High Performance Polymeric Fabry-Pérot Microcavities for Sensing and Lasing Applications
Abstract
1. Introduction
2. Methods
2.1. Design and Fabrication of Cavity A and Cavity B
2.2. Experimental Set-Up
3. Results
3.1. Cavity A—Refractive Index Sensing
3.2. Cavity B—Active Lasing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vahala, K. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Heylman, K.D.; Knapper, K.A.; Horak, E.H.; Rea, M.T.; Vanga, S.K.; Goldsmith, R.H. Optical microresonators for sensing and transduction: A materials perspective. Adv. Mater. 2017, 29, 201700037. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, Y.; Li, Y.; Tian, B.; Fan, X.; He, Y.; Liu, M.; Peng, L.; Tang, N.; Tan, T.; et al. Optical Microcavities Empowered Biochemical Sensing: Status and Prospects. Adv. Devices Instrum. 2024, 5, 41. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, X. Biological lasers for biomedical applications. Adv. Opt. Mater. 2019, 7, 1900377. [Google Scholar] [CrossRef]
- Bitarafan, M.H.; DeCorby, R.G. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors 2017, 17, 1748. [Google Scholar] [CrossRef]
- Megahd, H.; Comoretto, D.; Lova, P. Planar microcavities: Materials and processing for light control. Opt. Mater. X 2022, 13, 100130. [Google Scholar] [CrossRef]
- Vallance, C.; Trichet, A.A.P.; James, D.; Dolan, P.R.; Smith, J.M. Open-access microcavities for chemical sensing. Nanotechnology 2016, 27, 274003. [Google Scholar] [CrossRef]
- Rho, D.; Kim, S. Label-free real-time detection of biotinylated bovine serum albumin using a low-cost optical cavity-based biosensor. Opt. Express 2018, 26, 18982–18989. [Google Scholar] [CrossRef] [PubMed]
- Gervinskas, G.; Day, D.J.; Juodkazis, S. Optofluidic Fabry-Pérot sensor for water solutions at high flow rates. Opt. Mater. Express 2012, 2, 279–286. [Google Scholar] [CrossRef]
- Zhang, T.; Talla, S.; Gong, Z.; Karandikar, S.; Giorno, R.; Que, L. Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor. Opt. Express 2010, 18, 18394–18400. [Google Scholar] [CrossRef]
- Leblanc-Hotte, A.; Chabot-Roy, G.; Odagiu, L.; Richaud, M.; Lesage, S.; Delisle, J.-S.; Peter, Y.-A. High-throughput refractive index-based microphotonic sensor for enhanced cellular discrimination. Sens. Actuators B Chem. 2018, 266, 255–262. [Google Scholar] [CrossRef]
- Leblanc-Hotte, A.; Sen Nkwe, N.; Chabot-Roy, G.; Affar, E.B.; Lesage, S.; Delisle, J.-S.; Peter, Y.-A. On-chip refractive index cytometry for whole-cell deformability discrimination. Lab Chip 2019, 19, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Wachter, G.; Kuhn, S.; Minniberger, S.; Salter, C.; Asenbaum, P.; Millen, J.; Schneider, M.; Schalko, J.; Schmid, U.; Felgner, A.; et al. Silicon microcavity arrays with open access and a finesse of half a million. Light Sci. Appl. 2019, 8, 37. [Google Scholar] [CrossRef]
- Naijun Jin McLemore, C.A.; Mason, D.; Hendrie, J.P.; Luo, Y.; Kelleher, M.L.; Kharel, P.; Quinlan, F.; Diddams, S.A.; Rakich, P.T. Micro-fabricated mirrors with finesse exceeding one million. Optica 2022, 9, 965–970. [Google Scholar] [CrossRef]
- Geigers, S.; Michon, J.; Liu, S.; Qin, J.; Ni, J.; Hu, J.; Gu, T.; Lu, N. Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics 2020, 7, 2618–2635. [Google Scholar] [CrossRef]
- Nevitt, T.J.; Weber, M.F. Giant birefringent optics in multilayer polymer mirrors. Thin Solid Film. 2013, 532, 106–112. [Google Scholar] [CrossRef]
- Zhou, J.; Singer, K.; Song, H.; Wu, Y.; Lott, J.; Andrews, J.; Hiltner, A.; Baer, E.; Weder, C. Multilayer Polymer Films for Photonic Applications. MRS Online Proc. Libr. 2009, 1196, 22–27. [Google Scholar] [CrossRef]
- Edrington, A.C.; Urbas, A.M.; DeRege, P.; Chen, C.X.; Swager, T.M.; Hadjichristidis, N.; Xenidou, M.; Fetters, L.J.; Joannopoulos, J.D.; Fink, Y.; et al. Polymer-Based Photonic Crystals. Adv. Mater. 2001, 13, 421–425. [Google Scholar] [CrossRef]
- Testa, G.; Persichetti, G.; Bernini, R. All-polymeric high-Q optofluidic Fabry-Perot resonator. Opt. Lett. 2021, 46, 352–355. [Google Scholar] [CrossRef]
- Fan, X.; Yun, S.-H. The potential of optofluidic biolasers. Nat. Methods 2014, 11, 141–147. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Yang, X.; Gong, C.-Y.; Gong, Y. Recent Advances in Optofluidic Laser for Biochemical Sensing. J. Light. Technol. 2023, 41, 4211–4218. [Google Scholar] [CrossRef]
- Testa, G.; Persichetti, G.; Bernini, R. Optofluidic biosensing: Devices, strategies, and applications. TrAC Trends Anal. Chem. 2024, 178, 117865. [Google Scholar] [CrossRef]
- Vollmer, F.; Yan, L. Review Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices. Nanophotonics 2012, 1, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, C.; Zhang, T.; Chen, J.; Liu, S.; Fan, X. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities. Lab Chip 2015, 15, 3862–3869. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.-K.; Knoll, W.; Wu, L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- López Arbeloa, F.; Ruiz Ojeda, P.; López Arbeloa, I. Fluorescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. J. Lumin. 1989, 44, 105–112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, G.; Coviello, V.; Persichetti, G.; Bernini, R. High Performance Polymeric Fabry-Pérot Microcavities for Sensing and Lasing Applications. Polymers 2025, 17, 2496. https://doi.org/10.3390/polym17182496
Testa G, Coviello V, Persichetti G, Bernini R. High Performance Polymeric Fabry-Pérot Microcavities for Sensing and Lasing Applications. Polymers. 2025; 17(18):2496. https://doi.org/10.3390/polym17182496
Chicago/Turabian StyleTesta, Genni, Vito Coviello, Gianluca Persichetti, and Romeo Bernini. 2025. "High Performance Polymeric Fabry-Pérot Microcavities for Sensing and Lasing Applications" Polymers 17, no. 18: 2496. https://doi.org/10.3390/polym17182496
APA StyleTesta, G., Coviello, V., Persichetti, G., & Bernini, R. (2025). High Performance Polymeric Fabry-Pérot Microcavities for Sensing and Lasing Applications. Polymers, 17(18), 2496. https://doi.org/10.3390/polym17182496