Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Acoustic Emission Signal Analysis of CFRP Drilling
3.2. Acoustic Emission Signal Processing
3.3. Influence of Drilling Parameters on Acoustic Emission Signal
3.4. Evaluation of Drilling Hole Damage by AE Technology
4. Conclusions
- The drilling process can be categorized into three distinct stages based on variations in the RMS of AE signals. Notably, a marked rise and fall in RMS values occur during the entrance and exit stages of drilling.
- The frequency features of AE signals associated with various damage types remain relatively stable regardless of machining parameters. These frequency domain characteristics can thus serve as indicators for identifying damage mechanisms during CFRP drilling. Specifically, collective cracking is associated with frequencies ranging from 60 to 120 kHz, delamination occurs within 120 to 200 kHz, and fiber fracture appears in the range of 210 to 340 kHz.
- Temperature has minimal influence on AE signals during drilling. The surface temperature of the workpiece decreases with an increase in feed rate and increases with an increase in spindle speed. However, machining parameters significantly affect the RMS values. When spindle speed remains constant, the RMS value increases with higher feed rates. Similarly, with a fixed feed rate, increasing the spindle speed also leads to higher RMS values.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, G.; Zhang, Z.; Yin, W.; Fu, Y.; Wang, D. Multi-Angle Crack Detection in CFRP Based on Line Laser Infrared Thermography Scanning Technology. Polymers 2025, 17, 508. [Google Scholar] [CrossRef]
- Hassani, S.; Dackermann, U. A systematic review of advanced sensor technologies for non-destructive testing and structural health monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef] [PubMed]
- Andraju, L.B.; Raju, G. Damage characterization of CFRP laminates using acoustic emission and digital image correlation: Clustering, damage identification and classification. Eng. Fract. Mech. 2023, 277, 108993. [Google Scholar] [CrossRef]
- Ahmed, O.; Wang, X.; Tran, M.; Ismadi, M. Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems. Compos. Part B Eng. 2021, 223, 109136. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, M.; Lai, Y.; Wang, G.; Yang, Y. Considering the Bottom Edge Cutting Effect of the Carbon Fiber Reinforced Polymer Milling Force Prediction Model and Optimization of Machining Parameters. Materials 2024, 17, 5844. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Zhou, Y.; Qiu, X.; Li, P.; Zhang, H.; Wang, Z. Damage formation and evolution mechanisms in drilling CFRP with prefabricated delamination defects: Simulation and experimentation. J. Mater. Res. Technol. 2023, 26, 6994–7011. [Google Scholar] [CrossRef]
- Patel, P.; Chaudhary, V. Delamination evaluation in drilling of composite materials—A review. Mater. Today Proc. 2022, 56, 2690–2695. [Google Scholar] [CrossRef]
- Xu, J.; Yin, Y.; Davim, J.P.; Li, L.; Ji, M.; Geier, N.; Chen, M. A critical review addressing drilling-induced damage of CFRP composites. Compos. Struct. 2022, 294, 115594. [Google Scholar] [CrossRef]
- Yousefi, J.; Najfabadi, M.A.; Toudeshky, H.H.; Akhlaghi, M. Damage evaluation of laminated composite material using a new acoustic emission Lamb-based and finite element techniques. Appl. Compos. Mater. 2018, 25, 1021–1040. [Google Scholar] [CrossRef]
- Saeedifar, M.; Zarouchas, D. Damage characterization of laminated composites using acoustic emission: A review. Compos. Part B Eng. 2020, 195, 108039. [Google Scholar] [CrossRef]
- Han, S.; Li, Q.; Cui, Z.; Xiao, P.; Miao, Y.; Chen, L.; Li, Y. Non-destructive testing and structural health monitoring technologies for carbon fiber reinforced polymers: A review. Nondestruct. Test. Eval. 2024, 39, 725–761. [Google Scholar] [CrossRef]
- Yang, H.J.; Yang, Z.Y.; Lu, S.T.; Shan, Y.N.; Ma, J.T.; Yang, L.; Wu, Z.J. Ultrasonic imaging of delamination in thick CFRP laminates using an energy-compensation reverse time migration method. Ultrasonics 2024, 138, 107253. [Google Scholar] [CrossRef] [PubMed]
- Gulsen, A.; Kolukisa, B.; Caliskan, U.; Bakir-Gungor, B.; Gungor, V.C. Ensemble Feature Selection for Clustering Damage Modes in Carbon Fiber-Reinforced Polymer Sandwich Composites Using Acoustic Emission. Adv. Eng. Mater. 2024, 26, 2470063. [Google Scholar] [CrossRef]
- Qiao, S.; Huang, M.; Liang, Y.J.; Zhang, S.Z.; Zhou, W. Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission. Polym. Compos. 2023, 44, 2427–2440. [Google Scholar] [CrossRef]
- Xue, S.N.; Wang, J.; Liang, Y.Z.; Ma, L.H.; Zhou, W. Indentation damage identification of carbon fiber composite laminates based on modal acoustic emission and machine learning. Polym. Compos. 2025, 46, 6944–6955. [Google Scholar] [CrossRef]
- Hamam, Z.; Godin, N.; Reynaud, P.; Fusco, C.; Carrère, N.; Doitrand, A. Transverse Cracking Induced Acoustic Emission in Carbon Fiber-Epoxy Matrix Composite Laminates. Materials 2022, 15, 394. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Pappalettera, G.; Kannan, V.P. Damage monitoring of carbon fibre reinforced polymer composites using acoustic emission technique and deep learning. Compos. Struct. 2022, 292, 115629. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Li, B. Acoustic emission-driven fatigue damage evolution equation and life prediction of composite laminates. Int. J. Fatigue 2025, 198, 109012. [Google Scholar] [CrossRef]
- Devin, L.M.; Stachniv, M.E.; Rychev, S.V. Studying the Acoustic Emission Signal at the Stage of Penetration and Exit When Drilling a Carbon Fiber Reinforced Polymer with the Use of a Drill of Diamond Hard Alloy Plates. J. Superhard Mater. 2022, 44, 127–138. [Google Scholar] [CrossRef]
- Twardowski, P.; Tabaszewski, M.; Wiciak–Pikuła, M.; Felusiak-Czyryca, A. Identification of tool wear using acoustic emission signal and machine learning methods. Precis. Eng. 2021, 72, 738–744. [Google Scholar] [CrossRef]
- Zhu, G.Q.; Hu, S.S.; Tang, H.Q. Prediction of tool wear in CFRP drilling based on neural network with multicharacteristics and multisignal sources. Compos. Adv. Mater. 2021, 30, 2633366X20987234. [Google Scholar] [CrossRef]
- Mathiyazhagan, V.; Meena, A. Predictive modelling of tool wear in CFRP drilling using acoustic emission sensors under dry and cryogenic conditions. Wear 2025, 570, 205930. [Google Scholar] [CrossRef]
- Nie, P.; Ma, Y.; Liu, S.Y. Research on CFRP inner wall roughness during vibration drilling of CFRP/Ti based on acoustic emission. J. Phys. Conf. Ser. 2021, 1952, 032060. [Google Scholar] [CrossRef]
- Li, M.; Huang, D.; Han, H.; Yang, X. Chatter Detection and Identification in High-Efficient Robotic Milling CFRP Composites Using Acoustic Emission Technique. Int. J. Precis. Eng. Manuf.-Green Tech. 2023, 10, 1155–1167. [Google Scholar] [CrossRef]
- Eaton, M.J.; Crivelli, D.; Williams, R.; Byrne, C. Monitoring the drilling process of carbon fibre laminates using acoustic emission. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1182–1193. [Google Scholar] [CrossRef]
- Ge, J.; Fu, G.Y.; Almeida, J.H., Jr.; Jin, S.Y.; Sun, D. Thermal effect in CFRP machining: Temperature field characteristics, heat generation mechanism and thermal damage management. Compos. Struct. 2025, 356, 118845. [Google Scholar] [CrossRef]
- Munoz, V.; Vales, B.; Perrin, M.; Pastor, M.L.; Welemane, H.; Cantarel, A.; Karama, M. Damage detection in CFRP by coupling acoustic emission and infrared thermography. Compos. Part B Eng. 2016, 85, 68–75. [Google Scholar] [CrossRef]
- Oliveira, T.L.L.; Zitoune, R.; Ancelotti, A.C., Jr.; da Cunha, S.S., Jr. Smart machining: Monitoring of CFRP milling using AE and IR. Compos. Struct. 2020, 249, 112611. [Google Scholar] [CrossRef]
- Gee, M.; Roshanmanesh, S.; Hayati, F.; Papaelias, M. Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission. Sensors 2025, 25, 3795. [Google Scholar] [CrossRef]
- Almeida, R.; Magalhães, M.D.; Karim, M.; Tushtev, N.; Rezwan, K. Identifying damage mechanisms of composites by acoustic emission and supervised machine learning. Mater. Des. 2023, 227, 111745. [Google Scholar] [CrossRef]
- Xu, D.; Liu, P.F.; Chen, Z.P. A deep learning method for damage prognostics of fiber-reinforced composite laminates using acoustic emission. Eng. Fract. Mech. 2022, 259, 108139. [Google Scholar] [CrossRef]
- Mathiyazhagan, V.; Meena, A. Machining-induced damages in the drilling of CFRP under dry and cryogenic environments. Int. J. Adv. Manuf. Technol. 2024, 134, 605–626. [Google Scholar] [CrossRef]
- Azadi, M.; Sayar, H.; Ghasemi-Ghalebahman, A.; Jafari, S.M. Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach. Compos. Part B Eng. 2019, 158, 448–458. [Google Scholar] [CrossRef]
- Cai, X.J.; Qin, S.; An, Q.L.; Zhang, H.Z.; Han, S.; Chen, M. Experimental Analysis on Delamination Damage by Acoustic Emission in High Speed Drilling of Carbon Fiber Reinforced Plastics. Key Eng. Mater. 2014, 589–590, 287–292. [Google Scholar] [CrossRef]
- Shateri, M.; Ghaib, M.; Svecova, D.; Thomson, D. On acoustic emission for damage detection and failure prediction in fiber reinforced polymer rods using pattern recognition analysis. Smart Mater. Struct. 2017, 26, 065023. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Zhou, W. Cluster analysis of acoustic emission signals and tensile properties of carbon/glass fiber–reinforced hybrid composites. Struct. Health Monit. 2019, 18, 1686–1697. Available online: https://sage.cnpereading.com/paragraph/article/?doi=10.1177/1475921719833467 (accessed on 15 August 2025). [CrossRef]
- Sayar, H.; Azadi, M.; Ghasemi-Ghalebahman, A.; Jafari, S.M. Clustering effect on damage mechanisms in open-hole laminated carbon/epoxy composite under constant tensile loading rate, using acoustic emission. Compos. Struct. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.D.; Li, M.J.; Huang, D.X. Surface quality and burr characterization during drilling CFRP/Al stacks with acoustic emission monitoring. J. Manuf. Process. 2023, 98, 138–148. [Google Scholar] [CrossRef]

















| Spindle Speed (rpm) | Feed Rate Per Tooth (mm/min) |
|---|---|
| 2000/3000/4000/5000 | 200/300/400/500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Lai, Y.; Zhang, Y.; Yang, L.; Zheng, Y.; Wen, T.; Pan, C. Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics. Polymers 2025, 17, 2628. https://doi.org/10.3390/polym17192628
Yan M, Lai Y, Zhang Y, Yang L, Zheng Y, Wen T, Pan C. Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics. Polymers. 2025; 17(19):2628. https://doi.org/10.3390/polym17192628
Chicago/Turabian StyleYan, Mengke, Yushu Lai, Yiwei Zhang, Lin Yang, Yan Zheng, Tianlong Wen, and Cunxi Pan. 2025. "Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics" Polymers 17, no. 19: 2628. https://doi.org/10.3390/polym17192628
APA StyleYan, M., Lai, Y., Zhang, Y., Yang, L., Zheng, Y., Wen, T., & Pan, C. (2025). Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics. Polymers, 17(19), 2628. https://doi.org/10.3390/polym17192628
