Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete
Abstract
1. Introduction
2. Experimental Methodology
2.1. Materials and Mix Design
2.2. Experiments
2.2.1. Flow Table Test
2.2.2. Open Time Test (Workability)
2.2.3. Air Content
2.2.4. Unit Volume Weight (Fresh Density)
2.2.5. pH Test
2.2.6. Compressive Strength
2.2.7. Capillary Water Absorption Resistance
3. Results and Discussion
3.1. Assessment of Fresh Properties Results
3.1.1. Fresh Density Results
3.1.2. Air Content Results
3.1.3. Flow Table Test Results
3.1.4. Open Time (Workability) Results
3.1.5. pH Test Results
3.2. Assessment of Hardened Properties Results
3.2.1. Compressive Strength Test Results
3.2.2. Capillary Water Absorption Resistance Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.A.; Zhumabekova, A.; Paul, S.C.; Kim, J.R. A Review of 3D Printing in Construction and Its Impact on the Labor Market. Sustainability 2020, 12, 8492. [Google Scholar] [CrossRef]
- Pasco, J.; Lei, Z.; Aranas, C. Additive Manufacturing in Off-Site Construction: Review and Future Directions. Buildings 2022, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, S.H.; Corker, J.; Fan, M. Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution. Autom. Constr. 2018, 93, 1–11. [Google Scholar] [CrossRef]
- Tarhan, Y.; Şahin, R. Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars. Materials 2021, 14, 2409. [Google Scholar] [CrossRef]
- Perrot, A.; Jacquet, Y.; Caron, J.F.; Mesnil, R.; Ducoulombier, N.; De Bono, V.; Sanjayan, J.; Ramakrishnan, S.; Kloft, H.; Gosslar, J.; et al. Snapshot on 3D Printing with Alternative Binders and Materials: Earth, Geopolymers, Gypsum and Low Carbon Concrete. Cem. Concr. Res. 2024, 185, 107651. [Google Scholar] [CrossRef]
- Tarhan, Y.; Tarhan, İ.H.; Perrot, A. Improving Bond Performance of 3D-Printable Earth-Based Mortar Reinforced with Jute Fibers. Chall. J. Struct. Mech. 2025, 11, 99. [Google Scholar] [CrossRef]
- Guo, Z.; Niu, W.; Qi, G.; Chai, G.B.; Tai, Z.; Li, Y. Performance of 3D Printing Biomimetic Conch Shell and Pearl Shell Hybrid Design Composites under Quasi-Static Three-Point Bending Load. J. Mech. Behav. Biomed. Mater. 2024, 151, 106381. [Google Scholar] [CrossRef]
- Ramos, A.; Angel, V.G.; Siqueiros, M.; Sahagun, T.; Gonzalez, L.; Ballesteros, R. Reviewing Additive Manufacturing Techniques: Material Trends and Weight Optimization Possibilities Through Innovative Printing Patterns. Materials 2025, 18, 1377. [Google Scholar] [CrossRef]
- Podroužek, J.; Marcon, M.; Ninčević, K.; Wan-Wendner, R. Bio-Inspired 3D Infill Patterns for Additive Manufacturing and Structural Applications. Materials 2019, 12, 499. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Weng, Y.; Wong, T.N.; Tan, M.J. Mixture Design Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material Printing. Constr. Build. Mater. 2019, 198, 245–255. [Google Scholar] [CrossRef]
- Biricik, Ö.; Mardani, A. Parameters Affecting Thixotropic Behavior of Self Compacting Concrete and 3D Printable Concrete; a State-of-the-Art Review. Constr. Build. Mater. 2022, 339, 127688. [Google Scholar] [CrossRef]
- Lesage, K.; El-Cheikh, K.; De Schutter, G. Rheology and processing of cementitious materials. In Active Rheology Control of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2023; pp. 37–75. [Google Scholar] [CrossRef]
- Lafhaj, Z.; Rabenantoandro, A.Z.; el Moussaoui, S.; Dakhli, Z.; Youssef, N. Experimental Approach for Printability Assessment: Toward a Practical Decision-Making Framework of Printability for Cementitious Materials. Buildings 2019, 9, 245. [Google Scholar] [CrossRef]
- Nodehi, M.; Aguayo, F.; Nodehi, S.E.; Gholampour, A.; Ozbakkaloglu, T.; Gencel, O. Durability Properties of 3D Printed Concrete (3DPC). Autom. Constr. 2022, 142, 104479. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, W.; Wang, Q.; Jiang, H.; Ma, G. Freeze-Thaw Resistance of 3D-Printed Composites with Desert Sand. Cem. Concr. Compos. 2022, 133, 104693. [Google Scholar] [CrossRef]
- Teixeira, J.; Schaefer, C.O.; Maia, L.; Rangel, B.; Neto, R.; Alves, J.L. Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials. Sustainability 2022, 14, 3970. [Google Scholar] [CrossRef]
- Xu, K.; Yang, J.; He, H.; Wei, J.; Zhu, Y. Influences of Additives on the Rheological Properties of Cement Composites: A Review of Material Impacts. Materials 2025, 18, 1753. [Google Scholar] [CrossRef]
- Boddepalli, U.; Panda, B.; Ranjani Gandhi, I.S. Rheology and Printability of Portland Cement Based Materials: A Review. J. Sustain. Cem. Based Mater. 2023, 12, 789–807. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Zhang, L.; Wan, Y.; Li, H.; Jiao, X. Rheology, Mechanics, Microstructure and Durability of Low-Carbon Cementitious Materials Based on Circulating Fluidized Bed Fly Ash: A Comprehensive Review. Constr. Build. Mater. 2024, 411, 134688. [Google Scholar] [CrossRef]
- Paritala, S.; Singaram, K.K.; Bathina, I.; Khan, M.A.; Jyosyula, S.K.R. Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing—A Review. Constr. Build. Mater. 2023, 402, 132962. [Google Scholar] [CrossRef]
- Şahin, H.G.; Mardani, A.; Beytekin, H.E. Effect of Silica Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete. Polymers 2024, 16, 556. [Google Scholar] [CrossRef]
- Moula, S.; Ben Fraj, A.; Wattez, T.; Bouasker, M.; Hadj Ali, N.B. Mechanical Properties, Carbon Footprint and Cost of Ultra-High Performance Concrete Containing Ground Granulated Blast Furnace Slag. J. Build. Eng. 2023, 79, 107796. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Mansour, A.M.; Al Biajawi, M.I. The Effect of the Addition of Metakaolin on the Fresh and Hardened Properties of Blended Cement Products: A Review. Mater. Today Proc. 2022, 66, 2811–2817. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A. Metakaolin. In Cement Replacement Materials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 225–255. [Google Scholar] [CrossRef]
- Wang, F.; Kovler, K.; Provis, J.L.; Buchwald, A.; Cyr, M.; Patapy, C.; Kamali-Bernard, S.; Courard, L.; Sideris, K. Metakaolin. RILEM State—Art Rep. 2018, 25, 153–179. [Google Scholar] [CrossRef]
- Mishra, S.K.; Snehal, K.; Das, B.B.; Chandrasekaran, R.; Barbhuiya, S. From Printing to Performance: A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment. J. Build. Pathol. Rehabil. 2025, 10, 117. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Development of Alternative Cementitious Binders for 3D Printing Applications: A Critical Review of Progress, Advantages and Challenges. Compos. B Eng. 2023, 252, 110492. [Google Scholar] [CrossRef]
- Sahmenko, G.; Puzule, L.; Sapata, A.; Slosbergs, P.; Bumanis, G.; Sinka, M.; Bajare, D. Gypsum–Cement–Pozzolan Composites for 3D Printing: Properties and Life Cycle Assessment. J. Compos. Sci. 2024, 8, 212. [Google Scholar] [CrossRef]
- Pliaka, M.; Gaidajis, G. Potential Uses of Phosphogypsum: A Review. J. Environ. Sci. Health Part A 2022, 57, 746–763. [Google Scholar] [CrossRef]
- Emrullahoglu Abi, C.B. Effect of Borogypsum on Brick Properties. Constr. Build. Mater. 2014, 59, 195–203. [Google Scholar] [CrossRef]
- Sinka, M.; Vaičiukynienė, D.; Nizevičienė, D.; Sapata, A.; Fornés, I.V.; Vaitkevičius, V.; Šerelis, E. Utilisation of By-Product Phosphogypsum Through Extrusion-Based 3D Printing. Materials 2024, 17, 5570. [Google Scholar] [CrossRef]
- Topçu, I.B.; Boǧa, A.R. Effect of Boron Waste on the Properties of Mortar and Concrete. Waste Manag. Res. 2010, 28, 626–633. [Google Scholar] [CrossRef]
- Sevim, U.K.; Tümen, Y. Strength and Fresh Properties of Borogypsum Concrete. Constr. Build. Mater. 2013, 48, 342–347. [Google Scholar] [CrossRef]
- TS EN 197-1: Cement—Part 1: Composition, Specification and Conformity Criteria for Common Cements. Available online: https://www.tse.org.tr/ (accessed on 10 February 2025).
- TS EN 12350-5: Beton—Taze Beton Deneyleri—Bölüm 5: Yayılma Tablası Deneyi (Testing Fresh Concrete—Part 5: Flow Table Test). Available online: https://www.tse.org.tr/ (accessed on 4 January 2024).
- Papachristoforou, M.; Mitsopoulos, V.; Stefanidou, M. Evaluation of Workability Parameters in 3D Printing Concrete. Procedia Struct. Integr. 2018, 10, 155–162. [Google Scholar] [CrossRef]
- Kim, B.G.; Jiang, S.; Jolicoeur, C.; Aïtcin, P.C. The Adsorption Behavior of PNS Superplasticizer and Its Relation to Fluidity of Cement Paste. Cem. Concr. Res. 2000, 30, 887–893. [Google Scholar] [CrossRef]
- Alhozaimy, A.M. Effect of Absorption of Limestone Aggregates on Strength and Slump Loss of Concrete. Cem. Concr. Compos. 2009, 31, 470–473. [Google Scholar] [CrossRef]
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM: West Conshohocken, PA, USA, 2020. [CrossRef]
- TS EN 12350-7/AC: Beton—Taze Beton Deneyleri—Bölüm 7: Hava Içeriğinin Tayini—Basınç Yöntemleri (Testing Fresh Concrete—Part 7: Air Content—Pressure Methods). Available online: https://www.tse.org.tr/ (accessed on 4 January 2024).
- TS EN 12350-6: Birim Hacim Kütlesi (Testing Fresh Concrete—Part 6: Density). Available online: https://www.tse.org.tr/ (accessed on 4 January 2024).
- TS EN 12390-3: Beton—Sertleşmiş Beton Deneyleri—Bölüm 3: Deney Numunelerinin Basınç Dayanımının Tayini (Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens). Available online: https://www.tse.org.tr/ (accessed on 4 January 2024).
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Gibb, A.G.F.; Thorpe, T. Mix Design and Fresh Properties for High-Performance Printing Concrete. Mater. Struct. 2012, 45, 1221–1232. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Pierre, A. Structural Built-up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques. Mater. Struct. 2016, 49, 1213–1220. [Google Scholar] [CrossRef]
- Amran, M.; Abdelgader, H.S.; Onaizi, A.M.; Fediuk, R.; Ozbakkaloglu, T.; Rashid, R.S.M.; Murali, G. 3D-Printable Alkali-Activated Concretes for Building Applications: A Critical Review. Constr. Build. Mater. 2022, 319, 126126. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Qian, Y.; Tan, M.J. Printability Region for 3D Concrete Printing Using Slump and Slump Flow Test. Compos. B Eng. 2019, 174, 106968. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Law, R.; Gibb, A.G.; Thorpe, T. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 2012, 42, 558–566. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Bothe, J.J.; Ceramic, P.B.-J. Kinetics of Tricalcium Aluminate Hydration in the Presence of Boric Acid and Calcium Hydroxide. J. Am. Ceram. Soc. 1999, 82, 1882–1888. [Google Scholar] [CrossRef]
- Boncukcuoğlu, R.; Yılmaz, M.T.; Kocakerim, M.M.; Tosunoğlu, V. Utilization of Borogypsum as Set Retarder in Portland Cement Production. Cem. Concr. Res. 2002, 32, 471–475. [Google Scholar] [CrossRef]
- Kavas, T.; Olgun, A.; Erdogan, Y. Setting and Hardening of Borogypsum–Portland Cement Clinker–Fly Ash Blends. Studies on Effects of Molasses on Properties of Mortar Containing Borogypsum. Cem. Concr. Res. 2005, 35, 711–718. [Google Scholar] [CrossRef]
- Tang, L.; He, Z.; Xia, Y.; Fořt, J.; Xiang, H. Development of Phosphogypsum-Based Full-Solid-Waste Cementitious Materials: Mechanical Properties, Hydration Mechanisms, and Pollutant Stabilization Mechanisms. J. Build. Eng. 2025, 110, 113100. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, H.; Liu, N.; Peng, L.; Jiang, Z. Development and Property Optimization of a Sustainable Phosphogypsum-Based Cementitious System with Ground-Granulated Blast Furnace Slag and Carbide Slag. Constr. Build. Mater. 2024, 449, 138498. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, C.; Na, S.; Jin, Y.; Kang, W.; Zhu, J.; Zhang, W.; Bian, Y.; Shah, S.P. A Study of Blast Furnace Slag on the Mechanical Properties Improvement and Microstructure of Hemihydrate Phosphogypsum Pretreated by Calcium Hydroxide. Case Stud. Constr. Mater. 2025, 22, e04121. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Zajac, M.; Skocek, J.; Ben Haha, M. The Role of Boron during the Early Hydration of Belite Ye’elimite Ferrite Cements. Constr. Build. Mater. 2019, 215, 252–263. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Compressive and Flexural Strength of Fiber-Reinforced Foamed Concrete: Effect of Fiber Content, Curing Conditions and Dry Density. Constr. Build. Mater. 2019, 198, 479–493. [Google Scholar] [CrossRef]
- Kumar, A.; Walia, B.S.; Mohan, J. Compressive Strength of Fiber Reinforced Highly Compressible Clay. Constr. Build. Mater. 2006, 20, 1063–1068. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an Alternative to Portland Cement: An Overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.; Wang, J.; Deng, X.; Tan, H. Improving the Properties of Phosphogypsum-Based Clinker-Free Cement System by in-Situ Precipitation of Ettringite Seeds: Strength, Hydration, Microstructure and Sustainability. Mater. Today Commun. 2025, 44, 111982. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; An, M.; Sun, Y.; Yu, Z.; Huang, H. Factors Influencing the Capillary Water Absorption Characteristics of Concrete and Their Relationship to Pore Structure. Appl. Sci. 2022, 12, 2211. [Google Scholar] [CrossRef]
- Golewski, G.L. Assessing of Water Absorption on Concrete Composites Containing Fly Ash up to 30% in Regards to Structures Completely Immersed in Water. Case Stud. Constr. Mater. 2023, 19, e02337. [Google Scholar] [CrossRef]
- He, X.; Zeng, X.; Dong, R.; Yang, J. Analysis of the Effect of Capillary Water Absorption on the Resistivity of Cementitious Materials. Appl. Sci. 2023, 13, 3562. [Google Scholar] [CrossRef]
- Teixidó, H.; Staal, J.; Caglar, B.; Michaud, V. Capillary Effects in Fiber Reinforced Polymer Composite Processing: A Review. Front. Mater. 2022, 9, 809226. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Combination of Polypropylene Fibre and Superabsorbent Polymer to Improve Physical Properties of Cement Mortar. Mag. Concr. Res. 2018, 70, 350–364. [Google Scholar] [CrossRef]
Cement | GGBS | FA | Kaolin Clay | Gypsum (Paris Plaster) | ||
---|---|---|---|---|---|---|
Chemical compositions (%) | SiO2 | 23–26 | 36.1 | 56.8 | 57.6 | 2.5 |
Al2O3 | 3–5 | 9.8 | 25.4 | 26.2 | 0.39–0.50 | |
Fe2O3 | ≤0.35 | 1.1 | 5.8 | 3.7 | 0.05–0.1 | |
CaO | 62–64 | 40.2 | 3.7 | 0.3 | 32.4 | |
MgO | 0.5–1.5 | 10.3 | 1.8 | 0.7 | 0.9 | |
SO3 | 3.20–3.80 | 0.2 | 0.4 | 0.07 | 45.7 | |
Na2O | ≤0.06 | 0.4 | 0.4 | 0.4 | 0.06–0.1 | |
K2O | 0.5–0.7 | 0.8 | 0.7 | 3.5 | 0.05–0.1 | |
Cl- | 0.02 | - | - | - | - | |
Physical properties | Specific gravity (g/cm3) | 3.11 | 2.88 | 2.24 | 2.63 | 2.33 |
Blaine specific surface (cm2/g) | 4000–4500 | 3300 | 2800 | 2110 | ||
Initial setting time (min) | 120–150 | |||||
Final setting time (min) | 160–200 | |||||
Compressive strength (MPa) | 51–53 |
Mixture | pH Results | Spread (Flow) Diameter (cm) | Workability (Open Time) (h) | Air Content (%) | Fresh Density (g/cm3) | |
---|---|---|---|---|---|---|
Litmus Paper | pH Meter | |||||
C1 | 13 | 12.88 | 17.5 | 0.75 | 3.2 | 2.1 |
2.5BG | 13 | 12.74 | 16.5 | 0.75 | 3.8 | 2.1 |
5BG | 13 | 12.85 | 18 | 1 | 3.8 | 2.1 |
7.5BG | 13 | 12.82 | 17 | 1.25 | 3.6 | 2.1 |
10BG | 13 | 12.81 | 18.5 | 1.5 | 4 | 2.1 |
C1-F | 13 | 12.91 | 17 | 0.75 | 4.3 | 2 |
2.5BG-F | 13 | 12.89 | 15.5 | 1 | 5.4 | 1.9 |
5BG-F | 13 | 12.88 | 17 | 0.75 | 5.2 | 1.9 |
7.5BG-F | 13 | 12.79 | 16.75 | 0.75 | 4 | 2 |
10BG-F | 13 | 12.83 | 16 | 1.75 | 4.6 | 1.9 |
2.5PG | 13 | 12.96 | 16 | 1 | 3.2 | 2.1 |
5PG | 13 | 12.96 | 17.5 | 1 | 2.8 | 2.2 |
7.5PG | 13 | 12.93 | 15 | 0.75 | 2.9 | 2.2 |
10PG | 13 | 13 | 18.25 | 0.75 | 3.6 | 2.1 |
2.5PG-F | 13 | 12.96 | 15.75 | 1.25 | 3.8 | 2 |
5PG-F | 13 | 12.92 | 17 | 0.75 | 3.6 | 2.1 |
7.5PG-F | 13 | 12.9 | 15 | 1.25 | 4.2 | 2.1 |
10PG-F | 13 | 12.93 | 15.5 | 0.75 | 3.7 | 2.1 |
C2 | 13 | 12.95 | 17 | 0.75 | 3.6 | 2.07 |
2.5BG-FA | 13 | 12.92 | 16.5 | 1.5 | 3.8 | 2.04 |
5BG-FA | 13 | 12.89 | 18 | 0.75 | 3.8 | 2.05 |
7.5BG-FA | 13 | 12.83 | 18 | 1.25 | 4.4 | 1.99 |
10BG-FA | 13 | 12.83 | 19 | 1 | 4.2 | 2 |
C2-F | 13 | 12.93 | 16.75 | 0.75 | 3.9 | 2.02 |
2.5BG-FA-F | 13 | 12.89 | 15.5 | 2 | 4 | 2.02 |
5BG-FA-F | 13 | 12.82 | 15 | 2.5 | 4.8 | 1.96 |
7.5BG-FA-F | 13 | 12.87 | 17.5 | 0.75 | 3.8 | 2.01 |
10BG-FA-F | 13 | 12.81 | 18.25 | 0.75 | 4.4 | 1.96 |
2.5PG-FA | 13 | 12.87 | 16.75 | 0.75 | 3.4 | 2.06 |
5PG-FA | 13 | 12.94 | 17.75 | 1 | 3 | 2.12 |
7.5PG-FA | 13 | 12.93 | 19 | 1 | 3.1 | 2.12 |
10PG-FA | 13 | 12.94 | 19.5 | 1 | 3.2 | 2.09 |
2.5PG-FA-F | 13 | 12.95 | 15 | 1.25 | 3.6 | 2.04 |
5PG-FA-F | 13 | 12.9 | 16.5 | 1.25 | 3.4 | 2.05 |
7.5PG-FA-F | 13 | 12.93 | 16.75 | 1.5 | 3.8 | 2.05 |
10PG-FA-F | 13 | 12.95 | 16.75 | 1.5 | 3.8 | 2.06 |
Sample | Beginning Weight (g) | Mass at 12 min (g) | Mass at 30 min (g) | Mass at 60 min (g) | Mass at 120 min (g) | Mass at 240 min (g) | Mass at 24 h (g) | Percentage Changes (%) |
---|---|---|---|---|---|---|---|---|
C1 | 266.90 | 268.18 | 268.78 | 269.27 | 269.77 | 270.55 | 273.22 | 2.37 |
C1-F | 269.58 | 271.15 | 272.18 | 272.90 | 273.76 | 275.03 | 279.65 | 3.74 |
2.5BG | 257.17 | 258.00 | 258.36 | 258.60 | 259.12 | 259.57 | 261.15 | 1.55 |
2.5BG-F | 261.75 | 262.99 | 263.62 | 263.80 | 264.48 | 265.28 | 268.20 | 2.46 |
5BG | 267.37 | 268.66 | 269.23 | 269.81 | 270.53 | 271.46 | 274.48 | 2.66 |
5BG-F | 263.28 | 264.03 | 264.40 | 264.54 | 264.91 | 265.34 | 267.07 | 1.44 |
7.5BG | 263.05 | 264.37 | 265.08 | 265.56 | 266.46 | 267.38 | 270.27 | 2.74 |
7.5BG-F | 249.39 | 251.23 | 252.22 | 252.92 | 253.95 | 255.18 | 259.29 | 3.97 |
10BG | 237.40 | 240.80 | 242.66 | 244.07 | 245.98 | 248.11 | 252.10 | 6.19 |
10BG-F | 272.79 | 274.90 | 276.06 | 277.08 | 278.34 | 279.66 | 283.52 | 3.93 |
2.5PG | 273.64 | 275.37 | 276.08 | 276.54 | 277.41 | 278.35 | 281.36 | 2.82 |
2.5PG-F | 250.19 | 251.44 | 252.05 | 252.53 | 253.06 | 253.84 | 257.01 | 2.73 |
5PG | 264.65 | 265.95 | 266.44 | 266.91 | 267.48 | 268.16 | 270.18 | 2.09 |
5PG-F | 241.32 | 242.35 | 242.94 | 243.43 | 243.98 | 244.80 | 248.38 | 2.93 |
7.5PG | 272.50 | 273.99 | 274.83 | 275.36 | 276.20 | 277.14 | 279.89 | 2.71 |
7.5PG-F | 255.65 | 256.65 | 257.09 | 257.49 | 258.18 | 258.83 | 260.92 | 2.06 |
10PG | 263.48 | 264.65 | 265.35 | 265.86 | 266.72 | 267.68 | 271.19 | 2.93 |
10PG-F | 261.37 | 262.95 | 263.62 | 264.31 | 265.25 | 266.33 | 269.77 | 3.21 |
C2 | 257.50 | 258.68 | 259.27 | 259.78 | 260.34 | 261.21 | 264.44 | 2.70 |
C2-F | 260.40 | 262.04 | 263.29 | 264.22 | 265.32 | 266.69 | 271.15 | 4.13 |
2.5BG-FA | 260.81 | 261.97 | 262.56 | 262.97 | 263.73 | 264.68 | 268.26 | 2.86 |
2.5BG-FA-F | 253.73 | 251.51 | 256.43 | 257.29 | 258.60 | 260.21 | 265.50 | 4.64 |
5BG-FA | 248.79 | 250.06 | 250.89 | 251.42 | 252.49 | 253.76 | 258.95 | 4.08 |
5BG-FA-F | 248.30 | 250.05 | 251.45 | 252.40 | 253.93 | 255.67 | 261.23 | 5.21 |
7.5BG-FA | 253.53 | 255.27 | 256.55 | 257.46 | 258.82 | 260.25 | 264.83 | 4.46 |
7.5BG-FA-F | 244.45 | 246.27 | 247.43 | 248.34 | 249.72 | 251.40 | 257.00 | 5.13 |
10BG-FA | 245.52 | 247.28 | 248.15 | 248.80 | 249.91 | 251.16 | 254.98 | 3.85 |
10BG-FA-F | 242.34 | 244.76 | 246.34 | 247.68 | 249.42 | 251.52 | 257.48 | 6.25 |
2.5PG-FA | 259.37 | 260.42 | 261.21 | 261.58 | 262.38 | 263.24 | 266.03 | 2.57 |
2.5PG-FA-F | 247.68 | 248.76 | 249.51 | 249.97 | 250.78 | 251.75 | 254.79 | 2.87 |
5PG-FA | 251.22 | 252.22 | 252.96 | 253.44 | 254.29 | 255.30 | 259.20 | 3.18 |
5PG-FA-F | 246.21 | 247.47 | 248.14 | 248.73 | 249.39 | 250.43 | 254.95 | 3.55 |
7.5PG-FA | 249.82 | 251.28 | 252.10 | 252.76 | 253.73 | 254.84 | 258.89 | 3.63 |
7.5PG-FA-F | 245.03 | 246.42 | 247.13 | 247.76 | 248.49 | 249.54 | 254.14 | 3.72 |
10PG-FA | 248.13 | 249.50 | 250.07 | 250.58 | 251.13 | 251.96 | 256.16 | 3.24 |
10PG-FA-F | 247.10 | 248.28 | 248.94 | 249.54 | 250.23 | 251.25 | 256.13 | 3.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarhan, Y.; Atalay, B. Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete. Polymers 2025, 17, 2530. https://doi.org/10.3390/polym17182530
Tarhan Y, Atalay B. Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete. Polymers. 2025; 17(18):2530. https://doi.org/10.3390/polym17182530
Chicago/Turabian StyleTarhan, Yeşim, and Berrin Atalay. 2025. "Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete" Polymers 17, no. 18: 2530. https://doi.org/10.3390/polym17182530
APA StyleTarhan, Y., & Atalay, B. (2025). Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete. Polymers, 17(18), 2530. https://doi.org/10.3390/polym17182530