Durability of Basalt- and Glass Fiber-Reinforced Polymers: Influence of Internal Stresses, Mass Loss Modeling, and Mechanical/Thermomechanical Properties Under Extreme Cold Climate Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Exposure
2.3. Mass Change Measurement
2.4. Matrix Content
2.5. SEM and Surface Roughness
2.6. Tensile Testing
2.7. Dynamic Mechanical Analysis (DMA)
2.8. Thermomechanical Analysis (TMA)
3. Results and Discussion
3.1. Climate Conditions of Exposure
3.2. Changes in Mechanical Properties After Exposure
3.3. Changes in Binder Mass Fraction and Surface Morphology After Exposure
3.4. Mass Loss Kinetics: Model and Experiment
3.4.1. Model
3.4.2. Experiment
3.4.3. Model Parameters
3.5. Dynamic Mechanical Analysis of GFRP and BFRP
3.6. Thermomechanical Analysis of GFRP and BFRP Under Climatic Exposure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASTM | American Society for Testing and Materials |
BFRP | Basalt Fiber Reinforced Polymer |
CLTE | Coefficients of Linear Thermal Expansion |
DMA | Dynamic Mechanical Analysis |
GFRP | Glass Fiber Reinforced Polymer |
ISO | International Organization for Standardization |
Tg | Glass Transition Temperature |
TMA | Thermomechanical Analysis |
UV | Ultraviolet |
References
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Basalt fibers: An environmentally acceptable and sustainable green material for polymer composites. Constr. Build. Mater. 2024, 436, 136834. [Google Scholar] [CrossRef]
- Elmahdy, A.; Verleysen, P. Comparison between the mechanical behavior of woven basalt and glass epoxy composites at high strain rates. Mater. Today Proc. 2021, 34, 171–175. [Google Scholar] [CrossRef]
- Duan, S.-J.; Feng, R.-M.; Yuan, X.-Y.; Song, L.-T.; Tong, G.-S.; Tong, J.-Z. A Review on research advances and applications of basalt fiber-reinforced polymer in the construction industry. Buildings 2025, 15, 181. [Google Scholar] [CrossRef]
- Tavadi, A.R.; Naik, Y.; Kumaresan, K.; Jamadar, N.I.; Rajaravi, C. Basalt fiber and its composite manufacturing and applications: An overview. Int. J. Eng. Sci. Technol. 2021, 13, 50–56. [Google Scholar] [CrossRef]
- Yan, W.; Shi, J.; Cao, X.; Zhang, M.; Li, L.; Jiang, J. A Review on the applications of basalt fibers and their composites in infrastructures. Buildings 2025, 15, 2525. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Liu, H.; Tian, L.; Liu, J.; Fu, C.; Fu, X. Properties of basalt fiber core rods and their application in composite cross arms of a power distribution network. Polymers 2022, 14, 2443. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Wang, Z.K.; Zhao, X.L.; Xian, G.J.; Wu, G.; Raman, R.K.S.; Al-Saadi, S. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017, 139, 467–489. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.-L.; Xian, G.; Wu, G.; Raman, R.K.S.; Al-Saadi, S. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Constr. Build. Mater. 2017, 156, 985–1004. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Yubin, L.; Min, L.; Zhijie, S. Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites. J. Reinf. Plast. Compos. 2008, 27, 393–407. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wu, Z.; Dong, Z.; Zhang, G. Durability of basalt fibers and composites in corrosive environments. J. Compos. Mater. 2015, 49, 873–887. [Google Scholar] [CrossRef]
- Hashim, U.R.; Jumahat, A.; Jawaid, M.; Dungani, R.; Alamery, S. Effects of accelerated weathering on degradation behavior of basalt fiber reinforced polymer nanocomposites. Polymers 2020, 12, 2621. [Google Scholar] [CrossRef]
- Zhao, J.; Cai, G.; Cui, L.; Larbi, A.S.; Tsavdaridis, K.D. Deterioration of basic properties of the materials in FRP-strengthening RC structures under ultraviolet exposure. Polymers 2017, 9, 402. [Google Scholar] [CrossRef]
- Lukachevskaia, I.G.; Kychkin, A.; Kychkin, A.K.; Vasileva, E.D.; Markov, A.E. Effect of 2000-hour ultraviolet irradiation on surface degradation of glass and basalt fiber reinforced laminates. Polymers 2025, 17, 1980. [Google Scholar] [CrossRef] [PubMed]
- Dorigato, A.; Pegoretti, A. Fatigue resistance of basalt fibers-reinforced laminates. J. Compos. Mater. 2012, 46, 1773–1785. [Google Scholar] [CrossRef]
- Mahesha, C.R.; Shivarudraiah, N.M.; Suprabha, R. Solid particle erosion of basalt fiber and glass fiber-epoxy composite. Int. J. Mech. Prod. Eng. 2014, 2, 30–34. [Google Scholar] [CrossRef]
- Shishevan, F.A.; Akbulut, H.; Bonab, M.A.M. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites. J. Mater. Eng. Perform. 2017, 26, 2890–2900. [Google Scholar] [CrossRef]
- Startsev, O.V.; Lebedev, M.P.; Kychkin, A.K. Aging of basalt plastics in open climatic conditions. Polym. Sci. Ser. D 2022, 15, 101–109. [Google Scholar] [CrossRef]
- Dexter, H.B. Long-Term Environmental Effects and Flight Service Evaluation of Composite Materials. 1987. Available online: https://ntrs.nasa.gov/citations/19870008425 (accessed on 28 July 2025).
- Baker, D.J. Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program. 1994. Available online: https://ntrs.nasa.gov/citations/19950005944 (accessed on 29 July 2025).
- Hahn, H.T. Residual stresses in polymer matrix composite laminates. J. Compos. Mater. 1976, 10, 266–278. [Google Scholar] [CrossRef]
- Dutta, P.K. Structural fiber composite materials for cold regions. J. Cold Reg. Eng. 1988, 2, 124–134. [Google Scholar] [CrossRef]
- Kablov, E.N.; Startsev, V.O. The influence of internal stresses on the aging of polymer composite materials: A review. Mech. Compos. Mater. 2021, 57, 565–576. [Google Scholar] [CrossRef]
- Startsev, O.V.; Lebedev, M.P.; Kychkin, A.K. Aging of polymer composites in extremely cold climates. Izv. Altai State Univ. 2020, 1, 41–51. [Google Scholar] [CrossRef]
- Pride, R.A. Environment Effects of Composites for Aircraft. CTOL Transport Technol. 239–258. 1978. Available online: https://ntrs.nasa.gov/api/citations/19780019118 (accessed on 28 July 2025).
- Startsev, V.O.; Startsev, O.V.; Zeleneva, T.O.; Vardanyan, A.M. Influence of precipitation on changes in the mass of samples of polymeric composite materials in open climatic conditions. Aviat. Mater. Technol. 2024, 1, 136–154. (In Russian) [Google Scholar] [CrossRef]
- Vodicka, R.; Nelson, B.; Berg, J.V.; Chester, R. Long-Term Environmental Durability of F/A-18 Composite Material; DSTO-TN-0826; DSTO Aeronautical and Maritime Research Lab: Melbourn, Australia, 1999. [Google Scholar]
- Salnikov, V.G.; Startsev, O.V.; Lebedev, M.P.; Kopyrin, M.M.; Vapirov, Y.M. The influence of diurnal and seasonal variations of relative humidity and temperature on coal–plastic moisture saturation in open climatic conditions. Polym. Sci. Ser. D 2023, 16, 131–136. [Google Scholar] [CrossRef]
- Menard, K. Dynamic Mechanical Analysis: A Practical Introduction, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Sowjanya, Y.; Jayaprasad, V.; Kumar, K.D.; Mohanrao, N. Review on thermomechanical analysis of nano composites. J. Mech. Civ. Eng. 2016, 13, 95–100. [Google Scholar] [CrossRef]
- Kulawik, J.; Szeglowski, Z.; Czapla, T.; Kulawik, J.P. Determination of glass-transition temperature, thermal expansion and, shrinkage of epoxy resins. Colloid Polym. Sci. 1989, 267, 970–975. [Google Scholar] [CrossRef]
- Gavrilieva, A.A.; Startsev, O.V.; Lebedev, M.P.; Krotov, A.S.; Kychkin, A.K.; Lukachevskaya, I.G. Size effects in climatic aging of epoxy basalt fiber reinforcement bar. Polymers 2024, 16, 2550. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Xian, G.J.; Li, H. Experimental study on the mechanical properties of basalt fibres and pultruded BFRP plates at elevated temperatures. Polym. Polym. Compos. 2015, 23, 277–284. [Google Scholar] [CrossRef]
- Lu, Z.; Xian, G.; Rashid, K. Creep behavior of resin matrix and basalt fiber reinforced polymer (BFRP) plate at elevated temperatures. J. Compos. Sci. 2017, 1, 3. [Google Scholar] [CrossRef]
- Kychkin, A.K.; Gavrilieva, A.A.; Kychkin, A.A.; Lukachevskaya, I.G.; Lebedev, M.P. The Initial Stage of Climatic Aging of Basalt-Reinforced and Glass-Reinforced Plastics in Extremely Cold Climates: Regularities. Polymers 2024, 16, 866. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Fu, S.-Y.; Yang, F.-P. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer 2007, 48, 302–310. [Google Scholar] [CrossRef]
- GOST 2789–73; Surface Roughness. Parameters and Characteristics. Standards Publishing: Moscow, Russia, 1973.
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 6721-11; Plasics—Determination of Dynamic Mechanical Properties—Part 11: Glass Transition Temperature. ISO: Geneva, Switzerland, 2012.
- ISO 11359-2; Plastics—Thermomechanical Analysis (TMA)—Part 2. Determination of Coefficient of Linear Thermal Expansion and Glass Transition Temperature. ISO: Geneva, Switzerland, 1999.
- Veligodskiy, I.M.; Koval, T.V.; Kurnosov, A.O.; Marakhovskiy, P.S. Study of resistance of glass fiber reinforced plastic to natural weathering in different climatic conditions. Tr. VIAM 2022, 11, 134–148. (In Russian) [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford Univ. Press: London, UK; New York, NY, USA, 1959. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Koval’, T.V.; Veligodskii, I.M.; Gromova, A.A. Change in the properties of BSR-3m binder in vku-46 carbon-fiber-reinforced polymer after prolonged climatic aging. Polym. Sci. Ser. D 2023, 16, 687–693. [Google Scholar] [CrossRef]
- Mark, J.E. (Ed.) Physical Properties of Polymers Handbook, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Fabric Grade | BT-11 (100) | TR-560-30A (100) |
---|---|---|
Areal density, g/m2 | 351 | 560 (±40) |
Thickness, mm | 0.33 (±0.03) | 0.45 (±0.05) |
Tensile strength, N–warp | 2610 | 2800 |
Tensile strength, N–weft | 2120 | 2800 |
Warp yarn density, threads/cm | 18 | 30 (±1) |
Weft yarn density, threads/cm | 8 | 30 (±1) |
Weave type | twill 5/3 | plain |
Composite | 0 °C | −18 °C | −33 °C |
---|---|---|---|
GFRP | 438 | 262 | 163 |
BFRP | 468 | 287 | 163 |
Composite | Property | Initial | After 1 Year | Rel. Change | After 2 Years | Rel. Change | After 3 Years | Rel. Change |
---|---|---|---|---|---|---|---|---|
GFRP | , MPa | ) | 0.89 | ) | 0.76 | ) | 0.78 | |
, GPa | 0.79 | 0.68 | 0.68 | |||||
BFRP | , MPa | 0.95 | 0.88 | 0.94 | ||||
, GPa | 0.99 | 0.88 | 0.86 |
Composite | Initial | After 1 Year | After 2 Years | After 3 Years |
---|---|---|---|---|
GFRP | 24.8 (±0.4) | 22.4 (±0.4) | 20.0 (±0.4) | 19.4 (±0.4) |
BFRP | 25.8 (±0.4) | 25.3 (±0.4) | 24.8 (±0.4) | 24.3 (±0.4) |
Composite | After 1 Year | After 2 Years | After 3 Years |
---|---|---|---|
GFRP | 88 (±1) | 76 (±1) | 73 (±1) |
BFRP | 97 (±1) | 94 (±1) | 92 (±1) |
Composite | Initial (Sun-Facing/Shaded) | 2 Years (Sun-Facing/Shaded) | 3 Years (Sun-Facing/Shaded) |
---|---|---|---|
GFRP | 1.61/5.61 | 5.92/5.62 | 5.86/3.46 |
BFRP | 5.57/11.2 | 5.96/11.34 | 11.73/9.31 |
Location | Open Stand | Hangar | ||||
---|---|---|---|---|---|---|
Size (mm) | 10 × 10 | 20 × 20 | 40 × 40 | 10 × 10 | 20 × 20 | 40 × 40 |
(%) | 0.037 | 0.054 | 0.068 | 0.1900 | 0.0096 | 0.0018 |
(%) | 0.150 | 0.085 | 0.084 | 0.1700 | 0.0370 | 0.0570 |
(rad) | ||||||
(%) | 21 | 17 | ||||
D (mm2/day) | 0.0003 | 0.0001 | 0.0004 | 0.0078 | 0.0031 | 0.0002 |
0.994 | 0.983 | 0.946 | 0.993 | 0.988 | 0.955 |
Location | Open Stand | Hangar | ||||
---|---|---|---|---|---|---|
Size (mm) | 10 × 10 | 20 × 20 | 40 × 40 | 10 × 10 | 20 × 20 | 40 × 40 |
(%) | 0.0075 | 0.050 | 0.033 | 0.1400 | 0.0380 | 0.0018 |
(%) | 0.0840 | 0.0850 | 0.0360 | 0.0700 | 0.0380 | 0.0260 |
(rad) | ||||||
(%) | ||||||
D (mm2/day) | 0.29 | 0.29 | 0.081 | 0.12 | 0.030 | 0.017 |
0.989 | 0.927 | 0.810 | 0.992 | 0.984 | 0.932 |
Parameter | Initial (Sun-Facing/Shaded) | 2 Years (Sun-Facing/Shaded) | 3 Years (Sun-Facing/Shaded) |
---|---|---|---|
, GPa | 11/15 | 15/15 | 19/16 |
0.32/0.28 | 0.22/0.22 | 0.20/0.16 | |
,°C | 95/98 | 90/89 | 86/85 |
,°C | 109/109 | 99/97 | 95/95 |
*,°C | 107/109 | 101/100 | 97/95 |
, °C | 120/123 | 110/111 | 108/109 |
Parameter | Initial (Sun-Facing/Shaded) | 2 Years (Sun-Facing/Shaded) | 3 Years (Sun-Facing/Shaded) |
---|---|---|---|
, GPa | 17/15 | 14/14 | 16/13 |
0.30/0.27 | 0.24/0.25 | 0.19/0.21 | |
,°C | 98/102 | 99/99 | 96/96 |
,°C | 113/114 | 109/109 | 104/105 |
*, °C | 111/112 | 110/110 | 106/106 |
,°C | 126/126 | 120/120 | 115/115 |
Parameter Change | GFRP | BFRP |
---|---|---|
,°C | to | to |
,°C | to | to |
,°C | to | to |
change |
Temperature | GFRP | BFRP | ||||
---|---|---|---|---|---|---|
°C | Initial | 2 Year | 3 Year | Initial | 2 Year | 3 Year |
−60 | 9.0 | 11.1 | 11.5 | 10.0 | 11.1 | 9.1 |
−20 | 9.2 | 11.7 | 12.1 | 10.5 | 11.9 | 9.4 |
0 | 9.3 | 11.8 | 12.5 | 10.2 | 12.0 | 9.6 |
20 | 9.6 | 12.3 | 12.8 | 10.3 | 12.1 | 9.6 |
60 | 10.0 | 12.2 | 13.2 | 10.5 | 12.3 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kychkin, A.K.; Startsev, O.V.; Lebedev, M.P.; Krotov, A.S.; Kychkin, A.A.; Gavrilieva, A.A. Durability of Basalt- and Glass Fiber-Reinforced Polymers: Influence of Internal Stresses, Mass Loss Modeling, and Mechanical/Thermomechanical Properties Under Extreme Cold Climate Exposure. Polymers 2025, 17, 2457. https://doi.org/10.3390/polym17182457
Kychkin AK, Startsev OV, Lebedev MP, Krotov AS, Kychkin AA, Gavrilieva AA. Durability of Basalt- and Glass Fiber-Reinforced Polymers: Influence of Internal Stresses, Mass Loss Modeling, and Mechanical/Thermomechanical Properties Under Extreme Cold Climate Exposure. Polymers. 2025; 17(18):2457. https://doi.org/10.3390/polym17182457
Chicago/Turabian StyleKychkin, Anatoly K., Oleg V. Startsev, Mikhail P. Lebedev, Anatoly S. Krotov, Aisen A. Kychkin, and Anna A. Gavrilieva. 2025. "Durability of Basalt- and Glass Fiber-Reinforced Polymers: Influence of Internal Stresses, Mass Loss Modeling, and Mechanical/Thermomechanical Properties Under Extreme Cold Climate Exposure" Polymers 17, no. 18: 2457. https://doi.org/10.3390/polym17182457
APA StyleKychkin, A. K., Startsev, O. V., Lebedev, M. P., Krotov, A. S., Kychkin, A. A., & Gavrilieva, A. A. (2025). Durability of Basalt- and Glass Fiber-Reinforced Polymers: Influence of Internal Stresses, Mass Loss Modeling, and Mechanical/Thermomechanical Properties Under Extreme Cold Climate Exposure. Polymers, 17(18), 2457. https://doi.org/10.3390/polym17182457