Adsorbent Materials Based on Modified Chitosan for Purification of Aqueous Media from Pharmaceutical Residues, Primarily Antibiotics
Abstract
1. Introduction
- Wastewater from enterprises that use insufficient purification methods.
- Wastewater from agricultural enterprises that use medicines.
- Domestic sewers with biological fluids of people who take medications.
- Leaching of waste disposal sites.
- Disposal of pharmaceutical waste by imperfect methods.
2. Presence of Pharmaceutical Preparations in the Wastewater of Several Countries
3. Methods Used to Remove Pharmaceutical Contaminants in Water Treatment Systems
3.1. Membrane Technologies
3.2. Adsorption
4. Chitosan-Based Adsorption Materials
5. Adsorbents Based on Modified Chitosan
5.1. Chitosan-Based Adsorbents with Grafted Monomers
5.2. Adsorbents Based on Chitosan Derivatives
5.3. Adsorbents Based on Chitosan Composites
5.3.1. Adsorbents Based on Composites of Chitosan with Silica
5.3.2. Adsorbents Based on Composites of Chitosan with Metals, Metal Oxides
5.3.3. Chitosan-Based Adsorbents with Carbonaceous Materials
6. Problems and Future Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Wong, D.; Ntchantcho, R.; Pizarro, J.; Mart, J.; Echeverr, S.; et al. Pharmaceutical pollution of the world’ s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Kumar, V.; Lakkaboyana, S.K.; Sharma, N.; Chakraborty, P.; Umesh, M.; Pasrija, R.; Thomas, J.; Kalebar, V.U.; Jayaraj, I.; Awasthi, M.K.; et al. A critical assessment of technical advances in pharmaceutical removal from wastewater—A critical review. Case Stud. Chem. Environ. Eng. 2023, 8, 100363. [Google Scholar] [CrossRef]
- Bottoni, P.; Caroli, S. Presence of residues and metabolites of pharmaceuticals in environmental compartments, food commodities and workplaces: A review spanning the three-year period 2014–2016. Microchem. J. 2018, 136, 2–24. [Google Scholar] [CrossRef]
- Kumar, V.S.; Dhivakar, M.; Nagamani, S.; Dhanalakshmi, A.; Leema, M.A. Removal of pharmaceuticals from wastewater: A review of different adsorptive approaches. Glob. Nest J. 2024, 26, 05300. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Paíga, P.; Correia-Sá, L.; Correia, M.; Figueiredo, S.; Vieira, J.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. J. Xenobiotics 2024, 14, 873–892. [Google Scholar] [CrossRef]
- Otero, M.; Coimbra, R.N. Polymeric Materials for Wastewater Treatment Applications. Polymers 2025, 17, 552. [Google Scholar] [CrossRef]
- Wada, O.Z.; Olawade, D.B. Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review. Chemosphere 2025, 374, 144153. [Google Scholar] [CrossRef] [PubMed]
- Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Sci. Total Environ. 2017, 599–600, 934–943. [Google Scholar] [CrossRef]
- Afonso-Olivares, C.; Čadková, T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Nováková, L. Simplified solid-phase extraction procedure combined with liquid chromatography tandem–mass spectrometry for multiresidue assessment of pharmaceutical compounds in environmental liquid samples. J. Chromatogr. A 2017, 1487, 54–63. [Google Scholar] [CrossRef]
- Escher, B.I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C.S. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res. 2011, 45, 75–92. [Google Scholar] [CrossRef]
- Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T.; Aris, A.Z. Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Sci. Total Environ. 2018, 642, 230–240. [Google Scholar] [CrossRef]
- Al-Qaim, F.F.; Abdullah, M.P.; Othman, M.R.; Latip, J.; Zakaria, Z. Multi-residue analytical methodology-based liquid chromatography-time-of-flight-mass spectrometry for the analysis of pharmaceutical residues in surface water and effluents from sewage treatment plants and hospitals. J. Chromatogr. A 2014, 1345, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.A.; Zhu, Q.; Sun, S.; Peng, Y.; Shuai, Q. Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council (Notified Under Document C(2022) 5098). Available online: https://euroalert.net/en/oj/105661/commission-implementing-decision-eu-2022-1307-of-22-july-2022-establishing-a-watch-list-of-substances-for-union-wide-monitoring-in-the-field-of-water-policy-pursuant-to-directive-2008-105-ec-of-the-european-parliament-an (accessed on 18 February 2025).
- Kokoszka, K.; Wilk, J.; Felis, E.; Bajkacz, S. Application of UHPLC-MS/MS method to study occurrence and fate of sulfonamide antibiotics and their transformation products in surface water in highly urbanized areas. Chemosphere 2021, 283, 131189. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, D.; Li, Z.; Lin, S.; Wang, Y.; Pan, S.; Han, J. Promoted elimination of antibiotic sulfamethoxazole in water using sodium percarbonate activated by ozone: Mechanism, degradation pathway and toxicity assessment. Sep. Purif. Technol. 2021, 266, 118543. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A.; Rashid, J. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. J. Clean. Prod. 2022, 356, 131826. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Forward osmosis technology for water treatment: Recent advances and future perspectives. J. Clean. Prod. 2021, 280, 124354. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, S.; Liang, S.X.; Kang, Q.; Wang, J.; Zhao, C. Advanced treatment of pharmaceutical wastewater with combined micro-electrolysis, Fenton oxidation, and coagulation sedimentation method. Desalin. Water Treat. 2016, 57, 25369–25378. [Google Scholar] [CrossRef]
- Radjenovic, J.; Sedlak, D.L. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Sci. Technol. 2015, 49, 11292–11302. [Google Scholar] [CrossRef]
- Prada-Vásquez, M.A.; Estrada-Flórez, S.E.; Serna-Galvis, E.A.; Torres-Palma, R.A. Developments in the intensification of photo-Fenton and ozonation-based processes for the removal of contaminants of emerging concern in Ibero-American countries. Sci. Total Environ. 2021, 765, 142699. [Google Scholar] [CrossRef]
- Azmi, L.S.; Jabit, N.A.; Ismail, S.; Ku Ishak, K.E.H.; Abdullah, T.K. Membrane filtration technologies for sustainable industrial wastewater treatment: A review of heavy metal removal. Desalin. Water Treat. 2025, 323, 101321. [Google Scholar] [CrossRef]
- Kafle, S.R.; Adhikari, S.; Shrestha, R.; Ban, S.; Khatiwada, G.; Gaire, P.; Tuladhar, N.; Jiang, G.; Tiwari, A. Advancement of membrane separation technology for organic pollutant removal. Water Sci. Technol. 2024, 89, 2290–2310. [Google Scholar] [CrossRef] [PubMed]
- Fonseca Couto, C.; Lange, L.C.; Santos Amaral, M.C. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Process Eng. 2018, 26, 156–175. [Google Scholar] [CrossRef]
- Boleda, M.R.; Galceran, M.T.; Ventura, F. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ. Pollut. 2011, 159, 1584–1591. [Google Scholar] [CrossRef]
- Silva, L.L.S.; Moreira, C.G.; Curzio, B.A.; da Fonseca, F.V. Micropollutant Removal from Water by Membrane and Advanced Oxidation Processes—A Review. J. Water Resour. Prot. 2017, 09, 411–431. [Google Scholar] [CrossRef]
- Martins, T.A.E.; Muñoz Sierra, J.D.; Nieuwlands, J.A.; Lousada-Ferreira, M.; Amaral, L. Micropollutant biotransformation under different redox conditions in PhoRedox conventional activated sludge systems. Environ. Technol. Innov. 2024, 35, 103639. [Google Scholar] [CrossRef]
- Martin, M.; Wu, J.; Rich, S.L.; Richardson, R.E.; Helbling, D.E. Differential biotransformation of micropollutants in conventional activated sludge and up-flow anaerobic sludge blanket processes. Environ. Sci. Water Res. Technol. 2024, 10, 936–948. [Google Scholar] [CrossRef]
- Zheng, W.; Wen, X.; Zhang, B.; Qiu, Y. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci. Total Environ. 2019, 646, 1293–1303. [Google Scholar] [CrossRef]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A critical review on nanomaterials membrane bioreactor (NMS-MBR) for wastewater treatment. NPJ Clean Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Natarajan, R.; Saikia, K.; Ponnusamy, S.K.; Rathankumar, A.K.; Rajendran, D.S.; Venkataraman, S.; Tannani, D.B.; Arvind, V.; Somanna, T.; Banerjee, K.; et al. Understanding the factors affecting adsorption of pharmaceuticals on different adsorbents—A critical literature update. Chemosphere 2022, 287, 131958. [Google Scholar] [CrossRef] [PubMed]
- Hosseinian Naeini, A.; Hosseini Moradi, S.A. Adsorption Method for Removal of Pharmaceuticals from Wastewater: Review. Iran. J. Mater. Sci. Eng. 2023, 20, 1–18. [Google Scholar] [CrossRef]
- Atheena, P.V.; Basawa, R.; Raval, R. Advancing wastewater treatment: Chitin and derivatives for PPCP contaminant mitigation. Polym. Bull. 2024, 81, 14307–14336. [Google Scholar] [CrossRef]
- Magesh, N.; Annam Renita, A.; Senthil Kumar, P. Practice on treating pharmaceutical compounds (antibiotics) present in wastewater using biosorption techniques with different biowaste compounds. A review. Environ. Prog. Sustain. Energy 2020, 39, e13429. [Google Scholar] [CrossRef]
- Fekete, E.; Csiszár, E. Chitosan–Alginate Gels for Sorption of Hazardous Materials: The Effect of Chemical Composition and Physical State. Int. J. Mol. Sci. 2024, 25, 8406. [Google Scholar] [CrossRef]
- Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; Khati, P.; Simsek, H. Developments and application of chitosan-based adsorbents for wastewater treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef] [PubMed]
- Benettayeb, A.; Ghosh, S.; Usman, M.; Seihoub, F.Z.; Sohoo, I.; Chia, C.H.; Sillanpää, M. Some Well-Known Alginate and Chitosan Modifications Used in Adsorption: A Review. Water 2022, 14, 1353. [Google Scholar] [CrossRef]
- Wong, S.; Ghafar, N.A.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020, 10, 2928. [Google Scholar] [CrossRef]
- Turk Sekulic, M.; Boskovic, N.; Slavkovic, A.; Garunovic, J.; Kolakovic, S.; Pap, S. Surface functionalised adsorbent for emerging pharmaceutical removal: Adsorption performance and mechanisms. Process Saf. Environ. Prot. 2019, 125, 50–63. [Google Scholar] [CrossRef]
- Sarode, S.; Upadhyay, P.; Khosa, M.A.; Mak, T.; Shakir, A.; Song, S.; Ullah, A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int. J. Biol. Macromol. 2019, 121, 1086–1100. [Google Scholar] [CrossRef]
- Varlamov, V.P.; Il’ina, A.V.; Shagdarova, B.T.; Lunkov, A.P.; Mysyakina, I.S. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. Biochemistry 2020, 85, 154–176. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Zhong, Z.; Yan, N. Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem. 2017, 19, 2783–2792. [Google Scholar] [CrossRef]
- Pandey, R.; Mathur, G. Current Trends in Chitosan Functionalization Methods and Their Applications. Starch/Staerke 2024, 77, 2300248. [Google Scholar] [CrossRef]
- Kaczorowska, M.A.; Bożejewicz, D. The Application of Chitosan-Based Adsorbents for the Removal of Hazardous Pollutants from Aqueous Solutions—A Review. Sustainability 2024, 16, 2615. [Google Scholar] [CrossRef]
- da Silva Alves, D.C.; Healy, B.; Pinto, L.A.d.A.; Cadaval, T.R.S.; Breslin, C.B. Recent developments in Chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules 2021, 26, 594. [Google Scholar] [CrossRef]
- Dago-Serry, Y.; Maroulas, K.N.; Tolkou, A.K.; Kokkinos, N.C.; Kyzas, G.Z. How the chitosan structure can affect the adsorption of pharmaceuticals from wastewaters: An overview. Carbohydr. Polym. Technol. Appl. 2024, 7, 100466. [Google Scholar] [CrossRef]
- Shahrin, E.W.E.S.; Narudin, N.A.H.; Shahri, N.N.M.; Nur, M.; Lim, J.W.; Bilad, M.R.; Mahadi, A.H.; Hobley, J.; Usman, A. A comparative study of adsorption behavior of rifampicin, streptomycin, and ibuprofen contaminants from aqueous solutions onto chitosan: Dynamic interactions, kinetics, diffusions, and mechanisms. Emerg. Contam. 2023, 9, 100199. [Google Scholar] [CrossRef]
- Rizzi, V.; Gubitosa, J.; Fini, P.; Romita, R.; Nuzzo, S.; Gabaldón, J.A.; Gorbe, M.I.F.; Gómez-Morte, T.; Cosma, P. Chitosan film as recyclable adsorbent membrane to remove/recover hazardous pharmaceutical pollutants from water: The case of the emerging pollutant Furosemide. J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2020, 56, 145–156. [Google Scholar] [CrossRef]
- Wang, N.; Xiao, W.; Niu, B.; Duan, W.; Zhou, L.; Zheng, Y. Highly efficient adsorption of fluoroquinolone antibiotics using chitosan derived granular hydrogel with 3D structure. J. Mol. Liq. 2019, 281, 307–314. [Google Scholar] [CrossRef]
- Allahbakhshi, M.; Mahmoodi, N.M.; Mosaferi, M.; Kazemian, H.; Aslani, H. Synthesis of functionalized metal-organic framework metal-organic framework (MIL-53)/Chitosan for removing dye and pharmaceuticals. Surf. Interfaces 2022, 35, 102471. [Google Scholar] [CrossRef]
- Asgari, E.; Sheikhmohammadi, A.; Yeganeh, J. Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. Int. J. Biol. Macromol. 2020, 164, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, S.; Derakhshan, Z.; Hashemi, M.; Feilizadeh, M.; Heidari Kochaki, S.; Hashemi, H.; Salehi, M.; Zare, A.; Shourabi, N.S.; Moradalizadeh, S. Metronidazole adsorption by bio-synthesized silver-zinc ferrite nanoadsorbent in presence of chitosan from aqueous media: Response surface methodology. Appl. Water Sci. 2024, 14, 92. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Phuong, V.N.; Van, T.N.; Thi, P.N.; Dinh Thi Lan, P.; Pham, H.T.; Cao, H.T. Low-cost hydrogel derived from agro-waste for veterinary antibiotic removal: Optimization, kinetics, and toxicity evaluation. Environ. Technol. Innov. 2020, 20, 101098. [Google Scholar] [CrossRef]
- Danalıoğlu, S.T.; Bayazit, Ş.S.; Kerkez Kuyumcu, Ö.; Salam, M.A. Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq. 2017, 240, 589–596. [Google Scholar] [CrossRef]
- Kovtun, A.; Campodoni, E.; Favaretto, L.; Zambianchi, M.; Salatino, A.; Amalfitano, S.; Navacchia, M.L.; Casentini, B.; Palermo, V.; Sandri, M.; et al. Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water. Chemosphere 2020, 259, 127501. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Li, M.; Yu, F.; He, C. Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohydr. Polym. 2019, 220, 141–148. [Google Scholar] [CrossRef]
- Ciğeroğlu, Z.; Küçükyıldız, G.; Erim, B.; Alp, E. Easy preparation of magnetic nanoparticles-rGO-chitosan composite beads: Optimization study on cefixime removal based on RSM and ANN by using Genetic Algorithm Approach. J. Mol. Struct. 2021, 1224, 129182. [Google Scholar] [CrossRef]
- Alakayleh, Z. From inactive biomass in removing amoxicillin to new active chitosan-biomass composite adsorbents. Results Eng. 2025, 25, 103709. [Google Scholar] [CrossRef]
- Miao, P.; Gao, J.; Han, X.; Zhao, Y.; Chen, T. Adsorption of Levofloxacin onto Graphene Oxide/Chitosan Composite Aerogel Microspheres. Gels 2024, 10, 81. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zou, S.; Lu, C.; Bai, H.; Mu, H.; Duan, J. Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film. Chem. Eng. J. 2020, 382, 123008. [Google Scholar] [CrossRef]
- Daikh, S.; Ouis, D.; Benyoucef, A.; Mouffok, B. Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capacity of a new potential hybrid adsorbent based on polyaniline and chitosan for Acetaminophen. Chem. Phys. Lett. 2022, 798, 139565. [Google Scholar] [CrossRef]
- Alamir, H.T.A.; Alalaq, I.S.; Naser, S.T.; Abdulamer, R.S.; Abid, M.M.; Dawood, I.I.; Idan, A.H. Fabrication of Polymeric Chitosan-g-P (ITA-co-AM) Nanocomposite Using Copolymerization and Application to Removal Metformin Drug from Aqueous Solution. Asian J. Green Chem. 2024, 8, 610–622. [Google Scholar] [CrossRef]
- Ma, J.; Lei, Y.; Khan, M.A.; Wang, F.; Chu, Y.; Lei, W.; Xia, M.; Zhu, S. Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int. J. Biol. Macromol. 2019, 124, 557–567. [Google Scholar] [CrossRef]
- Sousa, J.F.M.; Murtinho, D.; Valente, A.J.M.; Marques, J.M.C. On the Mechanism of Interactions Between Tetracycline and New Chitosan-Based Materials: Experimental Development Guided by Computational Methods. J. Polym. Sci. 2025, 63, 3137–3150. [Google Scholar] [CrossRef]
- Khierallah, A.H.I.; Bates, I.I.C.; Chabot, B.; Lajeunesse, A. Adsorption of Pharmaceutical Contaminants from Aqueous Solutions Using N,O-Carboxymethyl Chitosan/Polyethylene Oxide (PEO) Electrospun Nanofibers. J. Mater. Sci. Chem. Eng. 2021, 09, 15–38. [Google Scholar] [CrossRef]
- Khierallah, A.H.I.; Bouazza, A.H.; Montplaisir, D. Nanofibrous material of n-succinyl chitosan/polyethylene oxide in the removal of emerging pharmaceuticals from aqueous solution by adsorption/desorption method. BioResources 2023, 18, 1971–1998. [Google Scholar] [CrossRef]
- Privar, Y.; Shashura, D.; Pestov, A.; Modin, E.; Baklykov, A.; Marinin, D.; Bratskaya, S. Metal-chelate sorbents based on carboxyalkylchitosans: Ciprofloxacin uptake by Cu(II) and Al(III)-chelated cryogels of N-(2-carboxyethyl)chitosan. Int. J. Biol. Macromol. 2019, 131, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, T.; Naushad, M.; Al-Shahrani, T.; Al-hokbany, N.; Alshehri, S.M. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int. J. Biol. Macromol. 2020, 147, 258–267. [Google Scholar] [CrossRef] [PubMed]
- da Silva Bruckmann, F.; Schnorr, C.E.; da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Bohn Rhoden, C.R. Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers 2022, 14, 4854. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Rajabi, S.; Amiri, A.; Fattahizade, M.; Hasani, O.; Lalehzari, A.; Hashemi, M. Adsorption of tetracycline using CuCoFe2O4@Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study. Arab. J. Chem. 2022, 15, 104014. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, B.; Zhang, H.; Ma, J.; Mu, B.; Zhang, W. A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution. Bioresour. Technol. 2019, 294, 122152. [Google Scholar] [CrossRef]
- Afzal, M.Z.; Sun, X.F.; Liu, J.; Song, C.; Wang, S.G.; Javed, A. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci. Total Environ. 2018, 639, 560–569. [Google Scholar] [CrossRef]
- Wang, F.; Yang, B.; Wang, H.; Song, Q.; Tan, F.; Cao, Y. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 2016, 222, 188–194. [Google Scholar] [CrossRef]
- González, J.A.; Bafico, J.G.; Villanueva, M.E.; Giorgieri, S.A.; Copello, G.J. Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material. Carbohydr. Polym. 2018, 188, 213–220. [Google Scholar] [CrossRef]
- Machado, T.S.; Crestani, L.; Marchezi, G.; Melara, F.; de Mello, J.R.; Dotto, G.L.; Piccin, J.S. Synthesis of glutaraldehyde-modified silica/chitosan composites for the removal of water-soluble diclofenac sodium. Carbohydr. Polym. 2022, 277, 118868. [Google Scholar] [CrossRef] [PubMed]
- Gencer Balkis, B.; Aksu, A.; Ersoy Korkmaz, N.; Taskin, O.S.; Celen, C.; Caglar Balkis, N. Synthesis of silica-chitosan nanocomposite for the removal of pharmaceuticals from the aqueous solution. Int. J. Environ. Sci. Technol. 2024, 22, 153–168. [Google Scholar] [CrossRef]
- Lai, L.W.; Teh, L.P.; Timmiati, S.N.; Kamarudin, N.H.N.; Setiabudi, H.D. A sustainable solution for diclofenac adsorption: Chitosan-modified fibrous silica KCC-1 adsorbent. J. Environ. Chem. Eng. 2023, 11, 111295. [Google Scholar] [CrossRef]
- Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 2018, 20, 132–142. [Google Scholar] [CrossRef]
- Rao, R.S.; Kumar, C.G.; Prakasham, R.S.; Hobbs, P.J. The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnol. J. 2008, 3, 510–523. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr. Polym. 2020, 247, 116690. [Google Scholar] [CrossRef] [PubMed]
- Delhiraja, K.; Vellingiri, K.; Boukhvalov, D.W.; Philip, L. Development of Highly Water Stable Graphene Oxide-Based Composites for the Removal of Pharmaceuticals and Personal Care Products. Ind. Eng. Chem. Res. 2019, 58, 2899–2913. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, P.; Yu, F. Enhanced adsorption of sulfonamides by a novel carboxymethyl cellulose and chitosan-based composite with sulfonated graphene oxide. Bioresour. Technol. 2021, 320, 124373. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Yu, B.; Hu, Y.; Liu, Z.; Zhao, K.; Li, C.; Li, M.; Lyu, C.; Lu, H.; Zhong, S.; et al. Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China. Toxics 2023, 11, 835. [Google Scholar] [CrossRef]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Bernardes, A.; Figueiredo, B.; Silva, R.; et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Crit. Rev. Solid State Mater. Sci. 2022, 47, 309–355. [Google Scholar] [CrossRef]
- Qi, X.; Tong, X.; Pan, W.; Zeng, Q.; You, S.; Shen, J. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J. Clean. Prod. 2021, 315, 128221. [Google Scholar] [CrossRef]
- dos Santos, J.M.N.; Lima, É.; Dotto, G.L. Basic fundamentals of adsorption modeling for removal of pesticides from water and wastewater. In Pesticides Remediation Technologies from Water and Wastewater; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–188. [Google Scholar] [CrossRef]
- Teixeira, C.C.; Pereira, A.K.d.S.; Cavallini, G.S.; Pereira, D.H. Triclosan Adsorption on Chitosan: Computational Study of Molecular Interactions and Potential for Environmental Remediation. Polymers 2025, 17, 487. [Google Scholar] [CrossRef] [PubMed]
- Elwakeel, K.Z.; Mohammad, R.M.; Alghamdi, H.M.; Elgarahy, A.M. Hybrid adsorbents for pollutants removal: A comprehensive review of chitosan, glycidyl methacrylate and their composites. J. Mol. Liq. 2025, 426, 127262. [Google Scholar] [CrossRef]
Water Types | Country, Location | Source | Sulfamethoxazole | Ibuprofen | Carbamazepine |
---|---|---|---|---|---|
Concentration, ng/L | |||||
Wastewater Sources | USA (Skaneateles Lake, New York) | Septic effluent | 0–37.700 | 0–10.600 | 0–2.04 |
Portugal (Coimbra) | WWTP influents | 529–1662 | 0–4926 | 437–673 | |
China (Shanghai) | Wastewater influents | - | - | 45.2 | |
Surface Water Sources | USA (Skaneateles Lake, New York) | Lake water | 0–3.21 | 0–4.98 | 0–0.17 |
Portugal (Lis river) | River | 43 | 1317 | - | |
China (Chongqing) | River | 0.44–115.3 | 0.86–115.8 | 0.41–10.3 | |
Treated Waters | USA (Skaneateles Lake, New York) | Tap water | ND–0.39 | ND−1.16 | 1.05 |
Portugal | - | - | - | - | |
China (Beijing) | Tap water | <LOD *–1.81 | <LOD–17.17 ** | 0.51–38.24 |
Adsorbents | Antibiotic | Adsorption Capacity, mg/g | Reference |
---|---|---|---|
Chitosan, particles | Rifampicin | 66.91 | [56] |
Streptomycin | 11.0 | ||
Chitosan/PAA | Enrofloxacin | 387.7 | [58] |
Metal–organic framework (MIL-53)/Chitosan | Doxycycline | 264.0 | [59] |
Chitosan/magnetic Fe3O4 nanoparticles | Metronidazole | 97.0 | [60] |
AgZnFe2O4/chitosan | Metronidazole | 7.28 | [61] |
Chitosan/biochar, particles | Enrofloxacin | 100.43 | [62] |
Magnetic activated charcoal/chitosan | Amoxycycline | 526.31 | [63] |
Gelatin/chitosan/graphene oxide | Ofloxacin | 8.3 | [64] |
Carboxymethylcellulose/carboxyalkylchitosan cross-linked with genipin/sulphated graphene oxide | Sulfapyridine | 161.89 | [65] |
Sulfamethoxazole | 312.28 | ||
Chitosan/Fe3O4/reduced graphene oxide | Cefixime | 29.99 | [66] |
Chitosan-olive leaf biomass composites | Amoxicillin | 0.04 | [67] |
Graphene oxide/chitosan | Levofloxacin | 51.5 | [68] |
NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film | Cefotaxime | 309.26 | [69] |
Adsorbents | Adsorption Capacity, mg/g | Reference | |
---|---|---|---|
TC | CIP | ||
CTS-PAA, chitosan, polyacrylic acid | - | 267.7 | [58] |
SFMOF/BM, chitosan, organometallic framework, 3-aminopropyltrimethoxysilane | 388 | - | [59] |
Cu(II)-chelated cryogel of N-(2-carboxyethyl) chitosan | - | 280 | [76] |
CTM/Fe3O4, chitosan, thiobarbituric acid, malonic dialdehyde, Fe3O4 nanoparticles | 215.31 | - | [77] |
CS/Fe3O4 (M), chitosan, iron oxide | 211.21 | - | [78] |
CuCoFe2O4/Ch, chitosan, copper, cobalt, iron 3+ chlorides | 11.63 | - | [79] |
NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film | 388.52 | - | [69] |
Chitosan/BC (M), chitosan/biochar | 183.01 | - | [80] |
Chitosan/BC, chitosan/biochar | - | >76 | [81] |
Chitosan/BC, chitosan/biochar | - | 106.038 | [62] |
Chitosan/AC, (M *) chitosan/activated charcoal | - | 90.10 | [63] |
Chitosan/GO (M), chitosan/graphene oxide | 495.64 | [65] | |
Chitosan/GO (M), chitosan/graphene oxide | - | 282.9 | [82] |
Chitin/GO, chitin/graphene oxide | - | 73.0 | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shagdarova, B.; Zhuikova, Y.; Il’ina, A. Adsorbent Materials Based on Modified Chitosan for Purification of Aqueous Media from Pharmaceutical Residues, Primarily Antibiotics. Polymers 2025, 17, 2601. https://doi.org/10.3390/polym17192601
Shagdarova B, Zhuikova Y, Il’ina A. Adsorbent Materials Based on Modified Chitosan for Purification of Aqueous Media from Pharmaceutical Residues, Primarily Antibiotics. Polymers. 2025; 17(19):2601. https://doi.org/10.3390/polym17192601
Chicago/Turabian StyleShagdarova, Balzhima, Yulia Zhuikova, and Alla Il’ina. 2025. "Adsorbent Materials Based on Modified Chitosan for Purification of Aqueous Media from Pharmaceutical Residues, Primarily Antibiotics" Polymers 17, no. 19: 2601. https://doi.org/10.3390/polym17192601
APA StyleShagdarova, B., Zhuikova, Y., & Il’ina, A. (2025). Adsorbent Materials Based on Modified Chitosan for Purification of Aqueous Media from Pharmaceutical Residues, Primarily Antibiotics. Polymers, 17(19), 2601. https://doi.org/10.3390/polym17192601