Thermoplastic Recycling of WEEE Carcasses with the Incorporation of Talc, Fly Ash, and Elastomers for Composites with Electromagnetic Interference Shielding Characteristics for Electric Car Components
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- -
- HDPE, LDPE, and PP recycled from WEEE waste (denoted as HDPEDE, LDPEDE, and PPDE, respectively), technologically obtained by ALL GREEN SRL, Iași, Romania, with the methodology and characteristics being described in [44]. Before use, the recycled polymer matrices were regranulated into pellets with a size of approximately 2 mm.
- -
- Industrial talc (Ta) (Imerys S.A., Paris, France), up to 20% (wt%),
- -
- Thermal power plant ash of Romanian origin (FA), with particles average size under 20 μm and a D50 of 9.1 μm, up to 10% (wt%).
- -
- A 10% (wt%) elastomer type: ethylene-methyl acrylate-glycidyl methacrylate terpolymer, Lotader AX 8840 (SK Functional Polymer S.A.S., Courbevoie, Île-de-France, France).
- -
- Up to 3% (wt%) compatibilizing and coupling agents in all developed composites, including PEGMA 400 (Polysciences, Warrington, PA, USA), an Ethylene Acrylic Acid Copolymer, and Tegomer E 525 (Evonik Operations GmbH, Essen, Germany).
2.2. Equipment and Methods
2.2.1. Obtaining the Composite Materials
2.2.2. Characterization Methods
- -
- Melt flow rate and melt density were determined according to [47] with a Lab BP-8164-B Melt Flow Index Tester (Dongguan Baopin Precision Instrument Co., Ltd., Dongguan City, Guangdong Province, China).
- -
- Ash content of samples was determined using an LVT calcination oven (Nabertherm GmbH, Lilienthal, Germany) and a UF 55 forced convection oven (Memmert GmbH + Co. KG., Schwabach, Germany). The samples were first dried in the oven to remove moisture, then burned in the oven, and the tests were carried out according to [48].
- -
- The VICAT soaking temperature test was carried out according to [49].
3. Description and Characterization of the Studied Materials
3.1. Composition and Labeling of the Studied Materials
3.2. Characterization of the Studied Materials
3.2.1. SEM Analysis
3.2.2. XRF Analysis of the Fly Ash
3.2.3. XRF Spectrum for Recycled Matrices
3.2.4. Thermogravimetric Analysis of Recycled Thermoplastic Matrices
3.2.5. Physical Analysis
3.2.6. Electrical, Dielectric, and Electromagnetic Compatibility Tests
3.2.7. Thermal Shielding Evaluation
3.2.8. Mechanical Properties
3.2.9. Analysis of the Degree of Water and Solvent Absorption
3.2.10. Martens Thermal Stability
- -
- Martens thermal stability [°C]: 90–110.
- -
- Flammability class without flame retardant: V-2.
- -
- Permanent service temperature [°C]: <80.
- -
- Short-term high temperature resistance [°C]: 170–200.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Union. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Off. J. Eur. Union 2003, L37, 24–38. [Google Scholar]
- Goosey, E.; Goosey, M. The materials of waste electrical and electronic equipment—Book chapter. In Waste Electrical and Electronic Equipment (WEEE) Handbook; Woodhead Publishing: Cambridge, UK, 2019; pp. 231–262. [Google Scholar]
- Martinho, G.; Pires, A.; Saraiva, L.; Ribeiro, R. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag. 2012, 32, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Cardamone, G.; Ardolino, F.; Arena, U. About the environmental sustainability of the European management of WEEE plastics. Waste Manag. 2021, 126, 119–132. [Google Scholar] [CrossRef]
- European Union. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 2003, L37, 19–23. [Google Scholar]
- Chaine, C.; Hursthouse, A.S.; McLean, B.; McLellan, I.; McMahon, B.; McNulty, J.; Miller, J.; Viza, E. Recycling Plastics from WEEE: A Review of the Environmental and Human Health Challenges Associated with Brominated Flame Retardants. Int. J. Environ. Res. Public Health 2022, 19, 766. [Google Scholar] [CrossRef]
- Lahtela, V.; Hamod, H.; Kärki, T. Assessment of critical factors in waste electrical and electronic equipment (WEEE) plastics on the recyclability: A case study in Finland. Sci. Total Environ. 2022, 830, 155627. [Google Scholar] [CrossRef]
- Haba, B.; Djellali, S.; Abdelouahed, Y.; Boudjelida, S.; Faleschini, F.; Carraro, M. Transforming Plastic Waste into Value: A Review of Management Strategies and Innovative Applications in Sustainable Construction. Polymers 2025, 17, 881. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S.; Puttegowda, M.; Thiagamani, S.M.K.; Rajeshkumar, G.; Kumar, M.H.; Oladijo, O.P.; Fiore, V.; Cuadrado, M.M.M. Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art. Polym. Compos. 2022, 43, 9. [Google Scholar] [CrossRef]
- Balu, R.; Dutta, N.K.; Roy Choudhury, N. Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers 2022, 14, 4788. [Google Scholar] [CrossRef]
- Fenwick, C.; Mayers, K.; Lee, J.; Murphy, R. Recycling plastics from e-waste: Implications for effective eco-design. J. Ind. Ecol. 2023, 27, 5. [Google Scholar] [CrossRef]
- Karrad, S.; Lopez Cuesta, J.-M.; Crespy, A. Influence of a fine talc on the properties of composites with high density polyethylene and polyethylene/polystyrene blends. J. Mater. Sci. 1998, 33, 453–461. [Google Scholar] [CrossRef]
- Adib Kalantar Mehrjerdi, A.K.; Åkesson, D.; Skrifvars, M. Influence of talc fillers on bimodal polyethylene composites for ground heat exchangers. J. Appl. Polym. Sci. 2020, 137, 49290. [Google Scholar] [CrossRef]
- Mehrjerdi, A.; Bashir, T.; Skrifvars, M. Melt rheology and extrudate swell properties of talc filled polyethylene compounds. Heliyon 2020, 6, e04060. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Leontiadis, K.; Ntampou, X.; Tsivintzelis, I. Modification of Talc and Mechanical Properties of Polypropylene-Modified Talc Composite Drawn Fibers. J. Compos. Sci. 2024, 8, 91. [Google Scholar] [CrossRef]
- Castillo, L.A.; Barbosa, S.E. Influence of Processing and Particle Morphology on Final Properties of Polypropylene/Talc Nanocomposites. Polym. Compos. 2020, 41, 3170–3183. [Google Scholar] [CrossRef]
- Malyuta, D.; Matteson, K.; Ryan, C.; Berry, M.; Bajwa, D. An investigation into the tensile properties of recycled high-density polyethylene (rHDPE) blended with talc filler. Results Mater. 2023, 17, 100377. [Google Scholar] [CrossRef]
- Vyncke, G.; Fiorio, R.; Cardon, L.; Ragaert, K. The effect of polyethylene on the properties of talc-filled recycled polypropylene. Plast. Rubber Compos. 2020, 51, 118–125. [Google Scholar] [CrossRef]
- Racca, L.M.; Pacheco, E.B.A.V.; Bertolino, L.C.; Campos, C.X.D.S.; Andrade, M.C.D.; de Sousa, A.M.F.; Silva, A.L.N.D. Composites Based on Polypropylene and Talc: Processing Procedure and Prediction Behavior by Using Mathematical Models. Adv. Condens. Matter Phys. 2018, 2018, 6037804. [Google Scholar] [CrossRef]
- Benabid, F.Z.; Said Salem, M.E.C.M.; Mallem, O.K.; Zouai, F. Investigation of the influence of mineral fillers on the structural and mechanical characteristics of polyethylene high-density (PEHD) composites reinforced with alumina and talc. Res. Eng. Struct. Mater. 2024, 10, 1399–1408. [Google Scholar] [CrossRef]
- Anderson, C.; et al. Synergistic Effects of Alumina and Talc Fillers in High-Density Polyethylene: A Comprehensive Study. Compos. Sci. 2020, 28, 201–215. [Google Scholar]
- Leong, Y.W.; Mohd, Z.A.; Ishak, A. Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites. J. Appl. Polym. Sci. 2004, 91, 3327–3336. [Google Scholar] [CrossRef]
- De Oliveira, C.I.R.; Rocha, M.C.G.; De Assis, J.T.; Da Silva, A.L.N. Morphological, Mechanical, and Thermal Properties of PP/SEBS/Talc Composites. J. Thermoplast. Compos. Mater. 2022, 35, 281–299. [Google Scholar] [CrossRef]
- Wu, J.; Chen, C.; Wu, Y.; Wu, G.; Kuo, M.; Tsai, Y. Mechanical properties, morphology, and crystallization behavior of polypropylene/elastomer/talc composites. Polym. Compos. 2015, 36, 69–77. [Google Scholar] [CrossRef]
- Denaca, M.; Samit, I.; Musila, V. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 1. Structure. Composites 2005, 36, 1094–1101. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Lungu, M.V.; Ciobanu, R.C.; Ion, I.; Pătroi, D.; Sbârcea, B.G.; Marinescu, V.E.; Constantinescu, D. Biodegradable Polymer Composites Based on Polypropylene and Hybrid Fillers for Applications in the Automotive Industry. Processes 2025, 13, 1078. [Google Scholar] [CrossRef]
- Wong, F.R.; Maszahar, N.S.; Ahmad, N.; Shahrum, M.A.M.; Zamri, S.F.M.; Yong, S.K. Effects of Fly Ash on Thermal and Mechanical Properties of Various Fly Ash-Recycled Thermoplastic Composite. Malays. J. Chem. 2024, 26, 125–136. [Google Scholar] [CrossRef]
- Dagar, A.; Narula, A.K. Fabrication of thermoplastic composites using fly-ash a coal and hollow glass beads to study their mechanical, thermal, rheological, morphological and flame retradency properties. Russ. J. Appl. Chem. 2017, 90, 1494–1503. [Google Scholar] [CrossRef]
- Sakai, Y.; Ogiwara, N.; Uchida, S.; Nakagawa, S.; Yoshie, N. Mechanistic characterization of polyethylene by incorporating fly ash. Compos. Part B Eng. 2024, 287, 111864. [Google Scholar] [CrossRef]
- Yadav, J.; Ramkumar, P.; Parwani, A.K. Fly Ash-Linear Low Density Polyethylene Composites for Rotational Molding: Morphological and Thermal Analysis. J. Mater. Eng Perform 2024, 34, 18039–18049. [Google Scholar] [CrossRef]
- Porabka, A.; Jurkowski, K.; Laska, J. Fly ash used as a reinforcing and flame-retardant filler in low-density polyethylene. Polimery 2015, 60, 4. [Google Scholar] [CrossRef]
- Alghamdi, M. Performance for Fly Ash Reinforced HDPE Composites over the Ageing of Material Components. Polymers 2022, 14, 2913. [Google Scholar] [CrossRef]
- Chinh, N.T.; Mai, T.T.; Trang, N.T.T.; Giang, N.V.; Trung, T.H.; Huong, N.T.T.; Hoang, T. Tensile, electrical properties and morphology of polyethylene/modified fly ash composites using ultraflow. Vietnam. J. Chem. Int. Ed. 2016, 54, 776–780. [Google Scholar] [CrossRef]
- Kaleni, A.; Magagula, S.I.; Motloung, M.T.; Mochane, M.J.; Mokhena, T.C. Preparation and characterization of coal fly ash reinforced polymer composites: An overview. Express Polymer Letters 2022, 16, 735–759. [Google Scholar] [CrossRef]
- Alghamdi, M. Effect of Filler Particle Size on the Recyclability of Fly Ash Filled HDPE Composites. Polymers 2021, 13, 2836. [Google Scholar] [CrossRef]
- Caban, R.; Gnatowski, A. Analysis of the Impact of Waste Fly Ash on Changes in the Structure and Thermal Properties of the Produced Recycled Materials Based on Polyethylene. Materials 2024, 17, 3453. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.; Hashmi, A.W.; Ahmad, S.; Iqbal, F.; Soni, H.; Meena, A.; Al-Kahtani, A.A.; Pandit, B.; Kamyab, H.; Payal, H.; et al. Influence of fly ash on thermo-mechanical and mechanical behavior of injection molded polypropylene matrix composites. Chemosphere 2023, 343, 140225. [Google Scholar] [CrossRef]
- Ez-Zahraoui, S.; Sabir, S.; Berchane, S.; Bouhfid, R.; El Kacem Qaiss, A.; Aouragh Hassani, F.; El Achaby, M. Toughening effect of thermoplastic polyurethane elastomer on the properties of fly ash-reinforced polypropylene-based composites. Polym. Compos. 2023, 44, 1534–1545. [Google Scholar] [CrossRef]
- Nasir, N.H.M.; Usman, F.; Woen, E.L.; Ansari, M.N.M.; Sofyan, M. Effect of fly ash on mechanical properties and microstructural behaviour of injected moulded recycled polypropylene composites. Constr. Build. Mater. 2024, 447, 138130. [Google Scholar] [CrossRef]
- Ajorloo, M.; Ghodrat, M.; Kang, W.H. Incorporation of Recycled Polypropylene and Fly Ash in Polypropylene-Based Composites for Automotive Applications. J. Polym. Environ. 2021, 29, 1298–1309. [Google Scholar] [CrossRef]
- Cao, J.; Chung, D. Use of fly ash as an admixture for electromagnetic interference shielding. Cem. Concr. Res. 2004, 34, 1889–1892. [Google Scholar] [CrossRef]
- Ciobanu, R.C.; Schreiner, C.; Caramitu, A.R.; Ion, I. Sustainable Geopolymer Structural Insulation Panels Obtained with the Addition of Power Plant Ash and Furnace Slag with Potential Uses in the Fabrication of Specialized Structures. Sustainability 2024, 16, 2323. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Grammatikos, S.A.; Ursan, G.A.; Aradoaei, S.; Summerscales, J.; Ciobanu, R.C.; Schreiner, C.M. Recovery of electronic wastes as fillers for electromagnetic shielding in building components: An LCA study. J. Clean. Prod. 2021, 280, 124593. [Google Scholar] [CrossRef]
- Aradoaei, M.; Ciobanu, R.C.; Schreiner, C.; Ursan, A.G.; Hitruc, E.G.; Aflori, M. Thermoplastic Electromagnetic Shielding Materials from the Integral Recycling of Waste from Electronic Equipment. Polymers 2023, 15, 3859. [Google Scholar] [CrossRef]
- EC Electromagnetic Compatibility (EMC) Directive. Available online: https://single-market-economy.ec.europa.eu/sectors/electrical-and-electronic-engineering-industries-eei/electromagnetic-compatibility-emc-directive_en (accessed on 7 July 2025).
- Available online: https://www.dxtseals.com/articles/how-to-choose-the-right-plastic-material-for-electronic-product-housings (accessed on 7 July 2025).
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics Part 1: Standard Method. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 3451-1:2019; Plastics—Determination of Ash Part 1: General Methods. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 306:2022; Plastics—Thermoplastic Materials—Determination of Vicat Softening Temperature (VST). International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 1183-2:2019; Plastics—Methods for Determining the Density of Non-Cellular Plastics. Part 2: Density Gradient Column Method. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 868:2003; Plastics and Ebonite. Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties. Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 527-3:2018; Plastics—Determination of Tensile Properties Part 3: Test Conditions for Films and Sheets. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 179-2:2020; Plastics—Determination of Charpy Impact Properties Part 2: Instrumented Impact Test. International Organization for Standardization: Geneva, Switzerland, 2020.
- IEC 62631-3-1:2023 RLV; Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-1: Determination of Resistive Properties (DC Methods)—Volume Resistance and Volume Resistivity—General Method. International Electrotechnical Commission: Geneva, Switzerland, 2023.
- IEC 60243-1:2013; Electric Strength of Insulating Materials—Test Methods—Part 1: Tests at Power Frequencies. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- IEEE 299-2006; IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures. IEEE Standards Association: Piscataway, NJ, USA, 2006. Available online: https://standards.ieee.org/ieee/299/3090/ (accessed on 7 July 2025).
- ISO 62:2008; Plastics—Determination of water absorption. International Organization for Standardization: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/41672.html (accessed on 7 July 2025).
- ISO 14577-1:2015; Instrumented indentation test for hardness and materials parameters, Part 1: Test method. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/56626.html (accessed on 7 July 2025).
- ASTM C191-21; Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International: West Conshohocken, PA, USA, 2008. Available online: https://store.astm.org/c0191-21.html (accessed on 7 July 2025).
- IEC 60034-1:2022; Insulation Class and Temperature Rise. International Electrotechnical Commission: Geneva, Switzerland, 2022. Available online: https://cdn.standards.iteh.ai/samples/103428/616faa0eff3b4c7c8ccf217b2f80fb6f/IEC-60034-1-2022.pdf (accessed on 7 July 2025).
- Głogowska, K.; Pączkowski, P.; Gawdzik, B. Assessment Study on the Solvent Resistance of Low-Density Polyethylene with Pumpkin Seed Hulls. Materials 2022, 16, 138. [Google Scholar] [CrossRef]
- Li, D.; Dong, C.; Zhang, A.P.; Lin, H.L.; Peng, B.Y.; Ni, K.Y.; Yang, K.C.; Bian, J.; Chen, D.Q. Polymer-based composites for electromagnetic interference shielding: Principles, fabrication, and applications. Compos. Part A Appl. Sci. Manuf. 2025, 194, 108927. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Tan, L.; Li, Y.; Qin, L.; Li, S. Review of Polymer-Based Composites for Electromagnetic Shielding Application. Molecules 2023, 28, 5628. [Google Scholar] [CrossRef] [PubMed]
- Zecchi, S.; Cristoforo, G.; Bartoli, M.; Tagliaferro, A.; Torsello, D.; Rosso, C.; Boccaccio, M.; Acerra, F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. Micromachines 2024, 15, 187. [Google Scholar] [CrossRef] [PubMed]
- Directive on End-of-Life Vehicles 2000/53/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02000L0053-20230330 (accessed on 7 July 2025).
Samples Labeling | Matrix | Component Concentration | |
---|---|---|---|
Ta (wt.%) | FA (wt.%) | ||
M1 | LDPEDE HDPEDE | 20 | 0 |
M2 | 15 | 5 | |
M3 | 10 | 10 | |
M4 | 20 | 0 | |
M5 | 15 | 5 | |
M6 | PPDE | 10 | 10 |
M7 | 20 | 0 | |
M8 | 15 | 5 | |
M9 | 10 | 10 |
Melting Interval (°C) | ||||
---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 |
115–130 | 115–135 | 120–135 | 130–150 | 135–155 |
M6 | M7 | M8 | M9 | |
135–155 | 155–170 | 160–170 | 160–175 |
Formula | Z | Concentration | Line | Net Int. | Stat. Error | Analyzed Layer |
---|---|---|---|---|---|---|
SiO2 | 14 | 32.53% | Si KA1-HR-Tr | 29.94 | 1.03% | 4.4 μm |
CaO | 20 | 21.19% | Ca KA1-HR-Tr | 90.50 | 0.595% | 19.3 μm |
Al2O3 | 13 | 10.15% | Al KA1-HR-Tr | 10.44 | 1.77% | 4.0 μm |
Fe2O3 | 26 | 8.13% | Fe KA1-HR-Tr | 145.3 | 0.471% | 48 μm |
Br | 35 | 7.35% | Br KA1-HR-Tr | 595.6 | 0.233% | 195 μm |
CuO | 29 | 3.82% | Cu KA1-HR-Tr | 33.97 | 0.974% | 74 μm |
PbO | 82 | 2.73% | Pb LB1-HR-Tr | 82.75 | 0.653% | 228 μm |
TiO2 | 22 | 2.45% | Ti KA1-HR-Tr | 10.02 | 1.80% | 20.7 μm |
SnO2 | 50 | 2.38% | Sn KA1-HR-Tr | 34.54 | 1.13% | 0.95 mm |
BaO | 56 | 2.13% | Ba LA1-HR-Tr | 3.999 | 2.88% | 20.3 μm |
P2O5 | 15 | 1.26% | P KA1-HR-Tr | 1.570 | 4.65% | 4.6 μm |
SrO | 38 | 1.08% | Sr KA1-HR-Tr | 90.00 | 0.626% | 215 μm |
MgO | 12 | 0.95% | Mg KA1-HR-Tr | 0.7436 | 8.03% | 2.66 μm |
K2O | 19 | 0.81% | K KA1-HR-Tr | 3.766 | 2.97% | 14.9 μm |
SO3 | 16 | 0.75% | S KA1-HR-Tr | 1.781 | 4.43% | 6.3 μm |
ZrO2 | 40 | 0.66% | Zr KA1-HR-Tr | 69.03 | 0.729% | 278 μm |
Cl | 17 | 0.54% | Cl KA1-HR-Tr | 1.985 | 4.26% | 8.2 μm |
ZnO | 30 | 0.36% | Zn KA1-HR-Tr | 19.26 | 1.40% | 90 μm |
Cr2O3 | 24 | 0.28% | Cr KA1-HR-Tr | 2.624 | 3.89% | 31 μm |
MnO | 25 | 0.10% | Mn KA1-HR-Tr | 1.587 | 5.61% | 39 μm |
Formula | Z | Concentration | Line 1 | Net Int. | Stat. Error | LLD | Analyzed Layer |
---|---|---|---|---|---|---|---|
C (organic) | 6 | 98.4% | Matrix | ||||
TiO2 | 22 | 0.67% | Ti KA1-HR-Tr | 43.19 | 0.866% | 16.2 PPM | 206 μm |
CaO | 20 | 0.62% | Ca KA1-HR-Tr | 30.93 | 1.02% | 13.8 PPM | 124 μm |
Cl | 17 | 0.10% | Cl KA1-HR-Tr | 4.007 | 2.94% | 19.3 PPM | 45 μm |
SiO2 | 14 | 0.09% | Si KA1-HR-Tr | 0.7221 | 6.66% | 13.4 μm | |
P2O5 | 15 | 0.05% | P KA1-HR-Tr | 0.6496 | 7.52% | 29.8 PPM | 20.5 μm |
ZnO | 30 | 0.01% | Zn KA1-HR-Tr | 16.54 | 1.82% | 4.3 PPM | 1.32 mm |
Fe2O3 | 26 | 0.01% | Fe KA1-HR-Tr | 4.522 | 3.47% | 7.7 PPM | 0.53 mm |
Formula | Z | Concentration | Line 1 | Net Int. | Stat. Error | LLD | Analyzed Layer |
---|---|---|---|---|---|---|---|
C (organic) | 6 | 93.7% | Matrix | ||||
CaO | 20 | 4.84% | Ca KA1-HR-Tr | 192.8 | 0.408% | 20.5 PPM | 114 μm |
TiO2 | 22 | 0.46% | Ti KA1-HR-Tr | 16.66 | 1.40% | 23.5 PPM | 117 μm |
SiO2 | 14 | 0.31% | Si KA1-HR-Tr | 2.346 | 3.77% | 51.1 PPM | 12.9 μm |
Cl | 17 | 0.21% | Cl KA1-HR-Tr | 7.331 | 2.15% | 23.3 PPM | 42 μm |
MgO | 12 | 0.09% | Mg KA1-HR-Tr | 0.5441 | 8.51% | 70.5 PPM | 5.1 μm |
Fe2O3 | 26 | 0.07% | Fe KA1-HR-Tr | 12.70 | 1.69% | 10.2 PPM | 0.30 mm |
CuO | 29 | 0.02% | Cu KA1-HR-Tr | 1.533 | 4.71% | 4.4 PPM | 0.58 mm |
ZnO | 30 | 0.01% | Zn KA1-HR-Tr | 7.896 | 2.74% | 6.0 PPM | 0.71 mm |
Br | 35 | 48 PPM | Br KA1-HR-Tr | 5.695 | 4.99% | 5.1 PPM | 1.82 mm |
Formula | Z | Concentration | Line 1 | Net Int. | Stat. Error | LLD | Analyzed Layer |
---|---|---|---|---|---|---|---|
C (organic) | 6 | 92.2% | Matrix | ||||
CaO | 20 | 5.90% | Ca KA1-HR-Tr | 221.0 | 0.381% | 21.5 PPM | 110 μm |
TiO2 | 22 | 0.37% | Ti KA1-HR-Tr | 12.02 | 1.65% | 24.3 PPM | 106 μm |
SiO2 | 14 | 0.36% | Si KA1-HR-Tr | 2.649 | 3.48% | 12.7 μm | |
Cl | 17 | 0.23% | Cl KA1-HR-Tr | 7.558 | 2.11% | 22.7 PPM | 41 μm |
MgO | 12 | 0.11% | Mg KA1-HR-Tr | 0.6985 | 7.30% | 67.7 PPM | 5.1 μm |
P2O5 | 15 | 0.08% | P KA1-HR-Tr | 0.8862 | 6.33% | 33.8 PPM | 19.1 μm |
Fe2O3 | 26 | 0.06% | Fe KA1-HR-Tr | 8.673 | 2.10% | 11.2 PPM | 275 μm |
SO3 | 16 | 0.05% | S KA1-HR-Tr | 0.9963 | 6.24% | 27.4 PPM | 28.3 μm |
ZnO | 30 | 0.01% | Zn KA1-HR-Tr | 7.457 | 2.80% | 6.4 PPM | 0.64 mm |
CuO | 29 | 93 PPM | Cu KA1-HR-Tr | 0.7932 | 6.73% | 4.9 PPM | 0.52 mm |
Br | 35 | 45 PPM | Br KA1-HR-Tr | 4.833 | 5.70% | 5.6 PPM | 1.65 mm |
SrO | 38 | 28 PPM | Sr KA1-HR-Tr | 4.145 | 7.55% | 4.9 PPM | 2.74 mm |
Sample | Melting | Vitreous Transitions | ||
---|---|---|---|---|
Specific Heat [J/g] | Specific Heat Capacity [J/g*K] | Initial Temperature [°C] | Final Temperature [°C] | |
LDPEDE | 102 | 0.72 | 203.9 | 234.6 |
HDPEDE | 128.4 | 1.128 | 242.7 | 252.9 |
PPDE | 77.41 | - | - | - |
Unit | Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | |
Fluidity index | g/10 min | 0.95 | 0.92 | 0.90 | 0.63 | 0.62 | 0.60 | 1.123 | 1.089 | 1.067 |
Melt density | kg/m3 | 781 | 776 | 769 | 754 | 749 | 744 | 841 | 839 | 832 |
Bulk density | g/cm3 | 0.919 | 0.915 | 0.911 | 0.928 | 0.923 | 0.919 | 0.931 | 0.926 | 0.922 |
Ash content | % | 21.38 | 21.13 | 21.08 | 21.01 | 20.79 | 20.52 | 20.62 | 20.43 | 20.25 |
Softening temperature VICAT | °C | 118 | 117 | 113 | 137 | 136 | 133 | 143 | 142 | 140 |
Unit | Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | |
Dielectric strength | kV/mm | 53.5 | 52.8 | 52.5 | 54.8 | 54.5 | 54.1 | 54.4 | 53.7 | 52.9 |
Surface resistivity | Ω | 1.4 × 109 | 5.7 × 108 | 3.3 × 108 | 3.5 × 109 | 2.6 × 109 | 1.3 × 109 | 4.1 × 109 | 2.8 × 109 | 1.9 × 109 |
Volume resistivity | Ω cm | 2.1 × 109 | 7.8 × 108 | 5.2 × 108 | 5.4 × 109 | 3.5 × 109 | 2.6 × 109 | 4.8 × 109 | 3.8 × 109 | 2.3 × 109 |
Attenuation 0.1 GHz | -dB | 13.62 | 21.61 | 24.27 | 13.55 | 22.40 | 25.36 | 13.65 | 22.14 | 24.98 |
Attenuation 4 GHz | -dB | 18.75 | 25.04 | 28.44 | 18.64 | 26.85 | 32.67 | 18.52 | 25.96 | 31.12 |
Unit | Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | |
Diffusivity | mm2/s | 0.198 | 0.224 | 0.229 | 0.199 | 0.222 | 0.248 | 0.224 | 0.236 | 0.269 |
Thermal conductivity | W/(m*K) | 0.179 | 0.193 | 0.217 | 0.181 | 0.189 | 0.227 | 0.207 | 0.223 | 0.251 |
Specific heat capacity | J/g/K | 2.547 | 2.319 | 2.272 | 2.726 | 2.545 | 2.334 | 2.397 | 2.246 | 2.029 |
Unit | Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | |
Shore hardness Shore D | 0Sh D | 46 | 44 | 40 | 61 | 60 | 56 | 68 | 67 | 62 |
Shock resistance CHARPY | KJ/m2 | - | - | - | 22.6 | 22.4 | 22.1 | 8.6 | 8.4 | 8.2 |
Mechanical resistance | MPa | 13.92 | 13.55 | 13.25 | 16.88 | 16.27 | 16.11 | 19.46 | 18.84 | 18.45 |
Flow resistance | MPa | 2.62 | 1.84 | 1.37 | 6.25 | 6.14 | 5.84 | 7.05 | 6.84 | 6.38 |
Elongation | % | 188 | 159 | 132 | 27 | 24 | 18 | 22 | 19 | 16 |
Young’s Modulus | GPa | 0.25 | 0.19 | 0.14 | 0.58 | 0.57 | 0.56 | 0.62 | 0.59 | 0.57 |
Unit | Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | |
Water | % | 0.25 | 0.38 | 0.96 | 0.18 | 0.36 | 0.67 | 0.16 | 0.31 | 0.62 |
Solvent | % | 2.13 | 2.20 | 2.28 | 1.86 | 2.04 | 2.17 | 1.83 | 2.01 | 2.16 |
Unit | Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | |
Thermal stability | °C | 94 | 92 | 90 | 96 | 94 | 92 | 95 | 93 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aradoaei, M.; Caramitu, A.R.; Lungu, M.V.; Ursan, A.G.; Ciobanu, R.C.; Aflori, M.; Parfeni, A. Thermoplastic Recycling of WEEE Carcasses with the Incorporation of Talc, Fly Ash, and Elastomers for Composites with Electromagnetic Interference Shielding Characteristics for Electric Car Components. Polymers 2025, 17, 2394. https://doi.org/10.3390/polym17172394
Aradoaei M, Caramitu AR, Lungu MV, Ursan AG, Ciobanu RC, Aflori M, Parfeni A. Thermoplastic Recycling of WEEE Carcasses with the Incorporation of Talc, Fly Ash, and Elastomers for Composites with Electromagnetic Interference Shielding Characteristics for Electric Car Components. Polymers. 2025; 17(17):2394. https://doi.org/10.3390/polym17172394
Chicago/Turabian StyleAradoaei, Mihaela, Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Andrei George Ursan, Romeo Cristian Ciobanu, Magdalena Aflori, and Adrian Parfeni. 2025. "Thermoplastic Recycling of WEEE Carcasses with the Incorporation of Talc, Fly Ash, and Elastomers for Composites with Electromagnetic Interference Shielding Characteristics for Electric Car Components" Polymers 17, no. 17: 2394. https://doi.org/10.3390/polym17172394
APA StyleAradoaei, M., Caramitu, A. R., Lungu, M. V., Ursan, A. G., Ciobanu, R. C., Aflori, M., & Parfeni, A. (2025). Thermoplastic Recycling of WEEE Carcasses with the Incorporation of Talc, Fly Ash, and Elastomers for Composites with Electromagnetic Interference Shielding Characteristics for Electric Car Components. Polymers, 17(17), 2394. https://doi.org/10.3390/polym17172394