Liquid Crystalline Block Copolymers for Advanced Applications: A Review
Abstract
1. Introduction
2. Recent Research Fields in LCBCPs
2.1. Nanostructured Materials and Nanotechnology
2.2. Light–Matter Interaction and Photonic Functionality in LCBCPs
2.3. Biomedical Applications
2.4. Energy Storage and Ion Transport
2.5. Stimuli-Responsive LCBCPs
2.6. Soft Robotic Systems
2.7. Additive Manufacturing Technologies
3. Challenges, Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodby, J.W.; Collings, P.J.; Kato, T.; Tschierske, C.; Gleeson, H.; Raynes, P.; Vill, V. Handbook of Liquid Crystals, 8 Volume Set; John Wiley & Sons: New York, NY, USA, 2014; Volume 1, ISBN 3527327738. [Google Scholar]
- Khoo, I.-C. Liquid Crystals; John Wiley & Sons: New York, NY, USA, 2022; ISBN 1119705797. [Google Scholar]
- Pershan, P.S. Structure of Liquid Crystal Phases; World Scientific: Singapore, 1988; Volume 23, ISBN 9971507056. [Google Scholar]
- Priestly, E. Introduction to Liquid Crystals; Springer Science & Business Media: New York, NY, USA, 2012; ISBN 1468421751. [Google Scholar]
- Blinov, L.M. Structure and Properties of Liquid Crystals; Springer Science & Business Media: New York, NY, USA, 2010; Volume 123, ISBN 9789048188284. [Google Scholar]
- Shibaev, V. Liquid-crystalline polymer systems: From the past to the present. Polym. Sci. Ser. A 2014, 56, 727–762. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Liquid crystals: Versatile self-organized smart soft materials. Chem. Rev. 2021, 122, 4887–4926. [Google Scholar] [CrossRef] [PubMed]
- Collings, P.J.; Patel, J.S. Handbook of Liquid Crystal Research; Oxford University Press: New York, NY, USA, 1997; ISBN 019508442X. [Google Scholar]
- De Gennes, P.-G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: New York, NY, USA, 1993; ISBN 0198517858. [Google Scholar]
- Lagerwall, J.P.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio-and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: New York, NY, USA, 2014; ISBN 1118752007. [Google Scholar]
- Bahadur, B. Liquid Crystals: Applications and Uses; World Scientific: Singapore, 1990; Volume 1, ISBN 9810229755. [Google Scholar]
- Beeckman, J.; Neyts, K.; Vanbrabant, P.J. Liquid-crystal photonic applications. Opt. Eng. 2011, 50, 081202. [Google Scholar] [CrossRef]
- Donald, A.M.; Windle, A.H.; Hanna, S. Liquid Crystalline Polymers; Cambridge University Press: Cambridge, UK, 2006; ISBN 0521580013. [Google Scholar]
- Ciferri, A. Polymer Liquid Crystals; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0323152317. [Google Scholar]
- Mucha, M. Polymer as an important component of blends and composites with liquid crystals. Prog. Polym. Sci. 2003, 28, 837–873. [Google Scholar] [CrossRef]
- Noël, C.; Navard, P. Liquid crystal polymers. Prog. Polym. Sci. 1991, 16, 55–110. [Google Scholar] [CrossRef]
- Dobb, M.; McIntyre, J. Properties and Applications of Liquid-Crystalline Main-Chain Polymers; Springer: Berlin/Heidelberg, Germany, 2005; pp. 61–98. ISBN 978-3-540-38816-6. [Google Scholar]
- McArdle, C.B. Side Chain Liquid Crystal Polymers; Springer Science & Business Media: New York, NY, USA, 1990; ISBN 0216925037. [Google Scholar]
- Hsu, C.-S. The application of side-chain liquid-crystalline polymers. Prog. Polym. Sci. 1997, 22, 829–871. [Google Scholar] [CrossRef]
- Xiao, Y.-Y.; Jiang, Z.-C.; Zhao, Y. Liquid crystal polymer-based soft robots. Adv. Intell. Syst. 2020, 2, 2000148. [Google Scholar] [CrossRef]
- Ge, F.; Zhao, Y. Microstructured actuation of liquid crystal polymer networks. Adv. Funct. Mater. 2020, 30, 1901890. [Google Scholar] [CrossRef]
- Rajput, A.; Upma; Shukla, S.K.; Thakur, N.; Debnath, A.; Mangla, B. Advanced Polymeric Materials for Aerospace Applications; Wiley Online Library: Hoboken, NJ, USA, 2022; pp. 117–136. ISBN 9781119905264. [Google Scholar]
- Dyer, W.E.; Kumru, B. Polymers as aerospace structural components: How to reach sustainability? Macromol. Chem. Phys. 2023, 224, 2300186. [Google Scholar] [CrossRef]
- Xu, F.-F.; Qin, J.; Zhong, Y.-W.; Gao, D.; Dong, Y.; Feng, H. Recent Advances in Liquid Crystal Polymer-Based Circularly Polarized Luminescent Materials: A Review. Polymers 2025, 17, 1961. [Google Scholar] [CrossRef]
- Guardia, J.; Reina, J.A.; Giamberini, M.; Montane, X. An up-to-date overview of liquid crystals and liquid crystal polymers for different applications: A review. Polymers 2024, 16, 2293. [Google Scholar] [CrossRef]
- Lv, J.-a.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179–184. [Google Scholar] [CrossRef]
- Hamley, I. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog. Polym. Sci. 2009, 34, 1161–1210. [Google Scholar] [CrossRef]
- Yang, G.G.; Choi, H.J.; Han, K.H.; Kim, J.H.; Lee, C.W.; Jung, E.I.; Jin, H.M.; Kim, S.O. Block copolymer nanopatterning for nonsemiconductor device applications. ACS Appl. Polym. Mater. 2022, 14, 12011–12037. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Lloyd, E.C.; Matuszewski, K.E.; Xu, Y.; Ganesan, V.; Huang, R.; Kumar, M.; Hickey, R.J. Nanostructured block copolymer muscles. Nat. Nanotechnol. 2022, 17, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Karayianni, M.; Pispas, S. Block copolymer solution self-assembly: Recent advances, emerging trends, and applications. J. Polym. Sci. 2021, 59, 1874–1898. [Google Scholar] [CrossRef]
- Cui, H.; Chen, Z.; Zhong, S.; Wooley, K.L.; Pochan, D.J. Block copolymer assembly via kinetic control. Science 2007, 317, 647–650. [Google Scholar] [CrossRef]
- Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M.V.; Perez, L.R.; Battaglia, G. Block copolymer nanostructures. Nano Today 2008, 3, 38–46. [Google Scholar] [CrossRef]
- Liao, Y.; Sangroniz, L.; Safari, M.; Schmalz, H.; Müller, A.J. The Decisive Role of Confinement in Enhancing or Suppressing Self-Nucleation in Polyethylene-Containing Block Copolymers. Macromol. Chem. Phys. 2025, 226, e00056. [Google Scholar] [CrossRef]
- Safari, M.; Ocando, C.; Liao, Y.; Drechsler, M.; Volk, N.; Schaller, R.; Held, M.; Abetz, V.; Schmalz, H.; Müller, A.J. Morphology and confinement effects on crystallization kinetics in polyethylene containing block copolymers. Polymer 2024, 298, 126863. [Google Scholar] [CrossRef]
- Schmalz, H.; Abetz, V. Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications. Polymers 2022, 14, 696. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Yu, S.; Park, J.; Park, C. Interactive structural color displays of nano-architectonic 1-dimensional block copolymer photonic crystals. Sci. Tech. Adv. Mater. 2023, 24, 2156256. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Lundy, R.; Walsh, J.J.; Ponsinet, V.; Fleury, G.; Morris, M.A. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020, 35, 100936. [Google Scholar] [CrossRef]
- Doerk, G.S.; Yager, K.G. Beyond native block copolymer morphologies. Mol. Syst. Des. Eng. 2017, 2, 518–538. [Google Scholar] [CrossRef]
- Xie, H.L.; Li, X.; Ren, J.; Bishop, C.; Arges, C.G.; Nealey, P.F. Controlling domain orientation of liquid crystalline block copolymer in thin films through tuning mesogenic chemical structures. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 532–541. [Google Scholar] [CrossRef]
- Yu, H. Photoresponsive liquid crystalline block copolymers: From photonics to nanotechnology. Prog. Polym. Sci. 2014, 39, 781–815. [Google Scholar] [CrossRef]
- Omenat, A.; Hikmet, R.; Lub, J.; Van der Sluis, P. Synthesis, characterization, and physical properties of new ferroelectric liquid crystalline materials: Block copolymers. Macromolecules 1996, 29, 6730–6736. [Google Scholar] [CrossRef]
- Mahajan, L.H.; Ndaya, D.; Deshmukh, P.; Peng, X.; Gopinadhan, M.; Osuji, C.O.; Kasi, R.M. Optically active elastomers from liquid crystalline comb copolymers with dual physical and chemical cross-links. Macromolecules 2017, 50, 5929–5939. [Google Scholar] [CrossRef]
- Koyra, N.; Yu, H.; Drummond, C.J.; Zhai, J.; Dyett, B. Recent developments with pH-responsive lyotropic liquid crystalline lipid nanoparticles for targeted bioactive agent delivery. Expert Opin. Drug Deliv. 2025, 22, 1303–1324. [Google Scholar] [CrossRef]
- Collyer, A.A. Liquid Crystal Polymers: From Structures to Applications; Springer Science & Business Media: New York, NY, USA, 2012; Volume 1, ISBN 9401118701. [Google Scholar]
- Nickmans, K.; Schenning, A.P. Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning. Adv. Mater. 2018, 30, 1703713. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Cheng, X.; Tang, Z.; Wang, Y.; He, Z.; Zhang, W. Construction of liquid-crystalline assemblies with tunable chiroptical properties through tailoring solvophilic chains in polymerization-induced chiral self-assembly. Chem. Commun. 2025, 61, 3880–3883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, S.; Li, S.; Li, Y.; Yang, R. Stress-Free Two-Way Liquid Crystalline–Semicrystalline Shape Memory Copolymer Actuators with Multistimuli-Responsive Actuation Behaviors. Macromolecules 2025, 58, 3439–3449. [Google Scholar] [CrossRef]
- Hu, J.; Yu, M.; Wang, M.; Choy, K.-L.; Yu, H. Design, regulation, and applications of soft actuators based on liquid-crystalline polymers and their composites. ACS Appl. Mater. Interfaces 2022, 14, 12951–12963. [Google Scholar] [CrossRef]
- Schara, S.; Blau, R.; Church, D.C.; Pokorski, J.K.; Lipomi, D.J. Polymer chemistry for haptics, soft robotics, and human–machine interfaces. Adv. Funct. Mater. 2021, 31, 2008375. [Google Scholar] [CrossRef]
- Bagchi, K.; Emeršič, T.; Martínez-González, J.A.; de Pablo, J.J.; Nealey, P.F. Functional soft materials from blue phase liquid crystals. Sci. Adv. 2023, 9, eadh9393. [Google Scholar] [CrossRef]
- Weng, L.; Ma, M.; Yin, C.; Fei, Z.-X.; Yang, K.-K.; Ross, C.A.; Shi, L.-Y. Synthesis and self-assembly of silicon-containing azobenzene liquid crystalline block copolymers. Macromolecules 2023, 56, 470–479. [Google Scholar] [CrossRef]
- Gallot, B. Comb-like and block liquid crystalline polymers for biological applications. Prog. Polym. Sci. 1996, 21, 1035–1088. [Google Scholar] [CrossRef]
- Dong, L.; Chandra, A.; Wylie, K.; Nabae, Y.; Hayakawa, T. Tunable thin film periodicities by controlling the orientation of cylindrical domains in side chain liquid crystalline block copolymers. Int. J. Polym. Sci. 2022, 2022, 8286518. [Google Scholar] [CrossRef]
- Lee, W.; Kumar, S. Unconventional Liquid Crystals and Their Applications; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021; ISBN 3110584379. [Google Scholar]
- Mukai, K.; Hara, M.; Nagano, S.; Seki, T. High-Density Liquid-Crystalline Polymer Brushes Formed by Surface Segregation and Self-Assembly. Angew. Chem. Int. Ed. 2016, 55, 14028–14032. [Google Scholar] [CrossRef]
- Lee, C.; Ndaya, D.; Bosire, R.; Kim, N.K.; Kasi, R.M.; Osuji, C.O. Fast photoswitchable order–disorder transitions in liquid-crystalline block co-oligomers. J. Am. Chem. Soc. 2021, 144, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv. Mater. 2011, 23, 3337–3344. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Chen, Y.-X.; Wang, W.-Z.; Yu, H.-F. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials. Chin. J. Polym. Sci. 2021, 39, 397–416. [Google Scholar] [CrossRef]
- Zhong, H.-Y.; Chen, L.; Liu, X.-F.; Yang, R.; Wang, Y.-Z. Novel liquid crystalline copolyester containing amphi-mesogenic units toward multiple stimuli-response behaviors. J. Mater. Chem. C 2017, 5, 9702–9711. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Soberats, B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym. J. 2018, 50, 149–166. [Google Scholar] [CrossRef]
- Liu, C.-L.; Lin, C.-H.; Kuo, C.-C.; Lin, S.-T.; Chen, W.-C. Conjugated rod–coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Prog. Polym. Sci. 2011, 36, 603–637. [Google Scholar] [CrossRef]
- Tao, L.; Li, M.-L.; Yang, K.-P.; Guan, Y.; Wang, P.; Shen, Z.; Xie, H.-L. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding. ACS Appl. Polym. Mater. 2019, 11, 15051–15059. [Google Scholar] [CrossRef]
- Vaidya, S.; Sharma, M.; Brückner, C.; Kasi, R.M. Hierarchically Structured Stimuli-Responsive Liquid Crystalline Terpolymer–Rhodamine Dye Conjugates. Molecules 2025, 30, 401. [Google Scholar] [CrossRef]
- Lugger, S.J.; Houben, S.J.; Foelen, Y.; Debije, M.G.; Schenning, A.P.; Mulder, D.J. Hydrogen-bonded supramolecular liquid crystal polymers: Smart materials with stimuli-responsive, self-healing, and recyclable properties. Chem. Rev. 2021, 122, 4946–4975. [Google Scholar] [CrossRef]
- Liu, F.; Urban, M.W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23. [Google Scholar] [CrossRef]
- Mahajan, L.; Ndaya, D.; Deshmukh, P.; Kasi, R. New Stimuli-Response Liquid Crystalline Polymer Architectures; Springer: Berlin/Heidelberg, Germany, 2020; pp. 479–492. ISBN 978-3-030-43350-5. [Google Scholar]
- Mohd Alauddin, S.; Fadhilah Kamalul Aripin, N.; Selvi Velayutham, T.; Martinez-Felipe, A. Liquid crystalline copolymers containing sulfonic and light-responsive groups: From molecular design to conductivity. Molecules 2020, 25, 2579. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, L.; Wu, F.; Gong, S.; Wei, J.; Lin, S. Self-assembly and stimuli-responsive behaviours of side-chain liquid crystalline copolymers: A dissipative particle dynamics simulation approach. Phys. Chem. Chem. Phys. 2019, 21, 7645–7653. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chung, C.; Dunn, M.L.; Yu, K. 4D printing of liquid crystal elastomer composites with continuous fiber reinforcement. Nat. Commun. 2024, 15, 8491. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.-Y.; Lan, J.; Lee, S.; Cheng, L.-C.; Yager, K.G.; Ross, C.A. Vertical lamellae formed by two-step annealing of a rod–coil liquid crystalline block copolymer thin film. ACS Nano 2020, 14, 4289–4297. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, Y.; Kang, D.-G.; Park, H.; Kim, Y.; Osuji, C.O.; Ahn, H.; Lee, C.; Yoon, D.K. Nanoconfinement-induced orientation changes in liquid crystalline block co-oligomers. J. Mater. Chem. C 2025, 13, 17674–17681. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Ping, J.; Wu, Q.-W.; Pan, H.-B.; Fan, X.-H.; Shen, Z.; Zhou, Q.-F. Bulk self-assembly and ionic conductivity of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly (ionic liquid). Polym. Chem. 2017, 8, 1689–1698. [Google Scholar] [CrossRef]
- Takahashi, K.; Taguchi, D.; Kajitani, T.; Fukushima, T.; Kubo, S.; Shishido, A. Synthesis and Characterization of Side-Chain Liquid-Crystalline Block Copolymers Containing Cyano-Terminated Phenyl Benzoate Moieties. Molecules 2023, 28, 7849. [Google Scholar] [CrossRef]
- Luo, M.; Jin, B.; Luo, Y.; Li, X. Supramicellar nanofibrils with end-to-end coupled uniform cylindrical micelle subunits via one-step assembly from a liquid crystalline block copolymer. Macromolecules 2021, 54, 6845–6853. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, B.; Li, J.; Wang, Y.; Li, X.; Lin, S. Formation of hierarchical platelets with morphological control by self-assembly of an azobenzene-containing liquid crystalline diblock copolymer. Mater. Chem. Front. 2022, 6, 1615–1622. [Google Scholar] [CrossRef]
- Hebner, T.S.; Bowman, C.N.; White, T.J. The contribution of intermolecular forces to phototropic actuation of liquid crystalline elastomers. Polym. Chem. 2021, 12, 1581–1587. [Google Scholar] [CrossRef]
- Yang, H.; Luo, Y.; Jin, B.; Chi, S.; Li, X. Convoluted micellar morphological transitions driven by tailorable mesogenic ordering effect from discotic mesogen-containing block copolymer. Nat. Commun. 2024, 15, 2968. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, T.; Yuan, X.; Ren, L. Mesogen-jacketed liquid crystal like block copolymers: Synthesis and self-assembly to prepare 1D PC thin films. React. Funct. Polym. 2022, 181, 105452. [Google Scholar] [CrossRef]
- AboElsood, A.G.; Xiang, Y.; Lin, I.-M.; Chen, C.-R.; Chiang, Y.-W. Coincident augmentation and alignment of lamellar stacking structures for rapid fabrication of solid-state polymer photonic crystal films. J. Taiwan Inst. Chem. Eng. 2025, 172, 106107. [Google Scholar] [CrossRef]
- Czubak, B.; Warren, N.J.; Nagaraj, M. Steroid-based liquid crystalline polymers: Responsive and biocompatible materials of the future. Crystals 2022, 12, 1000. [Google Scholar] [CrossRef]
- Prévôt, M.; Andro, H.; Alexander, S.; Ustunel, S.; Zhu, C.; Nikolov, Z.; Rafferty, S.; Brannum, M.; Kinsel, B.; Korley, L. Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds. Soft Matter 2018, 14, 354–360. [Google Scholar] [CrossRef]
- Zheng, M.; Yuan, J. Polymeric nanostructures based on azobenzene and their biomedical applications: Synthesis, self-assembly and stimuli-responsiveness. Org. Biomol. Chem. 2022, 20, 749–767. [Google Scholar] [CrossRef]
- Gong, Y.; Tu, S.; Ueki, R.; Fujii, Y.; Yasuda, S.; Sando, S.; Uchida, J.; Fukushima, K.; Kato, T. Liquid-Crystalline Block Copolymers Comprising Cholesterol-Based Dendritic Moieties and Poly (L, L-lactide) Chains. ACS Appl. Polym. Mater. 2025, 7, 1875–1885. [Google Scholar] [CrossRef]
- Omer, M.; Islam, M.T.; Khan, M.; Kim, Y.K.; Lee, J.H.; Kang, I.-K.; Park, S.-Y. Liquid crystal-based biosensors using a strong polyelectrolyte-containing block copolymer, poly (4-cyanobiphenyl-4′-oxyundecylacrylate)-b-poly (sodium styrene sulfonate). Macromol. Res. 2014, 22, 888–894. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, T.; Gao, J.; Ren, Y.; Ding, Y.; Liu, S.; Liu, L.; Huang, H.; Wang, H.; Wang, C. Nanoplatform for synergistic therapy constructed via the co-assembly of a reduction-responsive cholesterol-based block copolymer and a photothermal amphiphile. Mater. Today Bio 2024, 29, 101355. [Google Scholar] [CrossRef]
- Wen, W.; Ouyang, W.; Guan, S.; Chen, A. Synthesis of azobenzene-containing liquid crystalline block copolymer nanoparticles via polymerization induced hierarchical self-assembly. Polym. Chem. 2021, 12, 458–465. [Google Scholar] [CrossRef]
- Yan, M.; Tang, J.; Xie, H.-L.; Ni, B.; Zhang, H.-L.; Chen, E.-Q. Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J. Mater. Chem. C 2015, 3, 8526–8534. [Google Scholar] [CrossRef]
- Xu, X.; Feng, J.; Li, W.-Y.; Wang, G.; Feng, W.; Yu, H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog. Polym. Sci. 2024, 149, 101782. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Zheng, Y.; Neyts, K. Revolutionizing Lithium-Ion Batteries: Exploiting Liquid Crystal Electrolytes. EES Batter. 2025. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Y.; Wujieti, B.; Li, Z.; Chen, A.; Guan, J.; Wang, H.; Jiang, Y.; Zhou, H.; Cui, W. Rapid ion conduction enabled by synergism of oriented liquid crystals and Electron-Deficient boron atoms in multiblock copolymer electrolyte for advanced Solid-State Lithium-Ion battery. Chem. Eng. J. 2024, 486, 150298. [Google Scholar] [CrossRef]
- Álvarez Moisés, I.; Król, M.; Keus, G.; He, Z.; Innocenti, A.; Passerini, S.; Ruokolainen, J.; Gohy, J.-F. Enhancement of Lithium-Ion Conductivity in Liquid Crystalline Block Copolymer Electrolyte by Electric Field Alignment. J. Am. Chem. Soc. 2025, 147, 20347–20358. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Z.; Cui, C.; Weng, L.; Yin, C.; Yang, D.; Shi, L.-Y. Self-assembly and energy storage potentials of biphasic phase change azobenzene liquid crystalline block copolymers. Polymer 2024, 312, 127641. [Google Scholar] [CrossRef]
- Wang, J.; Song, T.; Zhang, Y.; Liu, J.; Yu, M.; Yu, H. Light-driven autonomous self-oscillation of a liquid-crystalline polymer bimorph actuator. J. Mater. Chem. C. 2021, 9, 12573–12580. [Google Scholar] [CrossRef]
- Lee, C.; Ndaya, D.; Bosire, R.; Gabinet, U.R.; Sun, J.; Gopalan, P.; Kasi, R.M.; Osuji, C.O. Effects of labile mesogens on the morphology of liquid crystalline block copolymers in thin films. Macromolecules 2021, 54, 3223–3231. [Google Scholar] [CrossRef]
- Liao, F.; Shi, L.-Y.; Cheng, L.-C.; Lee, S.; Ran, R.; Yager, K.G.; Ross, C.A. Self-assembly of a silicon-containing side-chain liquid crystalline block copolymer in bulk and in thin films: Kinetic pathway of a cylinder to sphere transition. Nanoscale 2019, 11, 285–293. [Google Scholar] [CrossRef]
- Gopinadhan, M.; Choo, Y.; Osuji, C.O. Strong orientational coupling of block copolymer microdomains to smectic layering revealed by magnetic field alignment. ACS Macro Lett. 2016, 5, 292–296. [Google Scholar] [CrossRef]
- Feng, B.-L.; Zhai, C.-C.; Zhang, D.-B.; Guo, H.-C.; Zhang, H.-L.; Zhang, L.; Li, H.; Wang, L.; Lei, L.; Zong, C.-Y. Robust photo-responsive superwetting surfaces on hierarchical-structured copper mesh via dip-coating with mussel-inspired azo-copolymer. Chin. J. Polym. Sci. 2025, 43, 1134–1145. [Google Scholar] [CrossRef]
- Wang, J.; Chortos, A. Control strategies for soft robot systems. Adv. Intell. Syst. 2022, 4, 2100165. [Google Scholar] [CrossRef]
- Hu, C.; Pané, S.; Nelson, B.J. Soft micro-and nanorobotics. Annu. Rev. Control Robot. Auton. 2018, 1, 53–75. [Google Scholar] [CrossRef]
- Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft robot review. Int. J. Control Autom. Syst. 2017, 15, 3–15. [Google Scholar] [CrossRef]
- Ng, C.S.X.; Tan, M.W.M.; Xu, C.; Yang, Z.; Lee, P.S.; Lum, G.Z. Locomotion of miniature soft robots. Adv. Mater. 2021, 33, 2003558. [Google Scholar] [CrossRef]
- St. Pierre, R.; Bergbreiter, S. Toward autonomy in sub-gram terrestrial robots. Annu. Rev. Control Robot. Auton. 2019, 2, 231–252. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef]
- Whitesides, G.M. Soft robotics. Angew. Chem. Int. Ed. 2018, 57, 4258–4273. [Google Scholar] [CrossRef]
- Naji, L.; Safari, M.; Moaven, S. Fabrication of SGO/Nafion-based IPMC soft actuators with sea anemone-like Pt electrodes and enhanced actuation performance. Carbon 2016, 100, 243–257. [Google Scholar] [CrossRef]
- Safari, M.; Naji, L.; Baker, R.T.; Afshar Taromi, F. Influence of electrolytes of L i salts, EMIMBF 4, and mixed phases on electrochemical and physical properties of N afion membrane. J. Appl. Polym. Sci. 2017, 134, 45239. [Google Scholar] [CrossRef]
- Safari, M.; Naji, L.; Baker, R.T.; Taromi, F.A. The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators. Polymer 2015, 76, 140–149. [Google Scholar] [CrossRef]
- Rajabi, N.; Scarfo, M.G.; Fredericks, C.M.; Herrera Restrepo, R.S.; Adibi, A.; Shahsavan, H. From Anisotropic Molecules and Particles to Small-Scale Actuators and Robots: An Account of Polymerized Liquid Crystals. Acc. Mater. Res. 2024, 5, 1520–1531. [Google Scholar] [CrossRef]
- Lv, J.-a.; Wang, W.; Wu, W.; Yu, Y. A reactive azobenzene liquid-crystalline block copolymer as a promising material for practical application of light-driven soft actuators. J. Mater. Chem. C 2015, 3, 6621–6626. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, X.; Zhang, D.; Zhou, Y.; Yan, W.; Li, D. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat. Commun. 2023, 14, 3869. [Google Scholar] [CrossRef] [PubMed]
- Epps, T.H., III; O’Reilly, R.K. Block copolymers: Controlling nanostructure to generate functional materials–synthesis, characterization, and engineering. Chem. Sci. 2016, 7, 1674–1689. [Google Scholar] [CrossRef]
- Lv, F.; An, Z.; Wu, P. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397. [Google Scholar] [CrossRef]
- Gopinadhan, M.; Majewski, P.W.; Choo, Y.; Osuji, C.O. Order-Disorder Transition and Alignment Dynamics of a Block Copolymer Under High Magnetic Fields by In Situ X-Ray Scattering. Phys. Rev. Lett. 2013, 110, 078301. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chen, Y.-H.; Ho, R.-M. Metastable network phases from controlled self-assembly of high-χ block copolymers. Phys. Rev. Mater. 2024, 8, 030301. [Google Scholar] [CrossRef]
- Houriet, C.; Claassen, E.; Mascolo, C.; Jöhri, H.; Brieva, A.; Szmolka, S.; Vincent-Bonnieu, S.; Suliga, A.; Heeb, R.; Gantenbein, S. 3D Printing of Liquid Crystal Polymers for Space Applications. Adv. Mater. Technol. 2025, 10, 2400571. [Google Scholar] [CrossRef]
- Johann, K.S.; Wolf, A.; Bonten, C. Mechanical Properties of 3D-Printed Liquid Crystalline Polymers with Low and High Melting Temperatures. Materials 2023, 17, 152. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, S.; Qu, B.; Wang, R.; Zheng, Y.; Liu, X.; Li, W.; Gao, J.; Chen, Q.; Zhuo, D. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat. Commun. 2023, 14, 6586. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.C.; Lei, I.M.; van de Kerkhof, G.T.; Parker, R.M.; Richards, K.D.; Evans, R.C.; Huang, Y.Y.S.; Vignolini, S. 3D printing of liquid crystalline hydroxypropyl cellulose—Toward tunable and sustainable volumetric photonic structures. Adv. Funct. Mater. 2022, 32, 2108566. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Cai, S.; Yang, J. Three-dimensional printing of liquid crystal elastomers and their applications. ACS Appl. Polym. Mater. 2022, 4, 3153–3168. [Google Scholar] [CrossRef]
- Choi, W.; Advincula, R.C.; Wu, H.F.; Jiang, Y. Artificial intelligence and machine learning in the design and additive manufacturing of responsive composites. MRS Commun. 2023, 13, 714–724. [Google Scholar] [CrossRef]
- Shimoga, G.; Choi, D.-S.; Kim, S.-Y. Bio-inspired soft robotics: Tunable photo-actuation behavior of azo chromophore containing liquid crystalline elastomers. Appl. Sci. 2021, 11, 1233. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, X.; Qi, H.; Zhang, H.; Li, T.; Zhao, Y.; Li, G.; Zhai, W. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat. Commun. 2024, 15, 3237. [Google Scholar] [CrossRef]
- Yu, C.-Y.; Mu, J.-H.; Fu, Y.-L.; Zhang, Y.-C.; Han, J.-S.; Zhao, R.-Y.; Zhao, J.; Wang, Z.-H.; Zhao, Z.-C.; Li, W.-J. Azobenzene based photo-responsive mechanical actuator fabricated by intermolecular H-bond interaction. Chin. J. Polym. Sci. 2021, 39, 417–424. [Google Scholar] [CrossRef]
- Ilyin, S.O. Structural rheology in the development and study of complex polymer materials. Polymers 2024, 16, 2458. [Google Scholar] [CrossRef]
- Schröder, E.; Müller, G.; Arndt, K.-F. Polymer Characterization; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2022; ISBN 3112470923. [Google Scholar]
- Danielsen, S.P.; Beech, H.K.; Wang, S.; El-Zaatari, B.M.; Wang, X.; Sapir, L.; Ouchi, T.; Wang, Z.; Johnson, P.N.; Hu, Y. Molecular characterization of polymer networks. Chem. Rev. 2021, 121, 5042–5092. [Google Scholar] [CrossRef]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A. Magneto-/electro-responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- He, D.; Li, Q.; Long, L.; Luo, Y.; Jin, B.; Li, X. Accurate Detection of the Structural Features of Liquid Crystalline Block Copolymer Cylindrical Micelles via Aggregation-Induced Emission. Macromolecules 2025, 58, 6524–6533. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safari, M.; Harings, J.A.W. Liquid Crystalline Block Copolymers for Advanced Applications: A Review. Polymers 2025, 17, 2444. https://doi.org/10.3390/polym17182444
Safari M, Harings JAW. Liquid Crystalline Block Copolymers for Advanced Applications: A Review. Polymers. 2025; 17(18):2444. https://doi.org/10.3390/polym17182444
Chicago/Turabian StyleSafari, Maryam, and Jules A. W. Harings. 2025. "Liquid Crystalline Block Copolymers for Advanced Applications: A Review" Polymers 17, no. 18: 2444. https://doi.org/10.3390/polym17182444
APA StyleSafari, M., & Harings, J. A. W. (2025). Liquid Crystalline Block Copolymers for Advanced Applications: A Review. Polymers, 17(18), 2444. https://doi.org/10.3390/polym17182444