Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Epoxy Monomers LCE-DP and TME4
2.2.1. LCE-DP
2.2.2. TME4
- Synthesis of 4,4′-(1,4-Butanbis(oxy))bisphenol (BDDH)
- Synthesis of p-Allyloxybenzoic Acid
- Synthesis of TME4A
- Synthesis of TME4
2.3. Curing of the Epoxy Formulations
2.3.1. DGEBA and TMBP Cured with BDO, DDO and DDS
2.3.2. TMBP + Benzidine/o-Dianisidine
2.3.3. LCE-DP + BDO
2.3.4. LCE-DP + DDO
2.3.5. LCE-DP + DDS
2.3.6. TME4 + DDS for Modified Transient Plane Source (MTPS)
2.3.7. TME4 + DDS for LFA, TDTR and D-TOPS
2.4. Thermal Conductivity Measurement Methods
2.4.1. Modified Transient Plane Source (MTPS)
2.4.2. Laser Flash Analysis
2.4.3. Time-Domain Thermoreflectance (TDTR)
2.4.4. Displacement Thermo-Optic Phase Spectroscopy (D-TOPS)
2.4.5. Heat Capacity
2.4.6. Density
2.5. SAXS/WAXS Measurements
3. Results
3.1. Overview of the Results
3.2. Investigated Resins and Curing Agents
3.3. Comparison of the Measurement Methods
- -
- Laser flash analysis (LFA)
- -
- Modified transient plane source (MTPS)
- -
- Time-domain thermoreflectance (TDTR)
- -
- Displacement thermo-optic phase spectroscopy (D-TOPS)
3.4. Comparison of the Heat Capacities
- (1)
- The LFA reference comparison;
- (2)
- DSC;
- (3)
- Dividing the thermal effusivity of TDTR by the square root of the thermal diffusivity measured by D-TOPS.
3.5. Thermal Conductivity in TME4/DDS
- Purity of the TME4 monomer was checked via 1H NMR and compared to earlier batches from the previous study [78]. No additional peaks or changes in peak integrals larger than experimental noise were observed.
- Recrystallization solvents for TME4 (e.g., toluene, dimethylacetamide) were varied, with no significant impact on the final measured thermal conductivity.
- Purity of DDS: Verified by melting point analysis in DSC and by NMR; no deviations from standard reference data.
- Curing protocol variations:
- ∘
- Hot press vs. oven curing.
- ∘
- Monomers melted individually before mixing vs. mixing powders directly at room temperature.
- ∘
- Curing temperature (e.g., 160–200 °C) and curing time (e.g., 2–20 h) varied.
- However, in DSC measurements, the melting endotherm overlaps the curing exotherm across the tested curing-temperature range, limiting independent adjustment of the curing temperature.
3.6. Structural Analysis via SAXS/WAXS
4. Discussion
4.1. Overview
- Measurement discrepancies: Our own results along with previous studies [39,110,111,112] indicate that the use of different thermal conductivity measurement methods can lead to substantial variability in reported TC values for the same substance. This variability can potentially obscure modest structural enhancements in crosslinked epoxies. It is assumed that this variability reflects measurement-specific limitations that are not yet fully understood, possibly due to unknown systematic errors.
4.2. Interpretation of Key Findings
4.2.1. No Evidence of Partial Crystallinity or Thermal Conductivities Around 1 W/(m·K)
4.2.2. Method-Dependent Variations Overshadow Subtle Trends
4.2.3. Rigid vs. Flexible Structures
4.3. Implications and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, C.; Guo, Y.; Song, L.; Kan, Y.; Qian, X.; Hu, Y. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J. Mater. Chem. 2011, 21, 13290. [Google Scholar] [CrossRef]
- Hou, M.; Liu, W.; Su, Q.; Liu, Y. Studies on the Thermal Properties and Flame Retardancy of Epoxy Resins Modified with Polysiloxane Containing Organophosphorus and Epoxide Groups. Polym. J. 2007, 39, 696–702. [Google Scholar] [CrossRef]
- Huo, S.; Ma, H.; Liu, G.; Jin, C.; Chen, J.; Wu, G.; Kong, Z. Synthesis and Properties of Organosilicon-Grafted Cardanol Novolac Epoxy Resin as a Novel Biobased Reactive Diluent and Toughening Agent. ACS Omega 2018, 3, 16403–16408. [Google Scholar] [CrossRef]
- Krenn, P.; Zimmermann, P.; Fischlschweiger, M.; Zeiner, T. SAFT-Based Maxwell–Stefan Approach to Model the Diffusion through Epoxy Resins. J. Chem. Eng. Data 2020, 65, 5677–5687. [Google Scholar] [CrossRef]
- Li, S.; Wu, Q.; Zhu, H.; Lin, Q.; Wang, C. Impact Resistance Enhancement by Adding Core-Shell Particle to Epoxy Resin Modified with Hyperbranched Polymer. Polymers 2017, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Liu, Y.; Du, X.; Zhang, S.; Chen, G.; Zhang, Q.; Yao, S.; Liang, L.; Lu, M. Cure Kinetics and Properties of High Performance Cycloaliphatic Epoxy Resins Cured with Anhydride. Ind. Eng. Chem. Res. 2019, 58, 6907–6918. [Google Scholar] [CrossRef]
- Ma, H.; Hu, N.; Wu, C.; Zhu, Y.; Cao, Y.; Chen, Q.Q. Synthesis and research of epoxy resin toughening agent. Springerplus 2016, 5, 806. [Google Scholar] [CrossRef]
- Kumari, M.V.L.; Kaviarasi, A.; Anandhavadivel, A.; Prabakaran, A.R. Characteristic Studies on Thin Films of Epoxy resin in Organic Solvent. Int. J. Chem. Sci. 2018, 16, 297. [Google Scholar] [CrossRef]
- Qiao, H.; Liang, Y.; Xu, G.; Zhang, Y.; Wang, Y.; Hu, J. Preparation of a Novel Phosphorus-Nitrogen Containing Novolac Curing Agent for Epoxy Resin and flame-retardancy of its cured epoxy resin. Des. Monomers Polym. 2019, 22, 171–179. [Google Scholar] [CrossRef]
- Shundo, A.; Yamamoto, S.; Tanaka, K. Network Formation and Physical Properties of Epoxy Resins for Future Practical Applications. JACS Au 2022, 2, 1522–1542. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhuo, Q.; Chen, Y.; Wu, Z. Synthesis of boehmite and its effect on flame retardancy of epoxy resin. High Perform. Polym. 2015, 27, 100–104. [Google Scholar] [CrossRef]
- Martin-Gallego, M.; Verdejo, R.; Khayet, M.; de Zarate, J.M.O.; Essalhi, M.; Lopez-Manchado, M.A. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Res. Lett. 2011, 6, 610. [Google Scholar] [CrossRef]
- Farcas, C.; Galao, O.; Vertuccio, L.; Guadagno, L.; Romero-Sánchez, M.D.; Rodríguez-Pastor, I.; Garcés, P. Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. Nanomaterials 2021, 11, 2427. [Google Scholar] [CrossRef]
- Gaska, K.; Rybak, A.; Kapusta, C.; Sekula, R.; Siwek, A. Enhanced thermal conductivity of epoxy–matrix composites with hybrid fillers. Polym. Adv. Technol. 2015, 26, 26–31. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Y.; Hou, T.; Liao, C.; Li, D. Implementation of Epoxy Resin Composites Filled with Copper Nanowire-Modified Boron Nitride Nanosheets for Electronic Device Packaging. ACS Appl. Nano Mater. 2023, 6, 16768–16777. [Google Scholar] [CrossRef]
- Tanaka, K.; Ogata, S.; Kobayashi, R.; Tamura, T.; Kouno, T. A molecular dynamics study on thermal conductivity of thin epoxy polymer sandwiched between alumina fillers in heat-dissipation composite material. Int. J. Heat Mass Transf. 2015, 89, 714–723. [Google Scholar] [CrossRef]
- Yu, A.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet—Carbon Nanotube Filler for Epoxy Composites. Adv. Mater. 2008, 20, 4740–4744. [Google Scholar] [CrossRef]
- Zhao, Z.; Zou, X.; Wang, J.; Yu, X.; Yang, F.; Yu, Z.; Zhang, H.; Zhao, Y.; Zhang, Y. Mechanical and dielectric properties at liquid nitrogen temperature of epoxy/AlN composites modified with different contents of flexible amine. SN Appl. Sci. 2020, 2, 974. [Google Scholar] [CrossRef]
- Gao, C.; Shen, Y.; Wang, T. Enhanced thermal conductivity for traditional epoxy packaging composites by constructing hybrid conductive network. Mater. Res. Express 2020, 7, 65308. [Google Scholar] [CrossRef]
- Hutchinson, J.M.; Moradi, S. Thermal Conductivity and Cure Kinetics of Epoxy-Boron Nitride Composites-A Review. Materials 2020, 13, 3634. [Google Scholar] [CrossRef]
- Jeong, U.S.; Lee, Y.J.; Shin, D.G.; Lim, H.M.; Mun, S.Y.; Kwon, W.T.; Kim, S.R.; Kim, Y.H.; Shim, K.B. Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging. Trans. Electr. Electron. Mater. 2015, 16, 351–354. [Google Scholar] [CrossRef]
- Lee, E.-S.; Lee, S.-M.; Shanefield, D.J.; Cannon, W.R. Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin. J. Am. Ceram. Soc. 2008, 91, 1169–1174. [Google Scholar] [CrossRef]
- Ma, J.W.; Gao, N.K.; Ren, T.Y.; Pan, Z.H.; Jin, H.Y. Influence of the Morphology of Alumina Filler on Electrical and Thermal Properties of Epoxy Resin Composites. Mater. Sci. Forum 2018, 922, 163–168. [Google Scholar] [CrossRef]
- Ochi, M.; Matsumura, T. Thermomechanical properties and phase structure of epoxy/silica nano-hybrid materials constructed from a linear silicone oligomer. J. Polym. Sci. B Polym. Phys. 2005, 43, 1631–1639. [Google Scholar] [CrossRef]
- Wu, L.-C.; Huang, Y.-W.; Yeh, Y.-M.; Lin, C.-H. Characteristic and Synthesis of High-Temperature Resistant Liquid Crystal Epoxy Resin Containing Boron Nitride Composite. Polymers 2022, 14, 1252. [Google Scholar] [CrossRef]
- Zeng, X.; Yao, Y.; Gong, Z.; Wang, F.; Sun, R.; Xu, J.; Wong, C.-P. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement. Small 2015, 11, 6205–6213. [Google Scholar] [CrossRef]
- Yu, H.; Li, L.; Qi, L. Viscosity and thermal conductivity of alumina microball epoxy composites. In Proceedings of the 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, Shanghai, China, 8–11 August 2011. [Google Scholar]
- Do, N.B.D.; Imenes, K.; Aasmundtveit, K.E.; Nguyen, H.-V.; Andreassen, E. Thermal Conductivity and Mechanical Properties of Polymer Composites with Hexagonal Boron Nitride-A Comparison of Three Processing Methods: Injection Moulding, Powder Bed Fusion and Casting. Polymers 2023, 15, 1552. [Google Scholar] [CrossRef]
- Giang, T.; Kim, J. Thermal Conductivity of Diglycidylester-Terminated Liquid Crystalline Epoxy/Alumina Composite. Mol. Cryst. Liq. Cryst. 2016, 629, 12–26. [Google Scholar] [CrossRef]
- Giang, T.; Kim, J. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy–Alumina Composites. J. Electron. Mater. 2017, 46, 627–636. [Google Scholar] [CrossRef]
- Li, H.; Zheng, W. Enhanced thermal conductivity of epoxy/alumina composite through multiscale-disperse packing. J. Compos. Mater. 2021, 55, 17–25. [Google Scholar] [CrossRef]
- Mai, V.-D.; Lee, D.-I.; Park, J.-H.; Lee, D.-S. Rheological Properties and Thermal Conductivity of Epoxy Resins Filled with a Mixture of Alumina and Boron Nitride. Polymers 2019, 11, 597. [Google Scholar] [CrossRef]
- Yung, K.C.; Liem, H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J. Appl. Polym. Sci. 2007, 106, 3587–3591. [Google Scholar] [CrossRef]
- Tang, D.; Su, J.; Kong, M.; Zhao, Z.; Yang, Q.; Huang, Y.; Liao, X.; Niu, Y. Preparation and properties of epoxy/BN highly thermal conductive composites reinforced with SiC whisker. Polym. Compos. 2016, 37, 2611–2621. [Google Scholar] [CrossRef]
- Chen, C.; Xue, Y.; Li, X.; Wen, Y.; Liu, J.; Xue, Z.; Shi, D.; Zhou, X.; Xie, X.; Mai, Y.-W. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Compos. Part A Appl. Sci. Manuf. 2019, 118, 67–74. [Google Scholar] [CrossRef]
- Marx, P.; Wanner, A.J.; Zhang, Z.; Jin, H.; Tsekmes, I.-A.; Smit, J.J.; Kern, W.; Wiesbrock, F. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites. Polymers 2017, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Rothon, R. Fillers for Polymer Applications; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Gu, J.; Ruan, K. Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics. Nano-Micro Lett. 2021, 13, 110. [Google Scholar] [CrossRef]
- Yang, X.; Liang, C.; Ma, T.; Guo, Y.; Kong, J.; Gu, J.; Chen, M.; Zhu, J. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid Mater. 2018, 1, 207–230. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Weng, L.; Ge, S.; Jiang, D.; Huang, M.; Mulvihill, D.M.; Chen, Q.; Guo, Z.; Jazzar, A.; et al. A Roadmap Review of Thermally Conductive Polymer Composites: Critical Factors, Progress, and Prospects. Adv. Funct. Mater. 2023, 33, 2301549. [Google Scholar] [CrossRef]
- Bader, M.; Maenz, T.; Schmiederer, D.; Kuehnert, I.; Leuteritz, A.; Heinrich, G. Correlation between morphological properties and thermal conductivity of injection-molded polyamide 46. Polym. Eng. Sci. 2015, 55, 2231–2236. [Google Scholar] [CrossRef]
- Eiermann, K. Bestimmung der Wärmeleitfähigkeit des amorphen und des kristallinen Anteils von Polyäthylen. Kolloid-Z. Und Z. Für Polym. 1962, 1962, 163–164. [Google Scholar] [CrossRef]
- Jeong, I.; Kim, C.B.; Kang, D.-G.; Jeong, K.-U.; Jang, S.G.; You, N.-H.; Ahn, S.; Lee, D.-S.; Goh, M. Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 708–715. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, T.; Wang, Y.; Sun, Y.; Cao, S.; Gui, X.; Li, Y.; Yu, W.; Lin, D.; Xie, H.; et al. Excellent thermal conductive epoxy composites via adding UHMWPE fiber obtained by hot drawing method. Polym. Compos. 2024, 45, 12325–12337. [Google Scholar] [CrossRef]
- Wang, X.; Ho, V.; Segalman, R.A.; Cahill, D.G. Thermal Conductivity of High-Modulus Polymer Fibers. Macromolecules 2013, 46, 4937–4943. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, J.; Wang, T.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring. ACS Omega 2017, 2, 3931–3944. [Google Scholar] [CrossRef]
- Li, Z.; An, L.; Khuje, S.; Tan, J.; Hu, Y.; Huang, Y.; Petit, D.; Faghihi, D.; Yu, J.; Ren, S. Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Sci. Adv. 2021, 7, eabi7410. [Google Scholar] [CrossRef]
- Ronca, S.; Igarashi, T.; Forte, G.; Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed Ultra High Molecular Weight Polyethylene tapes and films. Polymer 2017, 123, 203–210. [Google Scholar] [CrossRef]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 2010, 5, 251–255. [Google Scholar] [CrossRef]
- Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef]
- Maeda, H.; Wu, S.; Marui, R.; Yoshida, E.; Hatakeyama-Sato, K.; Nabae, Y.; Nakagawa, S.; Ryu, M.; Ishige, R.; Noguchi, Y.; et al. Discovery of liquid crystalline polymers with high thermal conductivity using machine learning. npj Comput. Mater. 2025, 11, 205. [Google Scholar] [CrossRef]
- Candadai, A.A.; Weibel, J.A.; Marconnet, A.M. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene: From Fibers to Fabrics. ACS Appl. Polym. Mater. 2020, 2, 437–447. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- D Mergenthaler, B.; Pietralla, M.; Roy, S.; Kilian, H.G. Thermal conductivity in ultraoriented polyethylene. Macromolecules 1992, 25, 3500–3502. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Luo, T.; Wei, X.; Wang, Z.; Tian, Z. Thermal Transport in Polymers: A Review. ASME J. Heat Mass Transf. 2021, 2021, 72–101. [Google Scholar]
- Mark, J.E. Physical Properties of Polymers Handbook, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Briskman, B. Radiation effects in thermal properties of polymers. An analytical review. I. Polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 2001, 116–122. [Google Scholar] [CrossRef]
- Knappe, W.; Yamamoto, O. Effects of crosslinking and chain degradation on the thermal conductivity of polymers. Kolloid-Z. Z. Polym. 1970, 1970, 775–783. [Google Scholar] [CrossRef]
- Tomlinson, J.N.; Kline, D.E.; Sauer, J.A. Effect of nuclear radiation on the thermal conductivity of polyethylene. Polym. Eng. Sci. 1965, 5, 44–48. [Google Scholar] [CrossRef]
- Yamamoto, O.; Kambe, H. Thermal Conductivity of Cross-linked Polymers. A Comparison between Measured and Calculated Thermal Conductivities. Polym. J. 1971, 1971, 623–628. [Google Scholar] [CrossRef]
- Yu, S.; Park, C.; Hong, S.M.; Koo, C.M. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim. Acta 2014, 583, 67–71. [Google Scholar] [CrossRef]
- Khonakdar, H.A.; Jafari, S.H.; Taheri, M.; Wagenknecht, U.; Jehnichen, D.; Häussler, L. Thermal and wide angle X-ray analysis of chemically and radiation-crosslinked low and high density polyethylenes. J. Appl. Polym. Sci. 2006, 100, 3264–3271. [Google Scholar] [CrossRef]
- An, J.-G.; Hinaand, S.; Yang, Y.; Xue, M.; Liu, Y. Characterization of liquid crystals: A literature review. Rev. Adv. Mater. Sci. 2016, 2016, 398–406. [Google Scholar]
- Tian, F.; Cao, J.; Ma, W. Enhanced thermal conductivity and rheological performance of epoxy and liquid crystal epoxy composites with filled Al2O3 compound. Polym. Test. 2023, 120, 107940. [Google Scholar] [CrossRef]
- Di-wu, J.; Zhou, W.; Wang, Y.; Li, Y.; Lv, Y.; Zhang, Y.; Zhang, N.; Chen, Q. Synergetic improvements of intrinsic thermal conductivity and breakdown strength in liquid crystal epoxy resin for high voltage applications. J. Polym. Res. 2024, 31, 72. [Google Scholar] [CrossRef]
- Di-wu, J.; Zhou, W.; Wang, Y.; Li, Y.; Liang, Y.; Zhang, R.; Meng, X.; Song, C.; Wang, Y.; Chen, Q. Modulating cross-linked network structure of epoxy resin blends towards concurrently high intrinsic thermal conductivity and dielectric properties. J. Polym. Res. 2024, 31, 186. [Google Scholar] [CrossRef]
- Guo, H.; Zheng, J.; Gan, J.; Liang, L.; Wu, K.; Lu, M. High thermal conductivity epoxies containing substituted biphenyl mesogenic. J. Mater. Sci. Mater. Electron. 2016, 27, 2754–2759. [Google Scholar] [CrossRef]
- Lv, G.; Jensen, E.; Evans, C.M.; Cahill, D.G. High Thermal Conductivity Semicrystalline Epoxy Resins with Anthraquinone-Based Hardeners. ACS Appl. Polym. Mater. 2021, 3, 4430–4435. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Z.; Wang, S.; Gu, J. Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures. SusMat 2023, 3, 877–893. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, J.; Li, M.; Dang, L.; Gu, J. Enhancing intrinsic thermal conductivities of epoxy resins by introducing biphenyl mesogen-containing liquid crystalline co-curing agents. Polym. Chem. 2022, 13, 6046–6053. [Google Scholar] [CrossRef]
- Kim, Y.; Yeo, H.; You, N.-H.; Jang, S.G.; Ahn, S.; Jeong, K.-U.; Lee, S.H.; Goh, M. Highly thermal conductive resins formed from wide-temperature-range eutectic mixtures of liquid crystalline epoxies bearing diglycidyl moieties at the side positions. Polym. Chem. 2017, 8, 2806–2814. [Google Scholar] [CrossRef]
- Wang, F.; Han, L.; Wang, H.; Ma, C.; Liu, L.; Wang, J.; Li, J.; Huang, Z. Study on Preparation and Thermal Conductivity of Liquid Crystal Epoxy Resin filled with Nanocellulose/BNNSs. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 321–324. [Google Scholar]
- Giang, T.; Park, J.; Cho, I.; Ko, Y.; Kim, J. Effect of backbone moiety in epoxies on thermal conductivity of epoxy/alumina composite. Polym. Compos. 2013, 34, 468–476. [Google Scholar] [CrossRef]
- Giang, T.; Kim, J. Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite. J. Ind. Eng. Chem. 2015, 30, 77–84. [Google Scholar] [CrossRef]
- Yeo, H.; Islam, A.M.; You, N.-H.; Ahn, S.; Goh, M.; Hahn, J.R.; Jang, S.G. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol. 2017, 141, 99–105. [Google Scholar] [CrossRef]
- Akatsuka, M.; Takezawa, Y. Study of high thermal conductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 2003, 89, 2464–2467. [Google Scholar] [CrossRef]
- Lv, G.; Shen, C.; Shan, N.; Jensen, E.; Li, X.; Evans, C.M.; Cahill, D.G. Odd-even effect on the thermal conductivity of liquid crystalline epoxy resins. Proc. Natl. Acad. Sci. USA 2022, 119, e2211151119. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Takahashi, H.; Takezawa, Y.; Hattori, M.; Itoh, M.; Yonekura, M. High thermal conductive epoxy resins with controlled high-order structure. In Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004, Boulder, CO, USA, 20 October 2004; pp. 340–343. [Google Scholar] [CrossRef]
- Fukushima, K.; Takahashi, H.; Takezawa, Y.; Hattori, M.; Itoh, M.; Yonekura, M. High thermal conductive epoxy resins with controlled high order structure. SAE Tech. Pap. Ser. 2005, 2005, 1673. [Google Scholar]
- Koda, T.; Toyoshima, T.; Komatsu, T.; Takezawa, Y.; Nishioka, A.; Miyata, K. Ordering simulation of high thermal conductivity epoxy resins. Polym. J. 2013, 45, 444–448. [Google Scholar] [CrossRef][Green Version]
- Ohki, Y. Development of epoxy resin composites with high thermal conductivity. IEEE Electr. Insul. Mag. 2010, 26, 48–49. [Google Scholar] [CrossRef]
- Takezawa, Y.; Aatsuka, M.; Farren, C. High thermal conductive epoxy resins with controlled high order structure. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), Nagoya, Japan, 1–5 June 2003; pp. 1146–1149. [Google Scholar] [CrossRef]
- Masaki, A.; Yoshitaka, T.; Katsuo, S. Thermosetting Resin Compounds. Patent US20060276568A1, 7 December 2006. [Google Scholar]
- Burger, N.; Laachachi, A.; Mortazavi, B.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int. J. Heat Mass Transf. 2015, 89, 505–513. [Google Scholar] [CrossRef]
- Chung, M.-H.; Chen, L.-M.; Wang, W.-H.; Lai, Y.; Yang, P.-F.; Lin, H.-P. Effects of mesoporous silica coated multi-wall carbon nanotubes on the mechanical and thermal properties of epoxy nanocomposites. J. Taiwan Inst. Chem. Eng. 2014, 45, 2813–2819. [Google Scholar] [CrossRef]
- Depaifve, S.; Federico, C.E.; Ruch, D.; Hermans, S.; Laachachi, A. Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites. Carbon 2020, 167, 646–657. [Google Scholar] [CrossRef]
- Depaifve, S.; Hermans, S.; Ruch, D.; Laachachi, A. Combination of micro-computed X-ray tomography and electronic microscopy to understand the influence of graphene nanoplatelets on the thermal conductivity of epoxy composites. Thermochim. Acta 2020, 691, 178712. [Google Scholar] [CrossRef]
- Eed, H.; Ramadin, Y.; Zihlif, A.M.; Elimat, Z.; Ragosta, G. Impedance and thermal conductivity properties of epoxy/polyhedral oligomeric silsequioxane nanocomposites. Radiat. Eff. Defects Solids 2014, 169, 204–216. [Google Scholar] [CrossRef]
- Huang, X.; Han, Z.; Wang, J.; Li, Q. An MD-based physical characteristics analysis on the PI/EP duo-layer composites, impacting of diamino groups. Mater. Today Commun. 2023, 35, 105482. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, B.; Zhang, B.; Liu, Z.; Liu, W. Effects and mechanism of filler surface coating strategy on thermal conductivity of composites: A case study on epoxy/SiO2-coated BN composites. Int. J. Heat Mass Transf. 2021, 164, 120533. [Google Scholar] [CrossRef]
- Lin, J.; Tong, P.; Zhang, K.; Ma, X.; Tong, H.; Guo, X.; Yang, C.; Wu, Y.; Wang, M.; Lin, S.; et al. The GaNMn 3 -Epoxy composites with tunable coefficient of thermal expansion and good dielectric performance. Compos. Sci. Technol. 2017, 146, 177–182. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Hsu, S.L.-C.; Ho, T.-H.; Cheng, S.-S.; Hsiao, Y.-H. Synthesis, characterization, and thermomechanical properties of liquid crystalline epoxy resin containing ketone mesogen. Polym. Eng. Sci. 2017, 57, 424–431. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Gu, J.; Wang, D.; Qu, C. Performances of an epoxy-amine network after introducing the MWCNTs: Rheology, thermal and electrical conductivity, mechanical properties. J. Adhes. Sci. Technol. 2019, 33, 382–394. [Google Scholar] [CrossRef]
- Ma, S.; Chen, P.; Xu, J.; Xiong, X. Molecular dynamics simulations of key physical properties and microstructure of epoxy resin cured with different curing agents. J. Mater. Sci. 2022, 57, 1123–1133. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Qi, X.; Yang, J.; Lei, Y.; Wang, Y. Highly thermally conductive epoxy composites with anti-friction performance achieved by carbon nanofibers assisted graphene nanoplatelets assembly. Eur. Polym. J. 2021, 151, 110443. [Google Scholar] [CrossRef]
- Meng, J.; Chen, P.; Yang, R.; Dai, L.; Yao, C.; Fang, Z.; Guo, K. Thermal stable honokiol-derived epoxy resin with reinforced thermal conductivity, dielectric properties and flame resistance. Chem. Eng. J. 2021, 412, 128647. [Google Scholar] [CrossRef]
- Romano, V.; Naddeo, C.; Guadagno, L.; Vertuccio, L. Thermal conductivity of epoxy nanocomposites filled with MWCNT and hydrotalcite clay: A preliminary study. AIP Conf. Proc. 2014, 1599, 410–413. [Google Scholar] [CrossRef]
- Romano, V.; Naddeo, C.; Guadagno, L.; Vertuccio, L. Thermal conductivity of epoxy resins filled with MWCNT and hydrotalcite clay: Experimental data and theoretical predictive modeling. Polym. Compos. 2015, 36, 1118–1123. [Google Scholar] [CrossRef]
- Teng, C.-C.; Ma, C.-C.M.; Chiou, K.-C.; Lee, T.-M. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride. Compos. Part. B Eng. 2012, 43, 265–271. [Google Scholar] [CrossRef]
- Teng, C.-C.; Ma, C.-C.M.; Chiou, K.-C.; Lee, T.-M.; Shih, Y.-F. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater. Chem. Phys. 2011, 126, 722–728. [Google Scholar] [CrossRef]
- Teng, C.-C.; Ma, C.-C.M.; Lu, C.-H.; Yang, S.-Y.; Lee, S.-H.; Hsiao, M.-C.; Yen, M.-Y.; Chiou, K.-C.; Lee, T.-M. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 2011, 49, 5107–5116. [Google Scholar] [CrossRef]
- Xu, S.-D.; Gu, S.; Pu, X.-L.; Xiao, Y.-F.; Lu, J.-H.; Wang, Y.-Z.; Chen, L. In situ phase separation of novel phosphorus-containing polyester in epoxy resins towards simultaneously improved thermal conductivity and fire safety. Polym. Degrad. Stab. 2022, 204, 110113. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, S.; Song, L.; Xiao, X.; Gao, J.; Pan, L.; He, Z.; Yu, J. Enhanced thermal properties in a hybrid graphene–alumina filler for epoxy composites. RSC Adv. 2015, 5, 35773–35782. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Wang, L.; Zuo, W.; Ma, X.; Du, S.; Zhou, L. Thermomechanical properties of silica–epoxy nanocomposite modified by hyperbranched polyester: A molecular dynamics simulation. High Perform. Polym. 2021, 33, 1153–1164. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Wang, L.; Zuo, W.; Zhou, L.; Hu, X.; Bao, D. Effect of Terminal Groups on Thermomechanical and Dielectric Properties of Silica-Epoxy Composite Modified by Hyperbranched Polyester. Polymers 2021, 13, 2451. [Google Scholar] [CrossRef]
- Zhao, Y.; Kikugawa, G.; Huang, Z.; Li, Y. Length effect of short base resin on thermomechanical properties of crosslinked epoxy resin via molecular dynamics simulation. Int. J. Heat Mass Transf. 2024, 225, 125400. [Google Scholar] [CrossRef]
- Zhao, Y.; Kikugawa, G.; Kawagoe, Y.; Shirasu, K.; Okabe, T. Molecular-scale investigation on relationship between thermal conductivity and the structure of crosslinked epoxy resin. Int. J. Heat Mass Transf. 2022, 198, 123429. [Google Scholar] [CrossRef]
- Zhu, M.; Li, J.; Chen, J.; Song, H.; Zhang, H. Improving thermal conductivity of epoxy resin by filling boron nitride nanomaterials: A molecular dynamics investigation. Comput. Mater. Sci. 2019, 164, 108–115. [Google Scholar] [CrossRef]
- Rudtsch, S.; Hammerschmidt, U. Intercomparison of Measurements of the Thermophysical Properties of Polymethyl Methacrylate. Int. J. Thermophys. 2004, 25, 1475–1482. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, Z.; Luo, J.; Ma, H. Advances in developing thermally conductive polymers. Mater. Res. Lett. 2024, 12, 325–335. [Google Scholar] [CrossRef]
- Palacios, A.; Cong, L.; Navarro, M.E.; Ding, Y.; Barreneche, C. Thermal conductivity measurement techniques for characterizing thermal energy storage materials—A review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- Chalwatzis, E.; Schönberger, F. Effects of hydrogen bonding and cross-linking on thermal conductivity of amorphous epoxy network. Mater. Chem. Phys. 2025, 329, 130005. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Kong, F.; Peng, W.; Wang, Y.; Yuan, M.; Han, X.; Liu, X.; Li, B. Advances in Liquid Crystal Epoxy: Molecular Structures, Thermal Conductivity, and Promising Applications in Thermal Management. Energy Env. Mater. 2024, 7, e12698. [Google Scholar] [CrossRef]
- Hong, Y.; Goh, M. Advances in Liquid Crystalline Epoxy Resins for High Thermal Conductivity. Polymers 2021, 13, 1302. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, X.; Chen, J.; Jiang, P. Epoxy thermoset resins with high pristine thermal conductivity. High Volt. 2017, 2, 139–146. [Google Scholar] [CrossRef]
- Zhao, B.; He, G.; El Hamouti, I.; Gao, L.; Liu, Y.; Deng, R.; Yan, X. A novel strategy for constructing a highly conductive and swelling-resistant semi-flexible aromatic polymer based anion exchange membranes. Int. J. Hydrogen Energy 2017, 42, 10228–10237. [Google Scholar] [CrossRef]
- Shiota, A.; Ober, C.K. Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 1291–1303. [Google Scholar] [CrossRef]
- Lv, G.; Jensen, E.; Shan, N.; Evans, C.M.; Cahill, D.G. Effect of Aromatic/Aliphatic Structure and Cross-Linking Density on the Thermal Conductivity of Epoxy Resins. ACS Appl. Polym. Mater. 2021, 3, 1555–1562. [Google Scholar] [CrossRef]
- Lv, G.; Jensen, E.; Shen, C.; Yang, K.; Evans, C.M.; Cahill, D.G. Effect of Amine Hardener Molecular Structure on the Thermal Conductivity of Epoxy Resins. ACS Appl. Polym. Mater. 2021, 3, 259–267. [Google Scholar] [CrossRef]
- Sun, J.; Lv, G.; Cahill, D.G. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale. Rev. Sci. Instrum. 2023, 94, 14903. [Google Scholar] [CrossRef]
- Mija, A.; Navard, P.; Peiti, C.; Babor, D.; Guigo, N. Shear induced structuration of liquid crystalline epoxy thermosets. Eur. Polym. J. 2010, 46, 1380–1387. [Google Scholar] [CrossRef][Green Version]
- Mititelu-Mija, A.; Cascaval, C.N. Liquid Crystalline Epoxy Azomethine Thermoset. High Perform. Polym. 2007, 19, 135–146. [Google Scholar] [CrossRef]
Epoxy Monomer | Hardener | Mixing Temperature | Catalyst | # of Samples | Curing in Air |
---|---|---|---|---|---|
3.8 g (10 mmol; 1 eq.) DGEBA | 0.9 g (10 mmol; 1 eq.) 1,4-Butanediol | 130 °C | 19 µL 1-MI | 1 | 6 h/150 °C 24 h 180 °C |
3.8 g (10 mmol; 1 eq.) DGEBA | 1.74 g (10 mmol; 1 eq.) 1,4-Decanediol | 130 °C | 22,5 µL 1-MI | 1 | 6 h/150 °C 24 h 180 °C |
6.1 g (16 mmol; 1 eq.) DGEBA | 4.0 g (16 mmol; 1 eq.) DDS | 170 °C | - | 2 | 2 h 180 °C |
20.0 g (56 mmol; 1 eq.) TMBP | 5.0 g (55 mmol; 1 eq.) 1,4-Butanediol | 130 °C | 75 µL 1-MI | 3 | 2 h 150 °C 20 h 180 °C 24 h 200 °C |
17.0 g (48 mmol; 1 eq.) TMBP | 8.0 g (46 mmol; 1 eq.) 1,10-Decanediol | 130 °C | 75 µL 1-MI | 3 | 2 h 150 °C 20 h 180 °C 24 h 200 °C |
9.0 g (25 mmol; 1 eq.) TMBP | 6.0 g (24 mmol; 1 eq.) DDS | 170 °C | - | 2 | 8 h 180 °C |
Sample | TD LFA [mm2/s] | TD D-TOPS [mm2/s] | Cp DSC [J/gK] | ρ [g/mL] | Tg [°C] | ||
---|---|---|---|---|---|---|---|
DGEBA/BDO | 0.74 | 0.77 | 0.10 | - | 2.15 | 1.18 | 13 |
DGEBA/DDO | 0.70 | - | 0.10 | - | 2.28 | 1.14 | 5 |
DGEBA/DDS | 0.69 | 0.48 | 0.13 | 0.13 | 1.42 | 1.28 | 138 |
DGEBA/BZD | - | 0.51 | - | 0.12 | 1.33 | 1.28 | 180 |
DGEBA/oDA | - | 0.52 | 0.17 | 0.13 | 1.12 | 1.23 | 102 |
DEO/DDS | - | 0.52 | - | 0.14 | 1.32 | 1.30 | 68 |
DEO/BZD | - | 0.61 | - | 0.16 | 1.62 | 1.20 | 39 |
DEO/oDA | - | 0.65 | - | 0.14 | 1.57 | 1.27 | 57 |
TMBP/BDO | 0.73 | - | 0.13 | - | 1.78 | 1.17 | 25 |
TMBP/DDO | 0.75 | - | 0.12 | - | 1.68 | 1.12 | 19 |
TMBP/DDS | 0.71 | 0.57 | 0.15 | 0.14 | 1.12 | 1.25 | 148 |
TMBP/BZD | - | 0.59 | 0.22 | 0.15 | 1.27 | 1.26 | 89 |
TMBP/oDA | - | 0.65 | 0.18 | 0.16 | 1.14 | 1.23 | 120 |
LCE-DP/BDO | 0.72 | 0.68 | 0.17 | 0.13 | 1.56 | 1.26 | 44 |
LCE-DP/DDO | 0.74 | 0.67 | 0.16 | 0.13 | 1.62 | 1.20 | 48 |
LCE-DP/DDS | - | 0.58 | 0.20 | 0.20 | 1.13 | 1.31 | 145 |
TME4/DDS | 0.69 | 0.63 | 0.18 | 0.19 | 1.17 | 1.33 | 123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalwatzis, E.; Lan, P.; Schönberger, F. Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure. Polymers 2025, 17, 2596. https://doi.org/10.3390/polym17192596
Chalwatzis E, Lan P, Schönberger F. Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure. Polymers. 2025; 17(19):2596. https://doi.org/10.3390/polym17192596
Chicago/Turabian StyleChalwatzis, Elias, Peng Lan, and Frank Schönberger. 2025. "Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure" Polymers 17, no. 19: 2596. https://doi.org/10.3390/polym17192596
APA StyleChalwatzis, E., Lan, P., & Schönberger, F. (2025). Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure. Polymers, 17(19), 2596. https://doi.org/10.3390/polym17192596