRef]
- Berneth, H.; Bruder, F.K.; Fäcke, T.; Hagen, R.; Hönel, D.; Jurbergs, D.; Rölle, T.; Weiser, M.S. Holographic recording aspects of high-resolution Bayfol HX photopolymer. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 7 February 2011. [Google Scholar] [CrossRef]
- Jenney, J.A. Holographic recordings with Photopolymers*. J. Opt. Soc. Am. 1970, 60, 9. [Google Scholar] [CrossRef]
- Fimia, A.; López, N.; Mateos, F.; Sastre, R.; Pineda, J.; Amat-Guerri, F. Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials. J. Mod. Opt. 1993, 40, 699–706. [Google Scholar] [CrossRef]
- Jacobsohn, K.; Jacobson, R.E. Imaging Systems: Mechanisms and Applications of Established and New Photosensitive Processes, 1st ed.; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A review on modeling cure kinetics and mechanisms of photopolymerization. Polymers 2022, 14, 2074. [Google Scholar] [CrossRef] [PubMed]
- Gallego, S.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I. Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%. J. Mod. Opt. 2004, 51, 491–503. [Google Scholar] [CrossRef]
- Ortuño, M.; Márquez, A.; Fernández, E.; Gallego, S.; Beléndez, A.; Pascual, I. Hologram multiplexing in acrylamide hydrophilic photopolymers. Opt. Commun. 2008, 281, 1354–1357. [Google Scholar] [CrossRef]
- Gleeson, M.R.; Kelly, J.V.; Sabol, D.; Close, C.E.; Liu, S.; Sheridan, J.T. Modeling the photochemical effects present during holographic grating formation in photopolymer materials. J. Appl. Phys. 2008, 102, 2. [Google Scholar] [CrossRef]
- Naydenova, I.; Mihaylova, E.; Martin, S.; Toal, V. Holographic patterning of acrylamide-based photopolymer surface. Opt. Express 2005, 13, 1878–4889. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Z.; Yang, D.; Zhu, J. Octaphenyl-POSS nanoparticles dispersed thick polyvinyl alcohol/acrylamide photopolymer with low volumetric shrinkage and high diffraction efficiency. Opt. Express 2024, 32, 37140–37147. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Li, H.; Wang, X.; Han, J.; Huang, M. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites. Appl. Opt. 2015, 54, 9799–9802. [Google Scholar] [CrossRef]
- García, C.; Pascual, I.; Costela, A.; García-Moreno, I.; Gómez, C.; Fimia, A.; Sastre, R. Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure. Appl. Opt. 2002, 41, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Gallego, S.; Ortuño, M.; García, C.; Neipp, C.; Beléndez, A.; Pascual, I. High-efficiency volume holograms recording on acrylamide and N,N′methylene-bis-acrylamide photopolymer with pulsed laser. J. Mod. Opt. 2005, 52, 1575–1584. [Google Scholar] [CrossRef]
- Puerto, D.; Gallego, S.; Francés, J.; Márquez, A.; Pascual, I.; Beléndez, A. Phase-Shift Optimization in AA/PVA Photopolymers by High-Frequency Pulsed Laser. Polymers 2020, 12, 1887. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, J.; Ye, Y.; Luo, Z.; Li, J.; Li, Z.; Zhu, J. Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording. Mater. Lett. 2015, 138, 284–286. [Google Scholar] [CrossRef]
- Sheridan, J.T.; Lawrence, J.R. Nonlocal-response diffusion model of holographic recording in photopolymer. J. Opt. Soc. Am. 2000, 17, 1108–1114. [Google Scholar] [CrossRef]
- Gleeson, M.R.; Sheridan, J.T. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling. J. Opt. Soc. Am. 2009, 26, 1736–1745. [Google Scholar] [CrossRef]
- Gleeson, M.R.; Liu, S.; McLeod, R.R.; Sheridan, J.T. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation. J. Opt. Soc. Am. 2009, 26, 1746–1754. [Google Scholar] [CrossRef]
- Kelly, J.V.; Gleeson, M.R.; Close, C.E.; O’Neill, F.T.; Sheridan, J.T.; Gallego, S.; Neipp, C. Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model. Opt. Express 2005, 13, 6990–7004. [Google Scholar] [CrossRef]
- Pascal, P.; Napper, D.H.; Gilbert, R.G.; Piton, M.C.; Winnik, M.A. Pulsed laser study of the propagation kinetics of acrylamide and methacrylamide in water. Macromolecules 1990, 23, 5161–5163. [Google Scholar] [CrossRef]
- Shelkovnikov, V.V.; Vasil’ev, E.V.; Gerasimova, T.N.; Pen, E.F.; Plekhanov, A.I. Dynamics of pulsed recording of holographic diffraction gratings in photopolymer materials. Opt. Spectrosc 2005, 99, 806–815. [Google Scholar] [CrossRef]
- Liu, P.; Chang, F.; Zhao, Y.; Li, Z.; Sun, X. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures. Opt. Express 2018, 26, 1072–1082. [Google Scholar] [CrossRef]
- Alferness, R. Analysis of propagation at the second-order Bragg angle of a thick holographic grating*. J. Opt. Soc. Am. 1976, 66, 353–362. [Google Scholar] [CrossRef]
- Zhao, G.; Mouroulis, P. Second order grating formation in dry holographic photopolymers. Opt. Commun. 1995, 115, 528–532. [Google Scholar] [CrossRef]
- Neipp, C.; Beléndez, A.; Sheridan, J.T.; Kelly, J.V.; O’Neill, F.T.; Gallego, S.; Ortuño, M.; Pascual, I. Non-local polymerization driven diffusion based model: General dependence of the polymerization rate to the exposure intensity. Opt. Express 2003, 11, 1876–1886. [Google Scholar] [CrossRef]
- Martin, S.; Feely, C.A.; Toal, V. Holographic recording characteristics of an acrylamide-based photopolymer. Appl. Opt. 1997, 36, 5757–5768. [Google Scholar] [CrossRef]
- Gallego, S.; Ortuño, M.; Neipp, C.; Márquez, A.; Beléndez, A.; Pascual, I.; Kelly, J.V.; Sheridan, J.T. Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers. Opt. Express 2005, 13, 1939–1947. [Google Scholar] [CrossRef]
- Gallego, S.; Neipp, C.; Ortuño, M.; Beléndez, A.; Fernández, E.; Pascual, I. Analysis of monomer diffusion in depth in photopolymer materials. Opt. Commun. 2007, 274, 43–49. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of grating diffraction— E-mode polarization and losses. J. Opt. Soc. Am. 1983, 73, 451–455. [Google Scholar] [CrossRef]






| Components | Type 1 | Type 2 | Type 3 | 
|---|---|---|---|
| PVA | 8% w/w H2O | ||
| AA | 0.404 M | ||
| MBA | 0.055 M | ||
| TEA | 0.309 M | ||
| YE | M | M | M | 
| Parameters | Type 1 | Type 2 | Type 3 | 
|---|---|---|---|
| 0.00250 | 0.00250 | 0.00248 | |
| () | 0.0300 | 0.0190 | 0.0150 | 
| (µm) | 34.2 | 36.7 | 47.8 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena, E.J.; Bernabeu, A.P.; Nájar, G.; Gallego, S.; Márquez, A.; Beléndez, A. Characterization of Holographic Gratings in PVA/AA Using Coherent Nanosecond Laser Exposure. Polymers 2025, 17, 2873. https://doi.org/10.3390/polym17212873
Mena EJ, Bernabeu AP, Nájar G, Gallego S, Márquez A, Beléndez A. Characterization of Holographic Gratings in PVA/AA Using Coherent Nanosecond Laser Exposure. Polymers. 2025; 17(21):2873. https://doi.org/10.3390/polym17212873
Chicago/Turabian StyleMena, Emilio J., Andrés P. Bernabeu, Guillem Nájar, Sergi Gallego, Andrés Márquez, and Augusto Beléndez. 2025. "Characterization of Holographic Gratings in PVA/AA Using Coherent Nanosecond Laser Exposure" Polymers 17, no. 21: 2873. https://doi.org/10.3390/polym17212873
APA StyleMena, E. J., Bernabeu, A. P., Nájar, G., Gallego, S., Márquez, A., & Beléndez, A. (2025). Characterization of Holographic Gratings in PVA/AA Using Coherent Nanosecond Laser Exposure. Polymers, 17(21), 2873. https://doi.org/10.3390/polym17212873
 
        




 
       