Synthesis and Properties Study of Liquid Crystalline Epoxy Resin Containing Azomethine-Based Monomeric Mesogens
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Curing of Epoxy Monomer HBAP-EP
2.2.1. Synthesis of 4-(4-Hydroxybenzylideneamino)phenol (HBAP)
2.2.2. Synthesis of N,1-Bis(4-(2-methoxyethoxy)phenyl)methylamine (HBAP-EP)
2.2.3. Curing of Epoxy Monomer HBAP-EP
2.3. Characterization
3. Results
3.1. Structural Characterization of HBAP-EP
3.2. HBAP-EP Epoxy Equivalent
3.3. Characterization of HBAP-EP Liquid Crystal Properties
3.4. HBAP-EP Thermal Curing Behavior and Cured Material Performance Characterization
3.5. Mechanical Properties of Cured Materials
3.6. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bauer, R.S. Epoxy Resin Chemistry II; American Chemical Society: Washington, DC, USA, 1983. [Google Scholar]
- Helmreich, R.F. Epoxy Resins. Their Applications and Technology. J. Am. Chem. Soc. 1958, 80, 1012. [Google Scholar] [CrossRef]
- Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, Y.; Ruan, K.; Liu, X.; Zhang, J.; Guo, Y.; Yang, X.; Kong, J.; Gu, J. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2019, 12, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Jiang, F.; Song, N.; Shi, L.; Ding, P. Flexible films for smart thermal management: Influence of structure construction of a two-dimensional graphene network on active heat dissipation response behavior. ACS Appl. Mater. Interfaces 2019, 11, 30352–30359. [Google Scholar] [CrossRef]
- Chen, J.; Wei, H.; Bao, H.; Jiang, P.; Huang, X. Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites with Overlapping BN Nanosheets for Thermal Management Applications. ACS Appl. Mater. Interfaces 2019, 11, 31402–31410. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, J.; Yang, D.; Zhang, J.; Guo, Y.; Zhong, X.; Kong, J.; Gu, J. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos. Part B Eng. 2020, 185, 107784. [Google Scholar] [CrossRef]
- Niu, H.; Ren, Y.; Guo, H.; Małycha, K.; Orzechowski, K.; Bai, S.L. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications. Compos. Commun. 2020, 22, 100430. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Q.; Zhang, J.; Wang, W. Studies on the Preparation of Polystyrene Thermal Conductivity Composites. Polym.-Plast. Technol. Eng. 2010, 49, 1385–1389. [Google Scholar] [CrossRef]
- Tu, J.; Li, H.; Zhang, J.; Hu, D.; Cai, Z.; Yin, X.; Dong, L.; Huang, L.; Xiong, C.; Jiang, M. Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv. Compos. Hybrid Mater. 2019, 2, 471–480. [Google Scholar] [CrossRef]
- Haggenmueller, R.; Guthy, C.; Lukes, J.R.; Fischer, J.E.; Winey, K.I. Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity. Macromolecules 2007, 40, 2417–2421. [Google Scholar] [CrossRef]
- Han, J.; Du, G.; Gao, W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices. Polymer 2019, 168, 53–60. [Google Scholar] [CrossRef]
- Zhong, X.; Ruan, K.; Gu, J. Enhanced thermal conductivities of liquid crystal polyesters from controlled structure of molecular chains by introducing different dicarboxylic acid monomers. Research 2022, 2022, 9805686. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, J.; Li, X.; Xu, X.; Lu, S. High mechanical and thermal properties of epoxy composites with liquid crystalline polyurethane modified graphene. Polymers 2018, 10, 485. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Kong, F.; Peng, W.; Wang, Y.; Yuan, M.; Han, X.; Liu, X.; Li, B. Advances in liquid crystal epoxy: Molecular structures, thermal conductivity, and promising applications in thermal management. Energy Environ. Mater. 2024, 7, e12698. [Google Scholar] [CrossRef]
- Akatsuka, M.; Takezawa, Y. Study of high thermal conductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 2003, 89, 2464–2467. [Google Scholar] [CrossRef]
- Anber, A.M.; Al-Hariri, S.; Abazid, A.H. Synthesis and Properties of New Liquid Crystals as Curing Agents for Epoxy Resins. Am. J. Appl. Chem. 2016, 4, 247–255. [Google Scholar] [CrossRef]
- Hossain, M.M.; Olamilekan, A.I.; Jeong, H.-O.; Lim, H.; Kim, Y.-K.; Cho, H.; Jeong, H.D.; Islam, M.A.; Goh, M.; You, N.-H.; et al. Diacetylene-Containing Dual-Functional Liquid Crystal Epoxy Resin: Strategic Phase Control for Topochemical Polymerization of Diacetylenes and Thermal Conductivity Enhancement. Macromolecules 2022, 55, 4402–4410. [Google Scholar] [CrossRef]
- Lin, X.; Gablier, A.; Terentje, E.M. Imine-based reactive mesogen and its corresponding exchangeable liquid crystal elastomer. Macromolecules 2022, 55, 821–830. [Google Scholar] [CrossRef]
- Che, Q.; Li, C.; Chen, Z.; Yang, S.; Zhang, W.; Yu, G. High performance memristors based on imine-linked covalent organic frameworks obtained using a protonation modification strategy. Angew. Chem. 2024, 136, e202409926. [Google Scholar] [CrossRef]
- Giang, T.; Kim, J. Thermal Conductivity of Diglycidylester-Terminated Liquid Crystalline Epoxy/Alumina Composite. Mol. Cryst. Liq. Cryst. 2016, 629, 12–26. [Google Scholar] [CrossRef]
- Giang, T.; Kim, J. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy–Alumina Composites. J. Electron. Mater. 2017, 46, 627–636. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, X.; Ruan, K.; Zhang, J.; Zhang, H.; Gu, J. Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol. Rapid Commun. 2022, 43, 2100580. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.E.; Ku, K.; Yeo, H. Reprocessable and chemically recyclable hard vitrimers based on liquid-crystalline epoxides. Adv. Mater. 2023, 35, 2209912. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Peng, C.; Xia, L.; Xu, H.; He, S.; Chi, C.; Zhong, J.; Wang, S.; Luo, W.; Chen, G. Fire-safe fully bio-based Schiff Base epoxy thermosets with excellent mechanical properties and adjustable degradability. ACS Appl. Polym. Mater. 2023, 5, 6325–6337. [Google Scholar] [CrossRef]
- GB/T 4161-1984; Test Method for Plane Strain Fracture Toughness (KIC) of Metallic Materials. National Technical Committee on Steel Standardization: Beijing, China, 1984.
- GB/T 32064-2015; Determination of Thermal Conductivity and Thermal Diffusivity of Building Materials: Transient Plane Heat Source Method. National Technical Committee for Standardization of Building Components: Beijing, China, 2015.
- Lin, Y.; Huang, X.; Chen, J.; Jiang, P. Epoxy thermoset resins with high pristine thermal conductivity. High Volt. 2017, 2, 139–146. [Google Scholar] [CrossRef]
- Yan, C.; Xiao, K.; Ye, L.; Mai, Y.-W. Numerical and experimental studies on the fracture behavior of rubber-toughened epoxy in bulk specimen and laminated composites. J. Mater. Sci. 2002, 37, 921–927. [Google Scholar] [CrossRef]
- Guo, H.; Lu, M.; Liang, L.; Wu, K.; Ma, D.; Xue, W. Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity. J. Electron. Mater. 2017, 46, 982–991. [Google Scholar] [CrossRef]
M (g) | V1 (mL) | V2 (mL) | M (g·mol−1) | C(NaOH) (g·mol−1) |
---|---|---|---|---|
0.7511 | 1.15 | 31.23 | 204.22 | 0.1237 |
Sample Mass (g) | V0 (mL) | V (mL) | EEW (g·eq−1) |
---|---|---|---|
0.3257 | 39.88 | 23.84 | 163.88 |
0.3261 | 39.69 | 23.62 | 164.01 |
0.3254 | 39.80 | 23.78 | 163.97 |
Resin | A (0.0098 J) | B (mm) | B0 (mm) | JIC (KJ·m−2) | LC Score (%) |
---|---|---|---|---|---|
DGEBA/SAA-120 °C | 0.49 | 5.63 | 4.27 | 0.39 | 0 |
HBAP-EP/SAA-120 °C | 1.22 | 5.23 | 4.89 | 0.93 | 14.4 |
HBAP-EP/SAA-140 °C | 0.81 | 5.54 | 4.32 | 0.66 | 8.24 |
HBAP-EP/SAA-160 °C | 0.75 | 5.25 | 5.01 | 0.55 | 5.94 |
Resin | Cυ (MJ·m−3·K−1) | α (mm2·s−1) | λ (W·m−1·K−1) |
---|---|---|---|
HBAP-EP/SAA-120 °C | 2.2043 | 0.1465 | 0.3229 |
HBAP-EP/SAA-140 °C | 2.7376 | 0.1168 | 0.3197 |
HBAP-EP/SAA-160 °C | 2.5298 | 0.1057 | 0.2674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Pan, H.; Le, D.; Ouyang, Z.; Pei, K. Synthesis and Properties Study of Liquid Crystalline Epoxy Resin Containing Azomethine-Based Monomeric Mesogens. Polymers 2025, 17, 2632. https://doi.org/10.3390/polym17192632
Huang J, Pan H, Le D, Ouyang Z, Pei K. Synthesis and Properties Study of Liquid Crystalline Epoxy Resin Containing Azomethine-Based Monomeric Mesogens. Polymers. 2025; 17(19):2632. https://doi.org/10.3390/polym17192632
Chicago/Turabian StyleHuang, Junjie, Hongmei Pan, Deliang Le, Zengxin Ouyang, and Kemei Pei. 2025. "Synthesis and Properties Study of Liquid Crystalline Epoxy Resin Containing Azomethine-Based Monomeric Mesogens" Polymers 17, no. 19: 2632. https://doi.org/10.3390/polym17192632
APA StyleHuang, J., Pan, H., Le, D., Ouyang, Z., & Pei, K. (2025). Synthesis and Properties Study of Liquid Crystalline Epoxy Resin Containing Azomethine-Based Monomeric Mesogens. Polymers, 17(19), 2632. https://doi.org/10.3390/polym17192632