MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects
Abstract
1. Introduction
2. Functional Roles of MXene in Polymer Nanocomposites
2.1. MXene Synthetic Regulation
2.2. Electrical Conductivity and Band Structure Regulation of MXenes
2.3. Theoretical and Experimental Coupling Analysis of MXene Photocatalytic Mechanism
2.3.1. Theoretical Calculations Reveal the Electronic Properties and Catalytic Active Sites of MXene
2.3.2. Theoretical Calculations Reveal That the Electronic Properties of MXene Are Related to the Photocatalytic Mechanism
2.4. How MXenes Improve Photocatalytic Activity
3. MXene-Assisted Catalytic Optimization Mechanism
3.1. Interfacial Charge Transfer Mechanism and Theoretical Calculation Between MXene and Semiconductors
3.2. MXene Acts as an “Electronic Sponge” in Z-Type Heterojunction
3.3. The Chemical Structure of MXene Strengthens the Stability of the Material
3.3.1. Regulation Strategies for Strong Metal–Support Interactions in MXene Photocatalytic Systems
3.3.2. Case Studies of Enhanced Stability in MXene Photocatalytic Systems
3.4. Photocatalytic Composites for Co-Catalytic Modification with MXene Co-Catalytic
Innovative Mechanisms for Plasma-Induced Chemical Reactions
4. Dynamic Regulation of MXene Coordination Structure and Photocatalytic Environmental Adaptability
4.1. Photocatalytic Anti-Interference Mechanism in Complex Water Quality Environment
4.2. Dynamic Optimization Strategy of the Coordination Structure of MXene
5. Research Prospects and Outlook
5.1. Opportunities and Challenges
5.2. Take a Reasonable Look at the Future of MXene
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, L.; Meng, Z.; Yang, W.; Li, S.; Hu, J.; Sun, W.; Ni, J. Profiles, drivers, and prioritization of antibiotics in China’s major rivers. J. Hazard. Mater. 2024, 477, 135399. [Google Scholar] [CrossRef]
- Verma, M.; Haritash, A.K. Photocatalytic degradation of Amoxicillin in pharmaceutical wastewater: A potential tool to manage residual antibiotics. Environ. Technol. Innov. 2020, 20, 101072. [Google Scholar] [CrossRef]
- Rueda-Marquez, J.J.; Levchuk, I.; Ibañez, P.F.; Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Latiful, K.; David, N.; Rachadaporn, B.; Chanthai, S.; Otgonbayar, Z.; Oh, W.-C. Photocatalytic removal of pharmaceutical antibiotics induced pollutants by MXene-based composites: Comprehensive review. Sustain. Mater. Technol. 2024, 41, e01083. [Google Scholar] [CrossRef]
- Feng, Y.; Gong, S.; Wang, Y.; Ban, C.G.; Qu, X.L.; Ma, J.P.; Duan, Y.Y.; Lin, C.; Yu, D.M.; Xia, L.; et al. Noble-Metal-Free Cocatalysts Reinforcing Hole Consumption for Photocatalytic Hydrogen Evolution with Ultrahigh Apparent Quantum Efficiency. Adv. Mater. 2025, 37, 2412965. [Google Scholar] [CrossRef]
- Li, Y.-N.; Chen, Z.-Y.; Wang, M.-Q.; Zhang, L.-z.; Bao, S.-J. Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants. Appl. Surf. Sci. 2018, 440, 229–236. [Google Scholar] [CrossRef]
- Neeraj, S.; Stuti, T.; Mohd, S.; Kant Choubey, R.; Singh, A. Study of Optical and Electrical Properties of Graphene Oxide. Mater. Today Proc. 2021, 36, 730–735. [Google Scholar]
- Mamba, G.; Gangashe, G.; Moss, L.; Hariganesh, S.; Thakur, S.; Vadivel, S.; Mishra, A.K.; Vilakati, G.D.; Muthuraj, V.; Nkambule, T.T.I. State of the art on the photocatalytic applications of graphene based nanostructures: From elimination of hazardous pollutants to disinfection and fuel generation. J. Environ. Chem. Eng. 2020, 8, 103505. [Google Scholar] [CrossRef]
- Fu, Y.; Yao, X.; Ji, X.; Zhou, L.; Tong, Y.; Zhang, R.; Wang, X. Defective ordered macroporous ZIF–8/ZnO heterostructure for enhanced visible–light photo–oxidation performance. J. Alloys Compd. 2024, 983, 173899. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Alshammari, D.A.; Hessien, M.M.; Yu, W.; Cui, L.; Ren, J.; El-Bahy, Z.M.; Guo, Z. Z-scheme Ag2O/ZnO heterostructure on carbon fibers for efficient photocatalysis of tetracycline. Sep. Purif. Technol. 2025, 354, 129414. [Google Scholar] [CrossRef]
- Lu, H.; Yang, J.; Xu, J. Study of the Photocatalytic Degradation of Tetracycline by BiOI/Brookite TiO2 Composites. Hans J. Chem. Eng. Technol. 2024, 14, 83–88. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Tang, M.; Wang, H.; Chen, L.; Long, Z.; Gao, D. Study on Photocatalytic Degradation of Tetracycline by Ag2CO3/ZIF-8/CF Composites. J. Yancheng Inst. Technol. (Nat. Sci. Ed.) 2023, 36, 7–14. (In Chinese) [Google Scholar]
- Lerdwiriyanupap, T.; Waehayee, A.; Choklap, T.; Prachanat, J.; Nakajima, H.; Chankhanittha, T.; Butburee, T.; Siritanon, T. CeO2/BiYO3 photocatalyst for the degradation of tetracycline under visible light irradiation. Ceram. Int. 2024, 50, 52723–52732. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Li, Z.; Guo, Y.; Tang, B.; Abudula, A.; Guan, G. Two-dimensional Ti3C2TX-nanosheets/Cu2O composite as a high-performance photocatalyst for decomposition of tetracycline. Carbon Resour. Convers. 2021, 4, 197–204. [Google Scholar] [CrossRef]
- Talreja, N.; Ashfaq, M.; Chauhan, D.; Viswanathan, M.R. PVP encapsulated MXene coated on PET surface (PMP)-based photocatalytic materials: A novel photo-responsive assembly for the removal of tetracycline. Environ. Res. 2023, 233, 116439. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Farid, M.U.; Boey, M.W.; Sato, Y.; Chen, G.; An, A.K. MXene-PVA-TiO2-based photothermal-catalytic membrane with high structural stability for efficient desalination and photodegradation. Chem. Eng. J. 2023, 468, 143744. [Google Scholar] [CrossRef]
- Atta, M.M.; Elbasiony, A.M.; Henaish, A.M.A.; Zhang, Q. Enhancement of optical and photocatalytic properties of polyethylene oxide/polyvinylpyrrolidone blend reinforced with Ti3C2 MXene. Synth. Met. 2024, 307, 117698. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Sengupta, J.A.-O.; Hussain, C.A.-O. MXene-Based Electrochemical Biosensors: Advancing Detection Strategies for Biosensing (2020–2024). Biosensors 2025, 15, 127. [Google Scholar] [CrossRef]
- Zhu, M.; Cai, C.; Lin, X.; Yang, R.; Lin, X.; Li, W.; Li, C.; Gao, F.; Zhang, J. Advances in the application of MXenes and MXene-composites in MXene-based lithium anodes for lithium metal batteries. Mater. Today Chem. 2025, 48, 102992. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, Y.; Wu, H.; Wang, H.; Wang, B.; Yang, Y.; Huang, L.; Tang, J. Recent advances in flexible piezoresistive pressure sensors based on MXene materials. Mater. Today Chem. 2025, 48, 102984. [Google Scholar] [CrossRef]
- Lin, J.; Chang, C.-W.; Chang, C.-T.; Manibalan, K.; Tsai, T.-H.; Lin, Y.-C.; Hsu, Y.-S.; Chang, M.-H.; Chen, J.-T. Wearable and stretchable electronics enabled by MXene–PVA films via layer-by-layer assembly with integrated UV, thermal, and mechanical sensing†. Chem. Commun. 2025, 61, 10578–10581. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B.; Achieng, G.O.; Vendrell, X.; Chaitoglou, S.; Amade-Rovira, R. Comprehensive analysis of MAX phase and MXene materials for advanced photocatalysis, electrocatalysis and adsorption in hydrogen evolution and storage. J. Ind. Eng. Chem. 2025, 142, 18–33. [Google Scholar] [CrossRef]
- Carey, M.; Barsoum, M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021, 9, 100120. [Google Scholar] [CrossRef]
- Hussain, S.N.; Rao, K.R.; Ali, M.S.; Mubarak, N.M.; Jatoi, A.S.; Malafaia, G.; Azad, A.K. MXene as emerging material for photocatalytic degradation of environmental pollutants. Coord. Chem. Rev. 2023, 477, 214965. [Google Scholar]
- Li, K.; Zhang, S.; Li, Y.; Fan, J.; Lv, K. MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin. J. Catal. 2021, 42, 3–14. [Google Scholar] [CrossRef]
- Ghanbari, R.; Zare, E.N. Engineered MXene-polymer composites for water remediation: Promises, challenges and future perspective. Coord. Chem. Rev. 2024, 518, 216089. [Google Scholar] [CrossRef]
- Fatima, S.; Hakim, M.W.; Zheng, X.; Sun, Y.; Li, Z.; Han, N.; Li, M.; Wang, Z.; Han, L.; Wang, L.; et al. Constructing nitrogen-doped graphene quantum dots/tantalum carbide MXene heterojunctions as bifunctional catalysts for efficient water splitting. Int. J. Hydrogen Energy 2025, 117, 420–429. [Google Scholar] [CrossRef]
- Wu, D.; Tong, Z.; Wang, J.; Chen, G.; Zhu, A.; Tong, H.; Dang, M. Hole transfer promotion on La-MOF@MXene by valence band structure regulation for the efficient photocatalytic degradation. Sep. Purif. Technol. 2025, 359, 130873. [Google Scholar] [CrossRef]
- Jin, P.; Han, P.; Li, X.; Li, K. Titanium carbide MXenes-initiated plasmonic metal-support interaction for effective photocatalysis on uncoated Ag nanoparticles. Appl. Surf. Sci. 2023, 612, 155850. [Google Scholar] [CrossRef]
- Jian, M.; Wang, Y. Construction of MXenes/COFs heterojunctions for photo/electrocatalytic applications: Opportunities and challenges. Chem. Eng. J. 2025, 507, 160631. [Google Scholar] [CrossRef]
- Huanhuan, S.; Panpan, Z.; Zaichun, L.; Park, S.; Lohe, M.R.; Wu, Y.; Shaygan Nia, A.; Yang, S.; Feng, X. Ambient-Stable Two-Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angew. Chem. Int. Ed. 2021, 60, 8689–8693. [Google Scholar]
- Wang, D.; Zhou, C.; Filatov, A.S.; Cho, W.J.; Lagunas, F.; Wang, M.Z.; Vaikuntanathan, S.; Liu, C.; Klie, R.F.; Talapin, D.V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.M.; Ma, Y.; Badshah, M.; Ali, S.; Idrees, M.; Ismail, M.A.; Khan, S.; Javed, M.S.; Tamang, T.L.; Pu, Q. 2D-MXene: Progress in Synthesis, Intercalation, and Applications in Microfluidic Sensors. Surf. Interfaces 2024, 56, 105678. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Meng, X.; Gao, Y.; Dall’Agnese, Y.; Chen, G.; Dall’Agnese, C.; Wang, X.F. Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 310–315. [Google Scholar] [CrossRef]
- Singh, S.; Dharavath, S.; Kodali, S.; Dash, R.K. The role of delaminating agents on the structure, morphology, bonding and electrical properties of HF etched MXenes. FlatChem 2025, 49, 100806. [Google Scholar] [CrossRef]
- Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.J.; Peng, F. Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 6051–6060. [Google Scholar] [CrossRef]
- Gentile, A.; Ferrara, C.; Tosoni, S.; Balordi, M.; Marchionna, S.; Cernuschi, F.; Kim, M.-H.; Lee, H.-W.; Ruffo, R. Enhanced Functional Properties of Ti3C2T MXenes as Negative Electrodes in Sodium-Ion Batteries by Chemical Tuning. Small Methods 2020, 4, 2000314. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Q.; Bashir, T.; Ali, T.; Khan, S.; Alenad, A.M.; Raza, S. Reliance of MXene terminating groups on various synthetic strategies and its hot electron dynamics at MXene interfaces. J. Environ. Chem. Eng. 2024, 12, 114708. [Google Scholar] [CrossRef]
- Sang, X.; Xie, Y.; Lin, M.W.; Alhabeb, M.; Van Aken, K.L.; Gogotsi, Y.; Kent, P.R.C.; Xiao, K.; Unocic, R.R. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, N. Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Adv. Funct. Mater. 2020, 30, 2002528. [Google Scholar] [CrossRef]
- Miao, B.; Bashir, T.; Zhang, H.; Ali, T.; Raza, S.; He, D.; Bai, J. Impact of various 2D MXene surface terminating groups in energy conversion. Renew. Sustain. Energy Rev. 2024, 199, 114506. [Google Scholar] [CrossRef]
- Kahila, B.; Ehsan, G.; Saleem, R.; Babenko, A.; Paimard, G.; Bashir, T.; Maleki-Ghaleh, H.; Jie, L.; Orooji, Y. Recent advancements in MXenes synthesis, properties, and cutting-edge applications: A comprehensive review. J. Environ. Chem. Eng. 2024, 12, 113546. [Google Scholar] [CrossRef]
- Paria, E.; Aydin, H.; Stanisław, W.; Kun-Yi, A.; Zahra, S.; Ghanbari, F. Recent advances in design and engineering of MXene-based catalysts for photocatalysis and persulfate-based advanced oxidation processes: A state-of-the-art review. Chem. Eng. J. 2024, 480, 147920. [Google Scholar]
- Wang, S.; Du, Y.L.; Liao, W.H. Tunable band gap and optical properties of surface functionalized Sc2C monolayer. Chin. Phys. B 2017, 26, 17806. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Bahari, M.B.; Izzuddin, N.M.; Fauzi, N.A.F.M.; Jusoh, N.W.C.; Kamaroddin, M.F.A.; Saravanan, R.; Tehubijuluw, H. A critical review of MXene-based composites in the adsorptive and photocatalysis of hexavalent chromium removal from industrial wastewater. Environ. Res. 2024, 259, 119584. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Wu, Z.; Xue, Q.; Tian, F. In situ fabrication of N-doped Ti3C2Tx-MXene-modified BiOBr Schottky heterojunction with high photoelectron separation efficiency for enhanced photocatalytic ammonia synthesis. J. Alloys Compd. 2023, 969, 172470. [Google Scholar] [CrossRef]
- Liu, X.; Xu, F.; Li, Z.; Liu, Z.; Yang, W.; Zhang, Y.; Yang, H.Y. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord. Chem. Rev. 2022, 464, 214544. [Google Scholar] [CrossRef]
- Soyoung, P.; Sewoon, K.; Yeonji, Y.; Saravanakumar, K.; Lee, E.; Yoon, Y.; Park, C.M. Adsorptive and photocatalytic performance of cobalt-doped ZnTiO3/Ti3C2Tx MXene nanohybrids towards tetracycline: Kinetics and mechanistic insight. J. Hazard. Mater. 2023, 443, 130165. [Google Scholar]
- Rasheed, A.; El Sayed, M.E.; Yousaf, S.; Samir, A.; Warsi, M.F.; El-Bahy, Z.M. Fluorine-doped cobalt ferrite integrated into 2D MXene with extended solar spectrum response and boosted charge separation for the removal of recalcitrant organic pollutants. Results Phys. 2024, 67, 108049. [Google Scholar] [CrossRef]
- Yu, X.-f.; Cheng, J.-b.; Liu, Z.-b.; Li, Q.-z.; Li, W.-z.; Yang, X.; Xiao, B. The band gap modulation of monolayer Ti2CO2 by strain. RSC Adv. 2015, 5, 30438–30444. [Google Scholar] [CrossRef]
- Ding, Y.M.; Nie, X.; Dong, H.A.-O.; Rujisamphan, N.; Li, Y.A.-O. Many-body effects in an MXene Ti2CO2 monolayer modified by tensile strain: GW-BSE calculations. Nanoscale Adv. 2020, 2, 2471–2477. [Google Scholar] [CrossRef]
- Kandemir, Z.; Torun, E.; Paleari, F.; Yelgel, C.; Sevik, C. Surface termination dependence of electronic and optical properties in Ti2CO2 MXene monolayers. Phys. Rev. Mater. 2022, 6, 026001. [Google Scholar] [CrossRef]
- Hart, J.A.-O.; Hantanasirisakul, K.A.-O.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.A.-O.; May, S.J.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [Google Scholar] [CrossRef]
- Halim, J.; Persson, I.; Eklund, P.; Persson, P.O.Å.; Rosen, J. Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film. RSC Adv. 2018, 8, 36785–36790. [Google Scholar] [CrossRef]
- Iravani, S.A.-O.; Varma, R.A.-O. MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants. Molecules 2022, 27, 6939. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.; Khan, S.A.-O.; Din, M.A.U.; Dong, F.; Chen, D. Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications. Molecules 2023, 28, 2495. [Google Scholar] [CrossRef]
- He, X.; Kai, T.; Ding, P.A.-O. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review. Environ. Chem. Lett. 2021, 19, 4563–4601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, G.; Feng, S.; Liu, Y.; Liu, W.; Xia, A.; Ren, H.; Lv, L. Preparation of exposed (001) facets TiO2/Ti3C2 MXene and performance of near infrared light photodegradation. Ceram. Int. 2023, 49, 7258–7265. [Google Scholar] [CrossRef]
- Lai, C.; Yan, B.; Yuan, R.; Chen, D.; Wang, X.; Wang, M.; He, H.; Tu, J.A.-O. In situ growth of TiO2/Ti3C2 MXene Schottky heterojunction as a highly sensitive photoelectrochemical biosensor for DNA detection. RSC Adv. 2023, 13, 16222–16229. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Deng, H.; Guo, S.; Li, L.; Wang, P.; Zhu, H.; Hao, D.; Li, C.; Tang, X.; Wang, Q.; et al. MXene-based composites for adsorption and photocatalytic immobilization of U(VI): Current progress and future perspectives. Sep. Purif. Technol. 2025, 377, 134282. [Google Scholar] [CrossRef]
- ZHENG, Z.X.; WANG, E.H.; HOU, X.M.; YANG, T. University of Science and Technology Beijing. The stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene). J. Eng. Sci. 2022, 44, 1881–1896. (In Chinese) [Google Scholar]
- Zhu, H.; Liang, Z.; Xue, S.; Ren, X.; Liang, X.; Xiong, W.; Gao, L.; Liu, A. DFT practice in MXene-based materials for electrocatalysis and energy storage: From basics to applications. Ceram. Int. 2022, 48, 27217–27239. [Google Scholar] [CrossRef]
- Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.-Y.; Venkataramanan, N.S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, H.; Nie, Y.-H.; Ren, W. Enhancement of thermoelectric efficiency in triple quantum dots by the Dicke effect. Phys. Rev. B 2013, 87, 075102. [Google Scholar] [CrossRef]
- Shein, I.R.; Ivanovskii, A.L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 2012, 65, 104–114. [Google Scholar] [CrossRef]
- Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
- Li, J.; Peng, H.; Luo, B.; Cao, J.; Ma, L.; Jing, D. The enhanced photocatalytic and photothermal effects of Ti3C2 Mxene quantum dot/macroscopic porous graphitic carbon nitride heterojunction for Hydrogen Production. J. Colloid Interface Sci. 2023, 641, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Oyehan, T.A.; Salami, B.A.; Abdulrasheed, A.A.; Hambali, H.U.; Gbadamosi, A.; Valsami-Jones, E.; Saleh, T.A. MXenes: Synthesis, properties, and applications for sustainable energy and environment. Appl. Mater. Today 2023, 35, 101993. [Google Scholar] [CrossRef]
- Xin, L.; Guohong, W.; Qiang, L.; Wang, Y.; Lu, X. Dual optimized Ti3C2Tx MXene@ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption. Chem. Eng. J. 2023, 453, 139488. [Google Scholar]
- Tao, C.; Longlu, W.; Yutang, L.; Zhang, S.; Dong, W.; Chen, H.; Yi, X.; Yuan, J.; Xia, X.; Liu, C.; et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B Environ. 2018, 239, 545–554. [Google Scholar]
- Zeng, W.; Ye, X.; Dong, Y.; Zhang, Y.; Sun, C.; Zhang, T.; Guan, X.; Guo, L. MXene for photocatalysis and photothermal conversion: Synthesis, physicochemical properties, and applications. Coord. Chem. Rev. 2024, 508, 215753. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Meng, X.; Wang, L.; Wang, X.; Zhen, M.; Hu, Z.; Guo, S.Q.; Shen, B. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis. Chemosphere 2023, 338, 139550. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, J.; Song, H.; Liu, S.; Huang, Y.; Huang, Y.; Luo, X. Synergistically enhancing CO2 adsorption/activation and electron transfer in ZIF-67/Ti3C2Tx MXene for boosting photocatalytic CO2 reduction. Sep. Purif. Technol. 2024, 341, 126817. [Google Scholar] [CrossRef]
- Khesali, A.S.; Mahdiyeh, Z.; Saeid, A.; Fooladloo, M.A. Investigation of the optical and electronic properties of functionalized Ti3C2 Mxene with halid atoms using DFT calculation. Mater. Today Commun. 2023, 35, 106136. [Google Scholar] [CrossRef]
- Yao, X.; Yan-Fang, Z.; Wei, X.; Wu, Z.-G.; Li, Y.-C.; Lai, J.; Li, S.; Wang, E.; Yang, Z.-G.; Xu, C.-L.; et al. Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angew. Chem. Int. Ed. 2020, 59, 1491–1495. [Google Scholar]
- Shi, A.; Sun, D.; Zhang, X.; Ji, S.; Wang, L.; Li, X.A.; Niu, X. Direct Z-Scheme Photocatalytic System: Insights into the Formative Factors of Photogenerated Carriers Transfer Channel from Ultrafast Dynamics. ACS Catal. 2022, 12, 9570–9578. [Google Scholar] [CrossRef]
- Huang, X.; Yin, K.; Zhang, S.; Wu, T.; Yuan, Y.; Wang, X.; Wang, D. Interfacial chemical bond-modulated Z-scheme Cs2AgBiBr6/WO3 enables stable and highly efficient photocatalysis. Appl. Surf. Sci. 2023, 637, 157877. [Google Scholar] [CrossRef]
- Yuan, H.; Xiao, W.; Zhang, X.; Bao, J.; Li, W.; Huang, B.; He, G. Ti3C2 MXene flakes assisted Mn0.5Cd0.5S/Ti3C2 MXene/g-C3N4 Z-scheme heterojunction for enhancing photocatalytic hydrogen evolution. J. Power Sources 2024, 606, 234588. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, M.; Liang, H.; Chen, J.; Xu, L.; Niu, J. Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin. Appl. Catal. B Environ. 2021, 291, 120105. [Google Scholar] [CrossRef]
- Karunamoorthy, S.; Keunyoung, Y.; Velusamy, M.; Yea, Y.; Jagan, G.; Park, C.M. Construction of novel In2S3/Ti3C2 MXene quantum dots/SmFeO3 Z-scheme heterojunctions for efficient photocatalytic removal of sulfamethoxazole and 4-chlorophenol: Degradation pathways and mechanism insights. Chem. Eng. J. 2023, 451, 138933. [Google Scholar]
- Liu, Y.; Li, Y.-H.; Li, X.; Zhang, Q.; Yu, H.; Peng, X.; Peng, F. Regulating Electron–Hole Separation to Promote Photocatalytic H2 Evolution Activity of Nanoconfined Ru/MXene/TiO2 Catalysts. ACS Nano 2020, 14, 14181–14189. [Google Scholar] [CrossRef] [PubMed]
- Soni, V.; Singh, P.; Phan Quang, H.H.; Parwaz Khan, A.A.; Bajpai, A.; Van Le, Q.; Thakur, V.K.; Thakur, S.; Nguyen, V.-H.; Raizada, P. Emerging architecture titanium carbide (Ti3C2Tx) MXene based photocatalyst toward degradation of hazardous pollutants: Recent progress and perspectives. Chemosphere 2022, 293, 133541. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, T.; Wei, P.; Xu, W.; Pan, H.; Peng, F.; Jia, J.; Zhang, K.; Yu, H. Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. APL Mater. 2021, 9, 070703. [Google Scholar] [CrossRef]
- Chaudhuri, K.; Alhabeb, M.; Wang, Z.; Shalaev, V.M.; Gogotsi, Y.; Boltasseva, A. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics 2018, 5, 1115–1122. [Google Scholar] [CrossRef]
- Li, C.; Kan, C.; Meng, X.; Liu, M.; Shang, Q.; Yang, Y.; Wang, Y.; Cui, X. Self-Assembly 2D Ti3C2/g-C3N4 MXene Heterojunction for Highly Efficient Photocatalytic Degradation of Tetracycline in Visible Wavelength Range. Nanomaterials 2022, 12, 4015. [Google Scholar] [CrossRef]
- Nasri, M.S.; Samsudin, M.F.; Tahir, A.A.; Sufian, S. Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies 2022, 15, 955. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, M.; Li, X.; Zhou, C.; Peng, B.; Chen, H.; Zhang, H. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124511. [Google Scholar] [CrossRef]
- Hu, X.; Li, G.; Zhang, Y.; Lu, M.; Pu, W.; Dai, Y.; Wang, H. A novel iron oxide (Fe3O4)-laden titanium carbide (Ti3C2) MXene stacks for the efficient removal of tetracycline from aqueous solution. Chemosphere 2024, 364, 143210. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, P.; Wang, Z.; Shen, J.; Han, X.; Zheng, X.; Song, K. Aerosol self-assembly synthesis of g-C3N4/MXene/Ag3PO4 heterostructure for enhanced photocatalytic degradation of tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129392. [Google Scholar] [CrossRef]
- Cai, J.; Peng, Y.; Hu, P.; Zhou, Y.; Yao, Q.; Lyu, H.; Gao, Y. H2O2-assisted room temperature preparation of crystalline TiO2 and Ti3C2Tx-derived C-doped amorphous TiOx homojunction for photocatalytic degradation of tetracycline. Appl. Surf. Sci. 2025, 680, 161430. [Google Scholar] [CrossRef]
- Amari, A.; Aljibori, H.S.S.; Ismail, M.A.; Diab, M.A.; El-Sabban, H.A.; Umarov, A.; Madaminov, S.; Elboughdiri, N. Engineering novel 2D MXene-based dual Z-scheme heterojunction photocatalyst for enhanced TC hydrochloride degradation and hydrogen evolution. J. Water Process Eng. 2025, 70, 107127. [Google Scholar] [CrossRef]
- Xu, M.; Peng, M.; Tang, H.; Zhou, W.; Qiao, B.; Ma, D. Renaissance of Strong Metal–Support Interactions. J. Am. Chem. Soc. 2024, 146, 2290–2307. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; Liu, Y.; Chen, L. Photocatalytic Deposition of Au Nanoparticles on Ti3C2Tx MXene Substrates for Surface-Enhanced Raman Scattering. Molecules 2024, 29, 2383. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z.; Wang, X.; Polo-Garzon, F.; Halstenberg, P.W.; Wang, T.; Suo, X.; Yang, S.-Z.; Meyer, H.M., III; Wu, Z.; et al. Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis. J. Am. Chem. Soc. 2021, 143, 8521–8526. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Sui, G.; Chai, D.F.; Li, Y.; Guo, D.; Chu, D.; Liang, K. Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting. Carbon Energy 2024, 6, e583. [Google Scholar] [CrossRef]
- Zhou, Q.; Hong, P.; Shi, X.; Li, Y.; Yao, K.; Zhang, W.; Kong, L. Efficient degradation of tetracycline by a novel nanoconfinement structure Cu2O/Cu@ MXene composite. J. Hazard. Mater. 2023, 448, 130995. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, D.; Sun, X.; Geng, Z.; Wang, Q.; Hou, J. SILAR synthesis of CdS-ZnS/TiO2 NTs for photocatalytic H2 evolution and dye degradation. Colloids Surf. A Physicochem. Eng. Asp. 2025, 707, 135922. [Google Scholar] [CrossRef]
- Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Yang, X. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118382. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, W.; Chen, F.; Wang, P.; Fan, J.; Yu, H. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27. [Google Scholar] [CrossRef]
- Tan, Q.; Yu, Z.; Chen, Y.; He, N. Mixed-valent FeWO4-coated 2D Ti3C2 MXene photocatalysts for photo-fenton removal of many common pollutants in water. Ceram. Int. 2024, 50, 16382–16397. [Google Scholar] [CrossRef]
- Kashif, R.; Mohamed, H.; Adnan, A.; Ren, C.E.; Gogotsi, Y.; Mahmoud, K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684. [Google Scholar]
- Gao, K.; Hou, L.A.; An, X.; Huang, D.; Yang, Y. BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis. Appl. Catal. B Environ. 2023, 323, 122150. [Google Scholar] [CrossRef]
- Wilson, R.B.; Coh, S. Parametric dependence of hot electron relaxation timescales on electron-electron and electron-phonon interaction strengths. Commun. Phys. 2020, 3, 179. [Google Scholar] [CrossRef]
- Ostovar, B.A.-O.; Lee, S.A.-O.X.; Mehmood, A.A.-O.; Farrell, K.A.-O.; Searles, E.A.-O.; Bourgeois, B.A.-O.X.; Chiang, W.A.-O.; Misiura, A.; Gross, N.A.-O.; Al-Zubeidi, A.; et al. The role of the plasmon in interfacial charge transfer. Sci. Adv. 2024, 10, eadp3353. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Zhu, G.; Li, J.; Li, Y.; Zhai, Y.; Song, H.; Yang, Y.; Li, H. Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved. JACS Au 2024, 4, 4455–4465. [Google Scholar] [CrossRef]
- Mir, S.H.; Yadav, V.K.; Singh, J.K. Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective. ACS Omega 2020, 5, 14203–14211. [Google Scholar] [CrossRef]
- Shin, H.A.-O.; Jeong, W.; Han, T.A.-O. Maximizing light-to-heat conversion of Ti3C2Tx MXene metamaterials with wrinkled surfaces for artificial actuators. Nat. Commun. 2024, 15, 10507. [Google Scholar] [CrossRef]
- Wang, T.; Yao, C.; Gao, R.; Holicky, M.; Hu, B.; Liu, S.; Wu, S.; Kim, H.; Ning, H.; Torrisi, F.; et al. Ultrafast Carrier and Lattice Cooling in Ti2CTx MXene Thin Films. Nano Lett. 2024, 24, 16333–16341. [Google Scholar] [CrossRef]
- Chang, L.; Huan, Z.; Qinghan, W.; Wu, J.; Chen, P.; Song, S.; Zhan, C.; Wang, L.; Jia, F. Efficient gold recovery from low concentrated Au(S2O3)23—Solution through enhanced photocatalysis via photothermal and surface plasmon resonance assistance on MoS2/MXene/Ag. Desalination 2024, 584, 117733. [Google Scholar]
- Wang, D.; Fang, Y.; Yu, W.; Wang, L.; Xie, H.; Yue, Y. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance. Sol. Energy Mater. Sol. Cells 2021, 220, 110850. [Google Scholar] [CrossRef]
- Niu, X.; Lu, X.; He, B.; Xiao, X.; Wang, S.; Liang, Z.; Ma, L.F. Dual electron transfer path and Ti3C2Tx LSPR photothermal enhancement in 2D/2D/2D Ti3C2Tx MXene@TiO2/CdIn2S4 ternary heterojunction for enhanced photocatalytic H2 production: Construction, kinetics, and mechanistic insights. Appl. Catal. B Environ. Energy 2025, 361, 124703. [Google Scholar] [CrossRef]
- Liu, W.; Sun, M.; Ding, Z.; Gao, B.; Ding, W. Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity. J. Alloys Compd. 2021, 877, 160223. [Google Scholar] [CrossRef]
- Wang, A.; Wen, Y.; Zhu, H.; Liu, Z.; Wang, H.; Yao, W.; Lin, H. Oxygen vacancy mediated photocatalysis of Ti3C2 MXene quantum dots/W18O49 hybrid membrane for peroxymonosulfate-enhanced oxidation degradation. Chem. Eng. J. 2024, 496, 154264. [Google Scholar] [CrossRef]
- Ling, Z.; Lu, T.; Zhenxi, Y.; Xu, B.; Chen, W.; Tang, Y.; Li, L.; Wang, J. Engineering of Bi2O2CO3/Ti3C2Tx heterojunctions co-embedded with surface and interface oxygen vacancies for boosted photocatalytic degradation of levofloxacin. Chem. Eng. J. 2023, 452, 139327. [Google Scholar]
- Ma, Y.; Xu, D.; Chen, W.; Tang, Y.; Wang, X.; Li, L.; Wang, J. Oxygen-vacancy-embedded 2D/2D NiFe-LDH/MXene Schottky heterojunction for boosted photodegradation of norfloxacin. Appl. Surf. Sci. 2022, 572, 151432. [Google Scholar] [CrossRef]
- Yu, M.; Liang, H.; Zhan, R.; Xu, L.; Niu, J. Sm-doped g-C3N4/Ti3C2 MXene heterojunction for visible-light photocatalytic degradation of ciprofloxacin. Chin. Chem. Lett. 2021, 32, 2155–2158. [Google Scholar] [CrossRef]
- Fatima, S.; Anwar, M.; Almalki, A.S.A.; Alhadhrami, A.; Warsi, M.F.; El-Bahy, Z.M. Fabrication of rare earth (Tb+3) and alkaline earth metal (Mg+2) Co-doped CdAl2O4@MXene composite: A unique approach to tune bandgap energy through quantum confinement effect for photocatalytic applications. Ceram. Int. 2024, 50, 29201–29212. [Google Scholar] [CrossRef]
- Abbas, H.A.; Abbas, K.K.; Al-Ghaban, A.M.A. Magnetic MXene/g-C3N4 nano catalyst for photocatalytic degradation of clindamycin contaminate in wastewater. Results Chem. 2025, 13, 101934. [Google Scholar] [CrossRef]
- Yan, C.; Zongxue, Y.; Guangcheng, Y.; Tan, Q.; He, N.; Guo, S.; Xia, S.; Chen, Z. Interlayered double-doped N,P-MXene/ZnIn2S4 Schottky junction composite photocatalyst: Efficient removal of ciprofloxacin and methyl orange from complex wastewater. J. Alloys Compd. 2024, 1003, 175608. [Google Scholar]
- Li, R.; Chen, A.; Deng, Q.; Zhong, Y.; Kong, L.; Yang, R. Well-designed MXene-derived Carbon-doped TiO2 coupled porous g-C3N4 to enhance the degradation of ciprofloxacin hydrochloride under visible light irradiation. Sep. Purif. Technol. 2022, 295, 121254. [Google Scholar] [CrossRef]
- Hussain, M.; Mahmoud, M.H.H.; Rasheed, A.; El Azab, I.H.; Anwar, M.; El-Bahy, Z.M. Silver-doped cadmium aluminate and its MXene based composite for visible-light driven photocatalytic degradation of organic pollutants. Opt. Mater. 2024, 155, 115824. [Google Scholar] [CrossRef]
- Valli, K.P.; Kala, S.M.J.; Selvam, V.; Anitha, C.; Malathi, B.; Prakash, K.S.; Karutha Pandian, S. Novel hierarchical nanocomposites of g-C3N4/MXene-Sm2O3 for enhanced cefixime degradation under visible light. J. Phys. Chem. Solids 2024, 190, 112011. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Ye, Y.; Boutinaud, P.; Zheng, X.; Xu, J.; Kang, F. Recent advances in the synthesis, photo-/electrocatalytic properties and applications of MXenes/bismuth-related composites. Chem. Eng. J. 2024, 498, 155098. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Wang, K.; Wei, Y.; Zhang, J.; Niu, J. Exploiting Cu2O-MXene(Ti3C2) photocatalysts with visible light drive for the degradation of sulfamethazine in the environment. Opt. Mater. 2025, 159, 116650. [Google Scholar] [CrossRef]
- Dan, L.; Jiajie, X.; Changkun, L. Constructing MXene-derived Z-Scheme g-C3N4/Ti3C2TX/Ag3PO4 photocatalysts with enhanced charge transfer for aquatic organic pollutants removal. Colloids Surf. A Physicochem. Eng. Asp. 2023, 675, 132050. [Google Scholar]
- Zhang, S.; Wang, Y.; Mersal, G.A.; Alhadhrami, A.; Alshammari, D.A.; Wang, Y.; Algadi, H.; Song, H. Enhanced photocatalytic CO2 reduction via MXene synergism: Constructing an efficient heterojunction structure of g-C3N4/Nb2C/CsPbBr3. Adv. Compos. Hybrid Mater. 2024, 7, 226. [Google Scholar] [CrossRef]
- Xu, R.; Wei, G.; Xie, Z.; Diao, S.; Wen, J.; Tang, T.; Hu, G. V2C MXene–modified g-C3N4 for enhanced visible-light photocatalytic activity. J. Alloys Compd. 2024, 970, 172656. [Google Scholar] [CrossRef]
- Subha, N.; Nagappagari, L.R.; Sankar, A.R. A review on recent advances in g-C3N4-MXene nanocomposites for photocatalytic applications. Nanotechnology 2024, 35, 502002. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Mohtaram, M.S.; Rasouli, K.; Mohtaram, S.; Rajabi, H.; Sabbaghi, S. Efficient visible-light-driven photocatalytic degradation of antibiotics in water by MXene-derived TiO2-supported SiO2/Ti3C2 composites: Optimisation, mechanism and toxicity evaluation. Environ. Pollut. 2025, 367, 125624. [Google Scholar] [CrossRef]
- Yang, J.; Yin, H.; Du, A.; Tebyetekerwa, M.; Bie, C.; Wang, Z.; Zhang, X. Unveiling O2 adsorption on non-metallic active site for selective photocatalytic H2O2 production. Appl. Catal. B Environ. Energy 2025, 361, 124586. [Google Scholar] [CrossRef]
- Jie, W.; Bingyan, Y.; Keru, H.; Ji, Y.; Li, X.; Li, C.; Yao, C.; Cai, Z. pH-responsive fiber membrane with high flux and photocatalytic performance for oily wastewater. J. Environ. Chem. Eng. 2025, 13, 115322. [Google Scholar]
- Zhenhai, W.A.N.G.; Zikai, Z.H.O.U.; Sen, W.A.N.G.; Zhi, F.A.N.G. Enhanced degradation of tetracycline by gas-liquid discharge plasma coupled with g-C3N4/TiO2. Plasma Sci. Technol. 2024, 26, 094007. [Google Scholar] [CrossRef]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Bidshahi, H.S.; Mesdaghinia, A.A.-O. An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology-central composite design. J. Environ. Health Sci. Eng. 2017, 15, 21. [Google Scholar] [CrossRef]
- Rusu, A.A.-O.; Buta, E.A.-O. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Pharmaceutics 2021, 13, 2085. [Google Scholar] [CrossRef]
- Eslaminejad, S.; Rahimi, R.; Fayazi, M. Green decoration of Pd nanoparticles on MXene/metal organic framework support for photocatalytic degradation of ofloxacin. J. Ind. Eng. Chem. 2025, 141, 94–103. [Google Scholar] [CrossRef]
- Zhang, H.; Bao, L.; Pan, Y.; Du, J.; Wang, W. Interface reconstruction of MXene-Ti3C2 doped CeO2 nanorods for remarked photocatalytic ammonia synthesis. J. Colloid Interface Sci. 2024, 675, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Junli, N.; Ye, G.; Gao, C.; Wang, M.; Wang, W.; Lu, X.; Ma, X.; Zhong, P. A review of how to improve Ti3C2Tx MXene stability. Chem. Eng. J. 2024, 496, 154097. [Google Scholar]
Photocatalysts | Tetracycline (mg L−1) | Reaction Time | The Dosage of Photocatalyst (mg) | Removal Rate (%) | Rate Constant k (min−1) | Quantum Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
D–OM–ZIF-8/ZnO | 1000 | Irradiate with ultraviolet-visible light for 60 min. | 50 | 88.5 90.5 | 0.048 | 2.9 | [9] |
CF/ZnO/Ag2O | 20 | Irradiate with a 500 W xenon lamp for 30 min. | 50 | 94.5 | 0.08368 | 3.8 | [10] |
BiOI/Brookite TiO2 | 20 | Irradiate with visible light for 110 min. | 30 | 82.0 | 0.063 | 4.8 | [11] |
Ag2CO3/ZIF-8/CF | 10 | Irradiate with visible light for 30 min. | 30 | 92.0 | 0.076 | 5.1 | [12] |
CeO2/BiYO3 | 30 | Irradiate with visible light for 60 min. | 50 | 90.0 | 0.085 | 5.5 | [13] |
Ti3C2TX/Cu2O | 30 | Irradiate with visible light for 40 min. | 30 | 97.6 | 0.091 | 6.0 | [14] |
PVP-MXene-PET | 0.1 | visible light for 50 | 1 | 83.01% | - | - | [15] |
MXene-PVA-TiO2 | 50 mL, 2 mg/L (MB) | a 300 W Xe lamp for 9 h | - | 95.2% | - | - | [16] |
PVP/PEO/MXene Nanocomposite | 2 ppm (MB) | 500–800 nm for 120 min | 5 wt% of MXene | 61.6% | 0.08 | - | [17] |
Advantage | The Deficiencies Existing in Other Semiconductor Photocatalysis | The Mechanism of the Enhanced Photocatalytic Effect of MXene |
---|---|---|
Abundant catalytic active sites | The catalytic sites are occupied due to the influence of environmental factors. | Construct composites by loading single atoms, clusters and nanoparticles on the surface to provide multiple sites. |
Abundant surface functional groups | Poor stability | Bond with the main catalyst in the form of hydrogen bonding chemical bonds to improve stability. |
Transition metals possess relatively high redox ability. | The phenomenon of photocorrosion | The high redox activity of transition metals inhibits the photocorrosion phenomenon. |
Broad spectral response range | A relatively low light response range | Composites formed by mechanical mixing, self-assembly and in situ oxidation have a relatively high light response range |
Lower Fermi level compared with common semiconductors | High recombination rate of photogenerated electrons and holes | Construct structures such as Schottky heterojunctions to inhibit the recombination of photogenerated electrons and holes. |
High electrical conductivity | The transportation efficiency of photogenerated electrons is not high. | MXene acts as an electron acceptor to improve electron transfer efficiency. |
Parameter | Semiconductor A (Reduced Prototype) | Semiconductor B (Oxidized Type) | MXene Roles |
---|---|---|---|
Band Position (ECB) | High (e.g., g-C3N4) | Low (e.g., TiO2) | Electron transfer bridges |
Valence Band Position (EVB) | Lower (e.g., g-C3N4) | High (e.g., TiO2) | Hole transport channels |
Differences in work function (ΔΦ) | ≥0.5 eV | Drive charge separation |
Function | MXene | |
---|---|---|
Photocatalyst preparation | Growth platform | Surface functional groups such as -OH, -O, -F, etc. |
Semiconductor precursors | Metastable transition metal atoms | |
Improved photocatalytic activity | Electronic receivers | High electrical conductivity and good band structure |
Active site | Multi-purpose transition metal atoms | |
adsorbent | Electrostatic attraction | |
Enhanced photostability | Avoid photoelectron reduction | Transfer of photogenerated electrons |
Process | Time Scale | Dominant Mechanism | Effect on Reaction | Reference |
---|---|---|---|---|
Thermal electron generation | <100 fs | Electron excitation | Charge transfer initiates redox | [105] |
Electron–phonon relaxation | 1–10 ps | Energy localization | The reaction temperature field is regulated | [106] |
Interface vibration coupling | 10–100 ps | Molecular vibrational mode excitation | Reduces the activation energy of the reaction | [107] |
Parameter | MXene | Precious Metal Nanoparticles | Semiconductor Nanosheets | Reference |
---|---|---|---|---|
Light absorption range | Visible infrared | Visible light | The bandgap is decided | [74] |
Carrier mobility | 103–104 cm2/Vs | Limited by size effect | Usually <100 cm2/Vs | [108] |
Surface reactivity | Can be chemically modified | It depends on crystal plane exposure | Governed by defective states | [41] |
Photothermal conversion efficiency | 92% (808 nm) | 65–75% (Au) | Affected by light absorption characteristics | [95,109] |
Hot carrier lifetime | 150–300 fs | 10–50 fs | Interaction of interfaces | [110] |
Categories | Photocatalytic Materials | Synthesis Method | Contaminant | Reaction Conditions | Degradation Efficiency | Reference |
---|---|---|---|---|---|---|
Introduction of oxygen vacancies | NiFe-LDH/MXene | Hydrothermal method | Norfloxacin (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 4 h, 98% | [117] |
BiOBr/MXene/gC3N4 | Electrostatic self-assembly | Tetracycline (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 30 min, 99% | [104] | |
Bi2O2CO3/Ti3C2Tx | Hydrothermal method | Levofloxacin (20 mg/L) Amoxicillin, tetracycline (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 80 min, 95.4% 30 min, 90.9% and 82.8% | [116] | |
Doping of metallic elements | Sm doped g-C3N4/Ti3C2MXene | Annealing | Ciprofloxacin (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 60 min, 99% | [118] |
Tb3+ and Mg2+ doped CdAl2O4@MXene | Co-precipitation Sonication | Aspirin (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 135 min, 79.6% | [119] | |
Co doped ZnTiO3/Ti3C2Tx MXene | Liquid self-assembly | Tetracycline (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 90 min, 91.5% | [49] | |
Fe doped with magnetism MXene/g-C3N4 | Hydrothermal synthesis | Clindamycin (initial drug concentration 125 mg/L) mix with wastewater | 100 mW/cm2 of high-voltage lamps 25 °C | 120 min, 92% | [120] | |
Doping of non-metallic elements | N,P-MXene/ZnIn2S4 Schottky knot | In situ grown | Ciprofloxacin (20 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 120 min 99.3% | [121] |
Homojunctions of C-doped amorphous TiOx derived from TiO2 and Ti3C2Tx | Hydrogen peroxide oxidation | Tetracycline (30 mg/L) | 300 W Xenon lamps 25 °C ± 1 °C | 100 min, 91.5% | [92] | |
MXene-derived carbon-doped TiO2 coupled with porous g-C3N4 | One-step hot calcination method | Ciprofloxacin hydrochloride (20 mg/L) | 300 W Xenon lamp 420 nm UV filter 25 °C ± 1 °C | 50 min, 88.14% | [122] |
Major Classes of Antibiotics | Secondary Classification | Category | pKa | Structure |
---|---|---|---|---|
β-lactam antibiotics | Penicillins | Penicillin G | 2.8 | carboxyl |
Amoxicillin | 2.0/7.3 | Carboxy/amino | ||
Piperacillin | 2.74/5.13 | Carboxyl/pyridine ring | ||
Cephalosporins | Cefpelin | 2.74/5.13 | Carboxyl/pyridine ring | |
Ceftiofur | 2.68 | carboxyl | ||
Aminoglycoside antibiotics | Aminoglycosides | gentamicin | 7.5–9 | amino |
Tobramycin | 7.5–9 | amino | ||
Ampramycin | 7.5–9 | amino | ||
Tetracycline antibiotics | Tetracyclines | tetracycline | 2.8–3.4/7.2–7.8/9.1–9.7 | Phenolic hydroxyl/enol hydroxyl/dimethylamino |
oxytetracycline | 2.8–3.4/7.2–7.8/9.1–9.7 | Phenolic hydroxyl/enol hydroxyl/dimethylamino | ||
aureomycin | 2.8–3.4/7.2–7.8/9.1–9.7 | Phenolic hydroxyl/enol hydroxyl/dimethylamino | ||
Fluoroquinolone antibiotics | Fluoroquinolones | Ciprofloxacin | 3–4/6/7.5–9/10–11 | Carboxyl/enol hydroxyl/amino/other groups |
Levofloxacin | 3–4/6/7.5–9/10–11 | Carboxyl/enol hydroxyl/amino/other groups | ||
Moxifloxacin | 3–4/6/7.5–9/10–11 | Carboxyl/enol hydroxyl/amino/other groups | ||
Sulfonamide antibiotics | Sulfonamides | Sulfamethoxazole | 2/5–7.5 | Sulfonamide/other groups |
Sulfadiazine | 2/5–7.5 | Sulfonamide/other groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Meng, Z.; Zhang, Z.; Ma, W. MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects. Polymers 2025, 17, 2630. https://doi.org/10.3390/polym17192630
Chen Z, Meng Z, Zhang Z, Ma W. MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects. Polymers. 2025; 17(19):2630. https://doi.org/10.3390/polym17192630
Chicago/Turabian StyleChen, Zhenfei, Zhifei Meng, Zhongguo Zhang, and Weifang Ma. 2025. "MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects" Polymers 17, no. 19: 2630. https://doi.org/10.3390/polym17192630
APA StyleChen, Z., Meng, Z., Zhang, Z., & Ma, W. (2025). MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects. Polymers, 17(19), 2630. https://doi.org/10.3390/polym17192630