Preparation of Multilayer Platforms for Advanced Wound Care Management
Abstract
1. Introduction
2. Processes Governing Wound Healing
3. Traditional Wound Dressings
3.1. Primary Wound Care
3.2. Topical Formulations
4. Novel Wound Dressing Technology and Different Platforms
4.1. Novel Wound Care Management
4.1.1. Films
4.1.2. Foams
4.1.3. Hydrogels
4.2. Biopolymers in Wound Care
4.3. Bioprinting Techniques
4.4. Electrospinning Technology
5. Different Processing Methods
5.1. The Electrospinning Processes
5.2. Solvent Casting
5.3. Lyophilization
5.4. Layer-by-Layer Self-Assembly Method
6. MultiLayered Dressings (Composite Dressings)
7. Hemostatic Agents
8. Toxicological Issues Associated with MultiLayered Dressings
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basic Principles of Wound Management—UpToDate. Available online: https://www.uptodate.com/contents/basic-principles-of-wound-management (accessed on 7 April 2023).
- Bonifant, H.; Holloway, S. A review of the effects of ageing on skin integrity and wound healing. Br. J. Community Nurs. 2019, 24, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses Assoc. 2011, 3, 203. [Google Scholar] [CrossRef]
- Ozgok Kangal, M.K.; Regan, J.-P. Wound Healing. In StatPearls; StatPearls Publishing: Petersburg, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK535406/ (accessed on 13 April 2023).
- Takeo, M.; Lee, W.; Ito, M. Wound Healing and Skin Regeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a023267. [Google Scholar] [CrossRef]
- Flanagan, M. Wound care. Assessment criteria. Nurs. Times 1994, 90, 76–88. [Google Scholar]
- Montagna, W. The Structure and Function of Skin; Elsevier: Amsterdam, The Netherlands, 2012; p. 448. ISBN 978-0-323-13869-7. [Google Scholar]
- Robson, M.C.; Steed, D.L.; Franz, M.G. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr. Probl. Surg. 2001, 38, 72–140. [Google Scholar] [CrossRef]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef]
- Lindholm, C.; Searle, R. Wound management for the 21st century: Combining effectiveness and efficiency. Int. Wound J. 2016, 13 (Suppl. 2), 5–15. [Google Scholar] [CrossRef] [PubMed]
- Martin, P. Wound healing--aiming for perfect skin regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef]
- Nagle, S.M.; Stevens, K.A.; Wilbraham, S.C. Wound Assessment. In StatPearls; StatPearls Publishing: Petersburg, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482198/ (accessed on 7 April 2023).
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef]
- Mustoe, T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 2004, 187, S65–S70. [Google Scholar] [CrossRef] [PubMed]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Lim, T.; Wei, X.-J.; Wang, Q.-Y.; Xu, J.-C.; Shen, L.-Y.; Zhu, Z.-Z.; Zhang, C.-Q. A free-standing multilayer film as a novel delivery carrier of platelet lysates for potential wound-dressing applications. Biomaterials 2020, 255, 120138. [Google Scholar] [CrossRef] [PubMed]
- Mirhaj, M.; Labbaf, S.; Tavakoli, M.; Seifalian, A.M. Emerging treatment strategies in wound care. Int. Wound J. 2022, 19, 1934–1954. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Cui, J.; Zhang, C.; Xing, C.; Bian, H.; Lv, J.; Chen, D.; Xiao, L.; Su, J.; et al. Advanced multilayer composite dressing with co-delivery of gelsevirine and silk fibroin for burn wound healing. Compos. Part B Eng. 2023, 253, 110549. [Google Scholar] [CrossRef]
- Zidarič, T.; Skok, K.; Orthaber, K.; Pristovnik, M.; Gradišnik, L.; Maver, T.; Maver, U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. Materials 2023, 16, 2361. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Zhang, J.; Zhao, Z.; Yu, W.; Tan, Z.; Gao, P.; Chen, X. Combination of natural polyanions and polycations based on interfacial complexation for multi-functionalization of wound dressings. Front. Bioeng. Biotechnol. 2022, 10, 1006584. [Google Scholar] [CrossRef]
- Russo, J.; Fiegel, J.; Brogden, N.K. Rheological and Drug Delivery Characteristics of Poloxamer-Based Diclofenac Sodium Formulations for Chronic Wound Site Analgesia. Pharmaceutics 2020, 12, 1214. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Q.; Chen, Y.; Xia, S.; Huang, W.; Wei, Q. A Novel Multilayer Composite Membrane for Wound Healing in Mice Skin Defect Model. Polymers 2020, 12, 573. [Google Scholar] [CrossRef]
- Fallah, N.; Rasouli, M.; Amini, M.R. The current and advanced therapeutic modalities for wound healing management. J. Diabetes Metab. Disord. 2021, 20, 1883–1899. [Google Scholar] [CrossRef]
- Türkoğlu, G.C.; Sarıışık, M.; Karavana, S.Y.; Aydın Köse, F. Production of wheat germ oil containing multilayer hydrogel dressing. Carbohydr. Polym. 2021, 269, 118287. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, S.; Honsy, K.M.; Kurakula, M. Electro spun-nanofibrous mats: A modern wound dressing matrix with a potential of drug delivery and therapeutics. J. Eng. Fibers Fabr. 2015, 10, 155892501501000411. [Google Scholar] [CrossRef]
- Kwiatkowska, A.; Drabik, M.; Lipko, A.; Grzeczkowicz, A.; Stachowiak, R.; Marszalik, A.; Granicka, L.H. Composite Membrane Dressings System with Metallic Nanoparticles as an Antibacterial Factor in Wound Healing. Membranes 2022, 12, 215. [Google Scholar] [CrossRef]
- Jin, L.; Xu, J.; Xue, Y.; Zhang, X.; Feng, M.; Wang, C.; Yao, W.; Wang, J.; He, M. Research Progress in the Multilayer Hydrogels. Gels 2021, 7, 172. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, L.; Liang, Q.; Zhang, X.; Guan, H.; Xu, X.; Chen, X.; Jing, X. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release 2005, 105, 43–51. [Google Scholar] [CrossRef]
- Levy, A.; Frank, M.B.-O.; Gefen, A. The biomechanical efficacy of dressings in preventing heel ulcers. J. Tissue Viability 2015, 24, 1–11. [Google Scholar] [CrossRef]
- Luneva, O.; Olekhnovich, R.; Uspenskaya, M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers 2022, 14, 3135. [Google Scholar] [CrossRef]
- Ng, J.Y.; Zhu, X.; Mukherjee, D.; Zhang, C.; Hong, S.; Kumar, Y.; Gokhale, R.; Ee, P.L.R. Pristine Gellan Gum-Collagen Interpenetrating Network Hydrogels as Mechanically Enhanced Anti-inflammatory Biologic Wound Dressings for Burn Wound Therapy. ACS Appl. Bio Mater. 2021, 4, 1470–1482. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shan, X.; Zhao, X.; Zha, H.; Chen, X.; Wang, J.; Cai, C.; Wang, X.; Li, G.; Hao, J.; et al. Spongy bilayer dressing composed of chitosan–Ag nanoparticles and chitosan–Bletilla striata polysaccharide for wound healing applications. Carbohydr. Polym. 2017, 157, 1538–1547. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, H.; Guo, B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Lett. 2021, 14, 1. [Google Scholar] [CrossRef]
- Mayet, N.; Choonara, Y.E.; Kumar, P.; Tomar, L.K.; Tyagi, C.; Du Toit, L.C.; Pillay, V. A comprehensive review of advanced biopolymeric wound healing systems. J. Pharm. Sci. 2014, 103, 2211–2230. [Google Scholar] [CrossRef]
- Sinno, H.; Prakash, S. Complements and the wound healing cascade: An updated review. Plast. Surg. Int. 2013, 2013, 146764. [Google Scholar] [CrossRef] [PubMed]
- Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015, 29, 153–162. [Google Scholar] [CrossRef]
- Ellis, S.; Lin, E.J.; Tartar, D. Immunology of Wound Healing. Curr. Dermatol. Rep. 2018, 7, 350–358. [Google Scholar] [CrossRef]
- Schultz, G.S.; Chin, G.A.; Moldawer, L.; Diegelmann, R.F. Principles of Wound Healing. In Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists; Fitridge, R., Thompson, M., Eds.; University of Adelaide Press: Adelaide, South Australia, 2011. Available online: http://www.ncbi.nlm.nih.gov/books/NBK534261/ (accessed on 25 December 2022).
- Schoukens, G. 5—Bioactive dressings to promote wound healing. In Advanced Textiles for Wound Care, 2nd ed; Rajendran, S., Ed.; The Textile Institute Book Series; Woodhead Publishing: Cambridge, UK, 2019; pp. 135–167. Available online: https://www.sciencedirect.com/science/article/pii/B9780081021927000059 (accessed on 25 December 2022).
- Wound Healing and Repair: Overview, Types of Wound Healing, Categories of Wound Healing. 13 April 2021. Available online: https://emedicine.medscape.com/article/1298129-overview (accessed on 25 December 2022).
- McCarty, S.M.; Percival, S.L. Proteases and Delayed Wound Healing. Adv. Wound Care 2013, 2, 438–447. [Google Scholar] [CrossRef]
- De Gonzalez, A.C.O.; Costa, T.F.; de Andrade, Z.A.; Medrado, A.R.A.P. Wound healing—A literature review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef]
- Schultz, G.S.; Barillo, D.J.; Mozingo, D.W.; Chin, G.A. Wound bed preparation and a brief history of TIME. Int. Wound J. 2004, 1, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Ovington, L.G. Advances in wound dressings. Clin. Dermatol. 2007, 25, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef]
- Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromol. Biosci. 2014, 14, 772–792. [Google Scholar] [CrossRef]
- Jones, V.J. The use of gauze: Will it ever change? Int. Wound J. 2006, 3, 79–88. [Google Scholar] [CrossRef]
- Vermeulen, H.; Westerbos, S.J.; Ubbink, D.T. Benefit and harm of iodine in wound care: A systematic review. J. Hosp. Infect. 2010, 76, 191–199. [Google Scholar] [CrossRef]
- Wound Healing and Management Node Group. Evidence summary: Wound management-Chlorhexidine. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2017, 25, 49–51. [Google Scholar]
- Abdel-Sayed, P.; Tornay, D.; Hirt-Burri, N.; de Buys Roessingh, A.; Raffoul, W.; Applegate, L.A. Implications of chlorhexidine use in burn units for wound healing. Burns 2020, 46, 1150–1156. [Google Scholar] [CrossRef]
- Bigliardi, P.L.; Alsagoff, S.A.L.; El-Kafrawi, H.Y.; Pyon, J.-K.; Wa, C.T.C.; Villa, M.A. Povidone iodine in wound healing: A review of current concepts and practices. Int. J. Surg. 2017, 44, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Wasserbauer, S.; Perez-Meza, D.; Chao, R. Hydrogen Peroxide and Wound Healing: A Theoretical and Practical Review for Hair Transplant Surgeons. Dermatol. Surg. 2008, 34, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Brett, D. Cadexomer iodine: A fresh look at an old gem. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2019, 27, 42–48. [Google Scholar] [CrossRef]
- Qin, Y. Advanced Wound Dressings. J. Text. Inst. 2001, 92, 127–138. [Google Scholar] [CrossRef]
- Özcan Bülbül, E.; Okur, M.E.; Üstündağ Okur, N.; Siafaka, P.I. Chapter 2—Traditional and advanced wound dressings: Physical characterization and desirable properties for wound healing. In Natural Polymers in Wound Healing and Repair; Sah, M.K., Kasoju, N., Mano, J.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 19–50. Available online: https://www.sciencedirect.com/science/article/pii/B9780323905145000201 (accessed on 6 February 2023).
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. BioMedicine 2015, 5, 22. [Google Scholar] [CrossRef]
- Borda, L.J.; Macquhae, F.E.; Kirsner, R.S. Wound Dressings: A Comprehensive Review. Curr. Dermatol. Rep. 2016, 5, 287–297. [Google Scholar] [CrossRef]
- Tate, S.; Price, A.; Harding, K. Dressings for venous leg ulcers. BMJ 2018, 361, k1604. [Google Scholar] [CrossRef]
- Maver, T.; Maver, U.; Pivec, T.; Kurečič, M.; Persin, Z.; Stana Kleinschek, K. Emerging Techniques in the Preparation of Wound Care Products. In Bioactive Polysaccharide Materials for Modern Wound Healing; Maver, T., Maver, U., Pivec, T., Kurečič, M., Peršin, Z., Stana Kleinschek, K., Eds.; SpringerBriefs in Molecular Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 25–38. ISBN 978-3-319-89608-3. [Google Scholar] [CrossRef]
- Schmeel, L.C.; Koch, D.; Stumpf, S.; Leitzen, C.; Simon, B.; Schüller, H.; Vornholt, S.; Schoroth, F.; Müdder, T.; Röhner, F.; et al. Prophylactically applied Hydrofilm polyurethane film dressings reduce radiation dermatitis in adjuvant radiation therapy of breast cancer patients. Acta Oncol. Stockh. Swed. 2018, 57, 908–915. [Google Scholar] [CrossRef]
- Kirwan, H.; Pignataro, R. Chapter 2—The Skin and Wound Healing. In Pathology and Intervention in Musculoskeletal Rehabilitation, 2nd ed; Magee, D.J., Zachazewski, J.E., Quillen, W.S., Manske, R.C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2016; pp. 25–62. Available online: https://www.sciencedirect.com/science/article/pii/B9780323310727000026 (accessed on 7 February 2023).
- Weller, C. 4—Interactive dressings and their role in moist wound management. In Advanced Textiles for Wound Care; Rajendran, S., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2009; pp. 97–113. Available online: https://www.sciencedirect.com/science/article/pii/B9781845692711500042 (accessed on 7 February 2023).
- Jin, L.; Yoon, S.-J.; Lee, D.H.; Pyun, Y.C.; Kim, W.Y.; Lee, J.H.; Khang, G.; Chun, H.J.; Yang, D.H. Preparation of Foam Dressings Based on Gelatin, Hyaluronic Acid, and Carboxymethyl Chitosan Containing Fibroblast Growth Factor-7 for Dermal Regeneration. Polymers 2021, 13, 3279. [Google Scholar] [CrossRef]
- Namviriyachote, N.; Lipipun, V.; Akkhawattanangkul, Y.; Charoonrut, P.; Ritthidej, G.C. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J. Pharm. Sci. 2019, 14, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, J.; Mirzaei, S.; Tang, Y. Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications. Polymers 2018, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Dai, W.; Wang, L.; Yao, C.; Wang, C.; Gu, B.; Li, D.; He, J. Electroactive Oxidized Alginate/Gelatin/MXene (Ti3C2Tx) Composite Hydrogel with Improved Biocompatibility and Self-Healing Property. Polymers 2022, 14, 3908. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Zhang, Z.; Michniak-Kohn, B.B. Tissue Engineered Human Skin Equivalents. Pharmaceutics 2012, 4, 26. [Google Scholar] [CrossRef]
- Eaglstein, W.H.; Falanga, V. Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin. Ther. 1997, 19, 894–905. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, X.; Wang, G.; Wang, X.; Chen, Y. Emerging Bioprinting for Wound Healing. Adv. Mater. 2025, 37, 2304738. [Google Scholar] [CrossRef] [PubMed]
- Smandri, A.; Nordin, A.; Hwei, N.M.; Chin, K.-Y.; Abd Aziz, I.; Fauzi, M.B. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review. Polymers 2020, 12, 1782. [Google Scholar] [CrossRef]
- Alizadehgiashi, M.; Nemr, C.R.; Chekini, M.; Pinto Ramos, D.; Mittal, N.; Ahmed, S.U.; Khuu, N.; Kelley, S.O.; Kumacheva, E. Multifunctional 3D-Printed Wound Dressings. ACS Nano 2021, 15, 12375–12387. [Google Scholar] [CrossRef]
- Jorgensen, A.M.; Gorkun, A.; Mahajan, N.; Willson, K.; Clouse, C.; Jeong, C.G.; Varkey, M.; Wu, M.; Walker, S.J.; Molnar, J.A.; et al. Multicellular bioprinted skin facilitates human-like skin architecture in vivo. Sci. Transl. Med. 2023, 15, eadf7547. [Google Scholar] [CrossRef]
- Zhang, D.; Lai, L.; Fu, H.; Fu, Q.; Chen, M. 3D-Bioprinted Biomimetic Multilayer Implants Comprising Microfragmented Adipose Extracellular Matrix and Cells Improve Wound Healing in a Murine Model of Full-Thickness Skin Defects. ACS Appl. Mater. Interfaces 2023, 15, 29713–29728. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, A.M.; Gorkun, A.; Mahajan, N.; Wu, M.; Willson, K.; Clouse, C.; Ahn, C.; Lee, S.; Yoo, J.J.; Molnar, J.; et al. 780 Multicellular bioprinted skin directs the formation of human-like epidermal architecture and capillary formation in full-thickness wounds. J. Investig. Dermatol. 2022, 142, S135. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M.; Yu, D.-G. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes 2021, 11, 770. [Google Scholar] [CrossRef]
- Liu, M.; Duan, X.-P.; Li, Y.-M.; Yang, D.-P.; Long, Y.-Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 1413–1423. [Google Scholar] [CrossRef]
- Li, D.; Lin, D.; Li, Y.; Xu, S.; Cao, Q.; Zhou, W. Preparation and Characterization of Novel Multifunctional Wound Dressing by Near-Field Direct-Writing Electrospinning and Its Application. Polymers 2024, 16, 1573. [Google Scholar] [CrossRef] [PubMed]
- Hautmann, A.; Hedtke, T.; Sislema-Muñoz, S.; Martins-Schalinski, J.; Schmelzer, C.E.H.; Groth, T. Design of a composite wound dressing: Combining an electrospun fleece with a free-standing multilayer film. Next Mater. 2024, 2, 100060. [Google Scholar] [CrossRef]
- Si, Y.; Shi, S.; Hu, J. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today 2023, 48, 101723. [Google Scholar] [CrossRef]
- Mirhaj, M.; Varshosaz, J.; Labbaf, S.; Emadi, R.; Marcus Seifalian, A.; Sharifianjazi, F. An antibacterial Multi-Layered scaffold fabricated by 3D printing and electrospinning methodologies for skin tissue regeneration. Int. J. Pharm. 2023, 645, 123357. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Wang, Y.; Dong, Y.; Li, X.; Hao, L.; Sun, L.; Zhou, L.; Jiang, R.; Liu, W. Intelligent Electrospinning Nanofibrous Membranes for Monitoring and Promotion of Wound Healing. Mater. Today Bio 2024, 26, 101093. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, T.; Han, Y.; Li, F.; Liu, Y. Recent development of electrospun wound dressing. Curr. Opin. Biomed. Eng. 2021, 17, 100247. [Google Scholar] [CrossRef]
- Vallejo, M.C.S.; Moura, N.M.M.; Gomes, A.T.P.C.; Joaquinito, A.S.M.; Faustino, M.A.F.; Almeida, A.; Gonçalves, I.; Serra, V.V.; Neves, M.G.P.M.S. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int. J. Mol. Sci. 2021, 22, 4121. [Google Scholar] [CrossRef]
- Hou, B.; Cai, W.; Chen, T.; Zhang, Z.; Gong, H.; Yang, W.; Qiu, L. Vaccarin hastens wound healing by promoting angiogenesis via activation of MAPK/ERK and PI3K/AKT signaling pathways in vivo 1. Acta Cirúrgica Bras. 2019, 34, e201901202. [Google Scholar] [CrossRef]
- Saeed, S.M.; Mirzadeh, H.; Zandi, M.; Barzin, J. Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog. Biomater. 2017, 6, 39–48. [Google Scholar] [CrossRef]
- Ravandi, S.A.H.; Sadrjahani, M.; Valipouri, A.; Dabirian, F.; Ko, F.K. Recently developed electrospinning methods: A review. Text. Res. J. 2022, 92, 5130–5145. [Google Scholar] [CrossRef]
- Tamahkar, E.; Özkahraman, B.; Süloğlu, A.K.; İdil, N.; Perçin, I. A novel multilayer hydrogel wound dressing for antibiotic release. J. Drug Deliv. Sci. Technol. 2020, 58, 101536. [Google Scholar] [CrossRef]
- Yin, Y. Advances and perspectives of spin coating techniques. Appl. Comput. Eng. 2023, 7, 291–301. [Google Scholar] [CrossRef]
- Ren, Z. 2—Spin-coating. In Solution-Processed Organic Light-emitting Devices; Xie, G., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, UK, 2024; pp. 17–35. ISBN 978-0-323-95146-3. Available online: https://www.sciencedirect.com/science/article/pii/B9780323951463000161 (accessed on 22 September 2024).
- Tyona, M.D. A theoritical study on spin coating technique. Adv. Mater. Res. 2013, 2, 195–208. [Google Scholar] [CrossRef]
- Huang, Y.; Dan, N.; Dan, W.; Zhao, W.; Bai, Z.; Chen, Y.; Yang, C. Facile fabrication of gelatin and polycaprolactone based bilayered membranes via spin coating method with antibacterial and cyto-compatible properties. Int. J. Biol. Macromol. 2019, 124, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Vakilian, S.; Jamshidi-adegani, F.; Al Yahmadi, A.; Al-Broumi, M.; Ur Rehman, N.; Anwar, M.U.; Alam, K.; Al-Wahaibi, N.; Shalaby, A.; Alyaqoobi, S.; et al. A competitive nature-derived multilayered scaffold based on chitosan and alginate, for full-thickness wound healing. Carbohydr. Polym. 2021, 262, 117921. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Barba, B.J.D.; Oyama, T.G.; Taguchi, M. Simple fabrication of gelatin–polyvinyl alcohol bilayer hydrogel with wound dressing and nonadhesive duality. Polym. Adv. Technol. 2021, 32, 4406–4414. [Google Scholar] [CrossRef]
- Değer, S. Preparation and Characterization of Herbal Extract Loaded Bilayer Sponges for Wound Dressing Applications. Master’s Thesis, Izmir Institute of Technology, İzmir, Turkey, 2019. [Google Scholar]
- Jian, Z.; Wang, H.; Liu, M.; Chen, S.; Wang, Z.; Qian, W.; Luo, G.; Xia, H. Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. Mater. Sci. Eng. C 2020, 111, 110833. [Google Scholar] [CrossRef]
- Ooi, K.S.; Haszman, S.; Wong, Y.N.; Soidin, E.; Hesham, N.; Mior, M.A.A.; Tabata, Y.; Ahmad, I.; Fauzi, M.B.; Mohd Yunus, M.H. Physicochemical characterization of bilayer hybrid nanocellulose-collagen as a potential wound dressing. Materials 2020, 13, 4352. [Google Scholar] [CrossRef]
- Kimna, C.; Tamburaci, S.; Tihminlioglu, F. Novel zein-based multilayer wound dressing membranes with controlled release of gentamicin. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2057–2070. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Liao, J.; Wang, F.; Jiang, J.; Cao, C.; Li, S. Novel bilayer wound dressing composed of SIS membrane with SIS cryogel enhanced wound healing process. Mater. Sci. Eng. C 2018, 85, 162–169. [Google Scholar] [CrossRef]
- Shokrollahi, M.; Bahrami, S.H.; Nazarpak, M.H.; Solouk, A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int. J. Biol. Macromol. 2020, 147, 547–559. [Google Scholar] [CrossRef]
- He, J.; Meng, X.; Meng, C.; Zhao, J.; Chen, Y.; Zhang, Z.; Zhang, Y. Layer-by-Layer Pirfenidone/Cerium Oxide Nanocapsule Dressing Promotes Wound Repair and Prevents Scar Formation. Molecules 2022, 27, 1830. [Google Scholar] [CrossRef]
- Mogrovejo-Valdivia, A.; Rahmouni, O.; Tabary, N.; Maton, M.; Neut, C.; Martel, B.; Blanchemain, N. In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system. Int. J. Pharm. 2019, 556, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Hautmann, A.; Kedilaya, D.; Stojanović, S.; Radenković, M.; Marx, C.K.; Najman, S.; Pietzsch, M.; Mano, J.F.; Groth, T. Free-standing multilayer films as growth factor reservoirs for future wound dressing applications. Biomater. Adv. 2022, 142, 213166. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, G.; Seleenmary Sobhanadhas, L.S.; Sekar Jeyakumar, G.F.; Devi, V.; Sivagnanam, U.T.; Fardim, P. Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application. Biomacromolecules 2020, 21, 2512–2524. [Google Scholar] [CrossRef]
- Aubert-Viard, F.; Mogrovejo-Valdivia, A.; Tabary, N.; Maton, M.; Chai, F.; Neut, C.; Martel, B.; Blanchemain, N. Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application. Mater. Sci. Eng. C 2019, 100, 554–563. [Google Scholar] [CrossRef] [PubMed]
- López-Calderón, H.D.; Avilés-Arnaut, H.; Galán-Wong, L.J.; Almaguer-Cantú, V.; Laguna-Camacho, J.; Calderón-Ramón, C.; Escalante-Martínez, J.; Arévalo-Niño, K. Electrospun polyvinylpyrrolidone-gelatin and cellulose acetate bi-layer scaffold loaded with gentamicin as possible wound dressing. Polymers 2020, 12, 2311. [Google Scholar] [CrossRef]
- Himmler, M.; Schubert, D.W.; Dähne, L.; Egri, G.; Fuchsluger, T.A. Electrospun PCL Scaffolds as Drug Carrier for Corneal Wound Dressing Using Layer-by-Layer Coating of Hyaluronic Acid and Heparin. Int. J. Mol. Sci. 2022, 23, 2765. [Google Scholar] [CrossRef]
- Trevisol, T.C.; Scartazzini, L.; Valério, A.; Guelli Ulson de Souza, S.M.A.; Bierhalz, A.C.K.; Valle, J.A.B. Diclofenac release from alginate/carboxymethyl cellulose mono and bilayer films for wound dressing applications. Cellulose 2020, 27, 6629–6642. [Google Scholar] [CrossRef]
- Jafari, H.; Ramezani, V.; Nabi-Meibodi, M.; Ranjbar, A.M. Development of Novel Adhesive Bilayer Lyophilized Wafer of Moxifloxacin as a Modern Wound Dressing. Iran. J. Pharm. Res. 2021, 20, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Gomes Neto, R.J.; Genevro, G.M.; de Paulo, L.A.; Lopes, P.S.; de Moraes, M.A.; Beppu, M.M. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr. Polym. 2019, 212, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Mirhaj, M.; Tavakoli, M.; Varshosaz, J.; Labbaf, S.; Salehi, S.; Talebi, A.; Kazemi, N.; Haghighi, V.; Alizadeh, M. Preparation of a biomimetic bi-layer chitosan wound dressing composed of A-PRF/sponge layer and L-arginine/nanofiber. Carbohydr. Polym. 2022, 292, 119648. [Google Scholar] [CrossRef]
- Kim, J.S.; Yu, H.; Woo, M.R.; Kim, D.W.; Kim, J.O.; Ku, S.K.; Jin, S.G.; Choi, H.-G. Influence of hydrophilic polymers on mechanical property and wound recovery of hybrid bilayer wound dressing system for delivering thermally unstable probiotic. Mater. Sci. Eng. C 2022, 135, 112696. [Google Scholar] [CrossRef]
- Chizari, M.; Khosravimelal, S.; Tebyaniyan, H.; Moosazadeh Moghaddam, M.; Gholipourmalekabadi, M. Fabrication of an Antimicrobial Peptide-Loaded Silk Fibroin/Gelatin Bilayer Sponge to Apply as a Wound Dressing; An In Vitro Study. Int. J. Pept. Res. Ther. 2022, 28, 18. [Google Scholar] [CrossRef]
- Tabinda, R. Fabrication and Characterization of a Modern Bilayer Electrospun Wound Dressing for Biomedical Applications. Available online: https://www.theses.fr/2020MULH4004 (accessed on 4 November 2022).
- Eskandarinia, A.; Kefayat, A.; Agheb, M.; Rafienia, M.; Amini Baghbadorani, M.; Navid, S.; Ebrahimpour, K.; Khodabakhshi, D.; Ghahremani, F. A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold. Sci. Rep. 2020, 10, 3063. [Google Scholar] [CrossRef]
- Shie Karizmeh, M.; Poursamar, S.A.; Kefayat, A.; Farahbakhsh, Z.; Rafienia, M. An in vitro and in vivo study of PCL/chitosan electrospun mat on polyurethane/propolis foam as a bilayer wound dressing. Biomater. Adv. 2022, 135, 112667. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G.; Wang, D.; Zheng, Y.; Li, Y.; Meng, W.; Zhang, X.; Du, F.; Lee, S. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int. J. Biol. Macromol. 2021, 175, 481–494. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Pasparakis, M.; Haase, I.; Nestle, F.O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 2014, 14, 289–301. [Google Scholar] [CrossRef]
- Yu, P.; Zhong, W. Hemostatic materials in wound care. Burns Trauma 2021, 9, tkab019. [Google Scholar] [CrossRef]
- Hickman, D.A.; Pawlowski, C.L.; Sekhon, U.D.S.; Marks, J.; Gupta, A.S. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Adv. Mater. Deerfield Beach Fla 2018, 30, 1700859. [Google Scholar] [CrossRef] [PubMed]
- Hino, M.; Ishiko, O.; Honda, K.; Yamane, T.; Ohta, K.; Takubo, T.; Tatsumi, N. Transmission of symptomatic parvovirus B19 infection by fibrin sealant used during surgery. Br. J. Haematol. 2000, 108, 194–195. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. General and Plastic Surgery Devices Advisory Committee Meeting, Gaithersburg, MD, USA, 30–31 May 2019. Available online: https://www.fda.gov/advisory-committees/advisory-committee-calendar/amendment-notice-may-30-31-2019-general-and-plastic-surgery-devices-panel-medical-devices-advisory (accessed on 25 April 2023).
- Jakubiak, J.; Sionkowska, A.; Lindén, L.-Å.; Rabek, J.F. Isothermal Photo Differential Scanning Calorimetry. Crosslinking polymerization of multifunctional monomers in presence of visible light photoinitiators. J. Therm. Anal. Calorim. 2001, 65, 435–443. [Google Scholar] [CrossRef]
- Kannon, G.A.; Garrett, A.B. Moist wound healing with occlusive dressings: A clinical review. Dermatol. Surg. 1995, 21, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J. 2007, 43, 773–781. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H.; Liu, X.; Mao, J.; Gu, S.; Xu, W. Potential of quaternization-functionalized chitosan fiber for wound dressing. Int. J. Biol. Macromol. 2013, 52, 327–332. [Google Scholar] [CrossRef]
- Trinca, R.B.; Westin, C.B.; da Silva, J.A.F.; Moraes, Â.M. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur. Polym. J. 2017, 88, 161–170. [Google Scholar] [CrossRef]
- Zeng, X.; Wei, K.; Han, X.; Luo, Y.; Shu, L.; Wu, Y.; Shen, Z. Preparation and properties of chitosan/polyvinyl alcohol loaded with nano-silver for wound dressing. Chin. J. Tissue Eng. Res. 2011, 15, 1413. [Google Scholar]
- Zhang, S.; Li, J.; Li, J.; Du, N.; Li, D.; Li, F.; Man, J. Application status and technical analysis of chitosan-based medical dressings: A review. RSC Adv. 2020, 10, 34308–34322. [Google Scholar] [CrossRef]
- Elsner, J.J.; Shefy-Peleg, A.; Zilberman, M. Novel biodegradable composite wound dressings with controlled release of antibiotics: Microstructure, mechanical and physical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 425–435. [Google Scholar] [CrossRef]
- Mirahmadi-Zare, S.Z.; Aboutalebi, F.; Allafchian, M.; Pirjamali, L.; Nasr-Esfahani, M.-H. Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the super magnetic NiFe2O4 nanoparticles for sensitive and bio-valuable separation of His-tagged proteins. Protein Expr. Purif. 2018, 143, 71–76. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Dong, J.; Ma, Y.; Hovde, S.; Geiger, J.H.; Baker, G.L.; Bruening, M.L. Formation of High-Capacity Protein-Adsorbing Membranes Through Simple Adsorption of Poly(acrylic acid)-Containing Films at Low pH. Langmuir 2012, 28, 6885–6892. [Google Scholar] [CrossRef]
- Ghiorghita, C.-A.; Bucatariu, F.; Dragan, E.S. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. Mater. Sci. Eng. C 2019, 105, 110050. [Google Scholar] [CrossRef]
- Wang, F.; Hu, S.; Jia, Q.; Zhang, L.; Armentano, I. Advances in Electrospinning of Natural Biomaterials for Wound Dressing. J. Nanomater. 2020, 2020, 8719859. [Google Scholar] [CrossRef]
- Sheikholeslam, M.; Wright, M.E.E.; Jeschke, M.G.; Amini-Nik, S. Biomaterials for Skin Substitutes. Adv. Healthc. Mater. 2018, 7, 1700897. [Google Scholar] [CrossRef]
- Sajkiewicz, P.; Kolbuk, D. Electrospinning of gelatin for tissue engineering—Molecular conformation as one of the overlooked problems. J. Biomater. Sci. Polym. Ed. 2014, 25, 2009–2022. [Google Scholar] [CrossRef] [PubMed]
- Palo, M.; Rönkönharju, S.; Tiirik, K.; Viidik, L.; Sandler, N.; Kogermann, K. Bi-Layered Polymer Carriers with Surface Modification by Electrospinning for Potential Wound Care Applications. Pharmaceutics 2019, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Doan, V.K.; Tran, C.M.; Ho, T.T.-P.; Nguyen, L.K.-K.; Nguyen, Y.N.; Tang, N.T.; Luong, T.D.; Dang, N.N.-T.; Tran, N.M.-P.; Vu, B.T.; et al. Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers 2022, 14, 3541. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Chen, M.; Jiang, H.; Fan, L.; Sun, B.; Yu, F.; Yang, X.; Lou, X.; He, C.; Wang, H. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids Surf. B Biointerfaces 2016, 139, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Bal, T.; Rajora, A.D. Green nanofiber mat from HLM–PVA–Pectin (Hibiscus leaves mucilage–polyvinyl alcohol–pectin) polymeric blend using electrospinning technique as a novel material in wound-healing process. Appl. Nanosci. 2022, 12, 237–250. [Google Scholar] [CrossRef]
- Mosher, C.Z.; Brudnicki, P.A.P.; Gong, Z.; Childs, H.R.; Lee, S.W.; Antrobus, R.M.; Fang, E.C.; Schiros, T.N.; Lu, H.H. Green electrospinning for biomaterials and biofabrication. Biofabrication 2021, 13, 035049. [Google Scholar] [CrossRef]
- Palo, M.; Özliseli, E.; Sen Karaman, D.; Kogermann, K. 11. Electrospun biocomposite fibers for wound healing applications. In Green Electrospinning; Horzum, N., Demir, M.M., Muñoz-Espí, R., Crespy, D., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 265–320. ISBN 978-3-11-058139-3. [Google Scholar]
- Ho, T.T.-P.; Doan, V.K.; Tran, N.M.-P.; Nguyen, L.K.-K.; Le, A.N.-M.; Ho, M.H.; Trinh, N.-T.; Van Vo, T.; Tran, L.D.; Nguyen, T.-H. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application. Mater. Sci. Eng. C 2021, 120, 111724. [Google Scholar] [CrossRef] [PubMed]
- Abdull Rasad, M.S.B.; Halim, A.S.; Hashim, K.; Rashid, A.H.A.; Yusof, N.; Shamsuddin, S. In vitro evaluation of novel chitosan derivatives sheet and paste cytocompatibility on human dermal fibroblasts. Carbohydr. Polym. 2010, 79, 1094–1100. [Google Scholar] [CrossRef]
- Yong Chung, L.; Schmidt, R.J.; Hamlyn, P.F.; Sagar, B.F.; Andrews, A.M.; Turner, T.D. Biocompatibility of potential wound management products: Hydrogen peroxide generation by fungal chitin/chitosans and their effects on the proliferation of murine L929 fibroblasts in culture. J. Biomed. Mater. Res. 1998, 39, 300–307. [Google Scholar] [CrossRef]
- Romić, M.D.; Klarić, M.Š.; Lovrić, J.; Pepić, I.; Cetina-Čižmek, B.; Filipović-Grčić, J.; Hafner, A. Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing. Eur. J. Pharm. Biopharm. 2016, 107, 67–79. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Zhong, D.; Du, Z.; Zhou, M. A Bioactive Living Hydrogel: Photosynthetic Bacteria Mediated Hypoxia Elimination and Bacteria-Killing to Promote Infected Wound Healing. Adv. Ther. 2021, 4, 2000107. [Google Scholar] [CrossRef]
- Hoque, J.; Prakash, R.G.; Paramanandham, K.; Shome, B.R.; Haldar, J. Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties. Mol. Pharm. 2017, 14, 1218–1230. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, X.; Hu, T.; Chen, B.; Yin, Z.; Ma, P.X.; Guo, B. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During Wound Healing. Small 2019, 15, 1900046. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, Y.; Mohkam, M.; Heidari, R.; Abootalebi, S.N.; Mousavi, S.M.; Hashemi, S.A.; Golkar, N.; Gholami, A. Development and in vivo characterization of probiotic lysate-treated chitosan nanogel as a novel biocompatible formulation for wound healing. BioMed Res. Int. 2020, 2020, 8868618. [Google Scholar] [CrossRef]
- Fan, F.; Saha, S.; Hanjaya-Putra, D. Biomimetic Hydrogels to Promote Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 718377. [Google Scholar] [CrossRef] [PubMed]
- Vega, S.L.; Kwon, M.Y.; Song, K.H.; Wang, C.; Mauck, R.L.; Han, L.; Burdick, J.A. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 2018, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.A.; Min, Y.-K.; Yang, H.-M.; Lee, B.-T. Fabrication and biocompatibility of novel bilayer scaffold for skin tissue engineering applications. J. Biomater. Appl. 2013, 27, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.A.; Nguyen, T.H.; Lee, B.-T. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. J. Mater. Sci. Mater. Med. 2011, 22, 2207. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Gao, C. Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater. Sci. Eng. C 2012, 32, 2361–2366. [Google Scholar] [CrossRef]
- Silva, J.M.; Duarte, A.R.C.; Custódio, C.A.; Sher, P.; Neto, A.I.; Pinho, A.C.M.; Fonseca, J.; Reis, R.L.; Mano, J.F. Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Adv. Healthc. Mater. 2014, 3, 433–440. [Google Scholar] [CrossRef]
- Apte, G.; Repanas, A.; Willems, C.; Mujtaba, A.; Schmelzer, C.E.H.; Raichur, A.; Syrowatka, F.; Groth, T. Effect of Different Crosslinking Strategies on Physical Properties and Biocompatibility of Freestanding Multilayer Films Made of Alginate and Chitosan. Macromol. Biosci. 2019, 19, 1900181. [Google Scholar] [CrossRef]
- Dodero, A.; Alloisio, M.; Castellano, M.; Vicini, S. Multilayer Alginate–Polycaprolactone Electrospun Membranes as Skin Wound Patches with Drug Delivery Abilities. ACS Appl. Mater. Interfaces 2020, 12, 31162–31171. [Google Scholar] [CrossRef]
- Dodero, A.; Pianella, L.; Vicini, S.; Alloisio, M.; Ottonelli, M.; Castellano, M. Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. Eur. Polym. J. 2019, 118, 586–594. [Google Scholar] [CrossRef]
- Drury, J.L.; Dennis, R.G.; Mooney, D.J. The tensile properties of alginate hydrogels. Biomaterials 2004, 25, 3187–3199. [Google Scholar] [CrossRef]
- Pereira, R.F.; Barrias, C.C.; Granja, P.L.; Bartolo, P.J. Advanced biofabrication strategies for skin regeneration and repair. Nanomed 2013, 8, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Thu, H.-E.; Zulfakar, M.H.; Ng, S.-F. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int. J. Pharm. 2012, 434, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, J.; Wang, R.; Yuan, P.; Fan, Z.; Yang, S. Preparation and properties of ZnO/sodium alginate bi-layered hydrogel films as novel wound dressings. New J. Chem. 2019, 43, 8684–8693. [Google Scholar] [CrossRef]




| Platform | Claimed Advantages | Material | API/Uniqueness | Toxicity Tests | In Vivo/ In Vitro | Type of Injury | Brief Explanation | Ref. |
|---|---|---|---|---|---|---|---|---|
| Bilayer hydrogel | Without using toxic chemical initiators and crosslinkers, freely variable thickness of layers due to high penetration of γ-rays, both wound dressing and anti-adhesion capabilities | Gelatin Polyvinyl alcohol (PVA) | Peritoneal adhesion reduction | Cell culture of 3T3-Swiss fibroblasts | Cell line | - | This bilayer hydrogel of Gelatin and PVA formed by radiation-induced crosslinking with γ-rays | [99] |
| Bilayer sponges | Water vapor permeability, antimicrobial, and anti-inflammatory effect | Polyhedral Oligomeric Silsesquioxane (POSS) Chitosan | Cissus quadrangularis (CQ) extract | Cell culture of 3T3-Swiss fibroblasts | Cell line | - | upper layer was prepared using CQ extract-loaded chitosan nanospheres and nanofibers prepared by electro-spraying and electrospinning techniques, respectively. Subsequently, chitosan/POSS mixture lyophilized to shape sponges, which stand as the bottom layer. Finally, a last electro-spraying stage performed to coat upper layer on bottom layer. | [100] |
| Composite bilayer porous film | Good water vapor permeability, very long-lasting, broad-spectrum antibacterial properties | Graphene and Graphene Oxide (GO) thermoplastic polyurethane (TPU) | Polyhexamethylene guanidine hydrochloride (PHMG) | human epidermal keratinocyte line (HaCaT) Full-thickness skin defect infected wound model on BALB/c mice | Cell line and animal study | Full-thickness skin defect infected wound model | PHMG is covalently grafted to the GO surface by nonsolvent phase separation and particle filtration method, and MGO prepared a porous membrane with a skin-like thermoplastic polyurethane (TPU). | [101] |
| bilayer hybrid bio-scaffold | Low densities, high porosities, strong water absorption, and good mechanical strength, low cost | Ovine tendon collagen type I Palm tree-based nanocellulose | Biodegradability | - | - | - | Scaffolds fabricated from two different distinct layers of collagen and OPEFB nanocellulose powder were pipetted into a mold followed by the freeze-drying process. | [102] |
| Bilayer membrane | Improved bioavailability, maintenance of therapeutic concentration of drug, and avoidance of hepatic first-pass metabolism | Zein | gentamicin sulfate (GS) | NIH/3T3 fibroblast HS2 human dermal keratinocyte | Cell line | - | Zein as a film layer was fabricated by the solvent casting method to produce upper layer. The second zein layer loaded with gentamicin sulfate (GS) was used as a contact layer, prepared by sequential electrospinning method. | [103] |
| Bilayer scaffold | Good mechanical properties, remarkable biocompatibility, suitable water vapor transmission rate, appropriate anti-infective behavior, cell adhesion, and proliferation | The swine’s small intestine submucosa (SIS) | Great amounts of collagens and wide variety of cytokines with low immunogenicity | Full-thickness skin defect wound model on C57/BL mice | Animal study | Full-thickness skin defect wound model | SIS powder dispersed solution pipetted into a mold with an SIS membrane on bottom and was frozen to prepare a bilayer of cryogel/membrane dressing. | [104] |
| Electrospun nanofibrous patches | carrier for plant extract delivery with controlled and sustained release characteristics, improves physical properties of the wound dressing, and time-programmed multi-agent release | Poly (ε-caprolactone) (PCL) Carboxyethyl chitosan (CECS) Polyvinyl alcohol (PVA) | Chamomile extract as an antioxidant/antibacterial agent | Adipose-derived mesenchymal stem cells (AdMSCs) (MTT assay test) | Cell line | - | Multilayer patches with a contact layer composed of chamomile loaded CECS/PVA nanofibrous and a PCL nanofibrous layer to provide mechanical strength. An intermediate layer made of PCL and chamomile/CECS/PVA prepared as cohesion promoter with two-nozzle method between the two previous layers with two-nuzzle electrospinning method. | [105] |
| Bilayer nanocapsule Dressing | Good biocompatibility, satisfactory cellular uptake, capacity, accelerated the epithelialization of the wound, reduced the levels of ROS and TGF-β, satisfactory wound-repairing and anti-scarring effects | cerium oxide (CeO2) pirfenidone (PFD) polylactic acid (PLA) | cerium oxide (CeO2) nanoparticles as ROS scavenger and pirfenidone (PFD) as anti-fibrotic | Normal human fibroblasts (NHF) Full-thickness skin defect wound model on Sprague–Dawley (SD) mice | Animal study | Full-thickness skin defect wound model | Nano-capsules (NCs) prepared with techniques of Layer-by-layer self-assembly method resulting in a core/shell (featuring PFD at their core and CeO2 in their shell). To achieve a dressing form, PFD/CeO2 NCs were fixed on plasma-etched polylactic acid (PLA) fiber membranes fabricated separately by electrospinning. | [106] |
| Multilayer coating covered textile | controlled release properties | non-woven polyethylene terephthalate (PET) Chitosan cyclodextrin | protective coating that limits the diffusion of silver and its side effects in wound spot without losing its biocide properties | - | - | - | PET textiles were pre-treated by chitosan and cyclodextrin with a pad/dry/cure method and thereafter were dipped in silver solution and in final stage were dipped in poly-cyclodextrin and chitosan to achieve a multilayer coat assembled in an electrostatic self-assembly manner. * | [107] |
| Free-standing multilayer films (FSF) | Reservoir for the sustained release | Chitosan Alginate | Fibroblast growth factor 2 (FGF2) | Normal human dermal fibroblasts Full-thickness skin defect wound model on mice | Cell line and animal study | Full-thickness skin defect wound model | An automated dip coater used to electrostatically assemble chitosan and alginate on a glass slide repetitively to achieve a 100-bilayer film. Finally, film detached and immersed in ginpin as a crosslinking agent. FGF2 loaded by incubating films in its solution overnight | [108] |
| Bilayer matrix | good absorption of wound exudates, cell adhesion, and cell proliferation | Collagen (fish of marine origin) | bioactive latex (L) from Calotropis procera | NIH 3T3 fibroblast Human keratinocyte (HaCaT) | Cell line | - | A spongy 3D matrix of collagen was fabricated with help of iterative freeze-drying. Then matrix placed on receiver part and cellulose acetate incorporated with latex or ciprofloxacin solution was electrospun over prepared sponge | [109] |
| Layer-by-layer coated textile | long-lasting antibacterial efficacy | polyethylene terephthalate (PET) Chitosan (CHT) Methyl-beta-cyclodextrin polymer (PCD) | chlorhexidine (CHX) | The human embryonic epithelial cell line (L132) | Cell line | - | Non-woven polyethylene terephthalate (PET) modified by using chitosan (CHT) and crosslinking process performed with genipin (Gpn). Methyl-beta-cyclodextrin polymer (PCD) and CHT deposited layer-by-layer on prepared textile with positive surface charge. Finally, CHX loaded in prepared structure. | [110] |
| BiLayer Scaffold | Proper chemical composition, thermal stability, wettability characteristics, and antibacterial activity as a drug delivery system, and also wound dressing system | Polyvinyl pyrrolidone (PVP) Gelatin (GEL) Cellulose acetate (CA) | Gentamicin | - | - | - | Sequential electrospinning method adopted to achieve a layer of cellulose acetate (CA) on a mixed layer of gelatin + polyvinylpyrrolidone. And finally, gentamicin loaded into the scaffold. | [111] |
| Layer-by-layer coated scaffold | Adjustable characteristics and drug carrier | Polycaprolcatone (PCL) Hyaluronic acid | Corneal wound dressing | - | - | - | Primary scaffold prepared by electrospinning PCL in different diameters. Then, surface modification by immersing fibers in chitosan preformed. PH-amplified coating performed once again by immersing fibers in an aqueous solution of hyaluronic acid or heparin. | [112] |
| Bilayer films | Better patient compliance with the drug delivery system, enhanced drug efficacy by sustained release behavior, and a decrement in adverse effects | Alginate Carboxymethyl cellulose (CMC) | Diclofenac | - | - | - | To prepare a bilayer film, a mixed 1:1 dispersion of alginate and CMC dried as simple casting in a petri dish in two steps. Diclofenac incorporation performed only on top layer. | [113] |
| Bilayer Wafer | drug delivery system, high fluid retention levels, bio-adhesive properties, | Gelatin Propylene glycol (PG) Methylcellulose (MC) Polyvinylpyrrolidone (PVP) Hydroxypropyl Methylcellulose (HPMC) | Moxifloxacin | Full-thickness skin defect wound model in BALB/c male mice | Animal study | Full-thickness skin defect wound model | The wafers were prepared by the lyophilization and casting method | [114] |
| Bilayer film | high biocompatibility, low cytotoxicity, and suitable mechanical and barrier properties | Chitosan Konjac glucomannan | Novel use of konjac glucomannan | - | - | - | Simply, subsequently two-step casting of chitosan and konjac glucomannan solution on a polystyrene plate prepared this film. | [115] |
| Bilayer hydrogel sponge/nanofiber | Bio_membrane mimetic structure, wound healing acceleration mediated with platelet-rich fibrin and L-arginine amino acids | Chitosan polyethylene glycol L-arginine | advanced platelet-rich fibrin (A-PRF) | Mouse fibroblast cells (L929) Full-thickness dorsal skin defect wound model on Wistar rats | Cell line and animal study | Full-thickness skin defect wound model | Chitosan/polyethylene glycol solution crosslinked and enriched with A-PRF and freeze-dried to make sponge as upper layer of dressing, and different percentages of L-arginine were mixed with Cs electrospun to prepare nanofibers as the bottom layer. | [116] |
| Hybrid bilayer hydrocolloid hydrogel | Thermally unstable probiotic delivery system, excellent mechanical properties | Sodium carboxymethylcellulose, polyisobutylene, styrene-isoprene-styrene, liquid paraffin, Polyvinyl alcohol, Chitosan, sodium alginate, hydroxypropyl cellulose | Lactobacillus brevis probiotic | Full-thickness Staphylococcus aureus-infected skin wound model on male Sprague–Dawley rats | Animal study | Full-thickness infected skin wound model | The hydrocolloid layer (bottom layer) was made from polyisobutylene (PIB) and styrene-isoprene-styrene block copolymer (SIS) using a hot-melt process. Also, different hydrogel layers (upper layer) were prepared by a freeze-thaw method using different combinations of PVA and various hydrophilic polymers to achieve desired characteristics on release profile. | [117] |
| Bilayer sponge scaffold | skin and soft tissue infections dressing, significant antibacterial effect against various strains, excellent delivery system | silk cocoons of B. mori, gelatin | CM11, a cationic antimicrobial peptide (AMP) | Human foreskin fibroblast cells (Hu02) | Cell line | - | Briefly fibroin/gelatin (SF/Gel) blend scaffolds loaded with various concentrations of a cationic antimicrobial peptide (CM11 peptide) and mixed and freeze-dried, following by a lyophilization stage to prepare bilayer sponge scaffolds. | [118] |
| Bilayer nanofiber | Good drug release kinetics and structure | Gelatin, sodium hyaluronate (HA), polycaprolactone (PCL), low molecular weight poly ethylene glycol | Ibuprofen | - | - | - | A hydrogel layer of gelatin (GE) and sodium hyaluronate (HA) film prepared as base and nanofibers of PCL/PEG fabricated by electrospinning and deposited on base layer via needleless technique. Also, Ibuprofen incorporated in PCL solution to achieve anti-inflammatory and pain-relieving properties. | [119] |
| Nanofibrous Scaffold | uniform morphology, bead-free structure of the PCL/Gel scaffold, antibacterial activity, high hydrophilicity, biodegradability, and biocompatibility | ethanolic extract of propolis (EEP), Polyurethane, Polycaprolactone (PCL), Gelatin | remarkable antibacterial activity against common wound infection bacteria due to presence of the top layer (PU/EEP)/the PU/EEP-PCL/Gel, significantly accelerated wound healing progression and shorter wound closure time | L929 mouse fibroblast cells Full-thickness dorsal skin defect wound model on female Wistar rats | Cell line and animal study | Full-thickness skin defect wound model | Polycaprolactone/gelatin (PCL/Gel) scaffold was electrospun on a dense membrane composed of polyurethane and ethanolic extract of propolis (PU/EEP). | [120] |
| Electrospun mat on foam | bead-free and uniform nanofibers with enhanced hydrophilicity, swelling ratio, degradation properties, and enhanced cell compatibility and healing properties | poly-ε-caprolactone (PCL), chitosan, ethanolic extract of propolis, polyurethane (PU) | Ethanolic extract of propolis (EEP) | L929 mouse fibroblast cells Full-thickness dorsal skin defect wound model on female Wistar rats | Cell line and animal study | Full-thickness skin defect wound model | The PCL/CS solution was electrospun on a PU foam coated with EEP to fabricate the PCL/CS-PU/EEP bilayer wound dressing. | [121] |
| Multilayer hydrogel | 63% of the antibiotic was released after 7 days, antibacterial activity against oxacillin-sensitive S. aureus, no toxic effect on cultured fibroblasts, | carboxylated polyvinyl alcohol (PVA-C), gelatin (G), hyaluronic acid (HA) and gelatin | ampicillin (2 wt%) directly added to the HA solution | L929 mouse fibroblast cells | Cell line | - | ML hydrogels were prepared as four layers using carboxylated polyvinyl alcohol (PVA-C), gelatin (G), hyaluronic acid (HA) + ampicilin, and gelatin, respectively. | [92] |
| Bilayer hydrogel | complete re-epithelialization, fewer inflammatory cells, adherence to a large number of red blood cells and platelets, promoted blood coagulation and cell proliferation, antibacterial activity, excellent mechanical properties, good swelling, water retention, water vapor permeability, and biocompatibility | Polyvinyl alcohol (PVA), sodium alginate, chitosan, sodium tripolyphosphate, Pyridine-3, 5-dicarboxylic acid (H2PYDC), AgNO3 | synergistic antibacterial action of the upper and lower layer, Ag@MOFs | mouse L929 fibroblastic cells | single horizontal diffusion cell/male BALB/c mice | full-thickness circular wounds | Ag-Metal−organic framework loaded chitosan nanoparticles (0.1%Ag@MOF/1.5%CSNPs) and polyvinyl alcohol/sodium alginate/chitosan (PACS) were used as the upper and lower layers | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharafi, A.M.; Pakkhesal, S.; Monajjemzadeh, F.; Alipour, N.; Hamidi, S. Preparation of Multilayer Platforms for Advanced Wound Care Management. Polymers 2025, 17, 2393. https://doi.org/10.3390/polym17172393
Sharafi AM, Pakkhesal S, Monajjemzadeh F, Alipour N, Hamidi S. Preparation of Multilayer Platforms for Advanced Wound Care Management. Polymers. 2025; 17(17):2393. https://doi.org/10.3390/polym17172393
Chicago/Turabian StyleSharafi, Amir Mohammad, Sina Pakkhesal, Farnaz Monajjemzadeh, Nastaran Alipour, and Samin Hamidi. 2025. "Preparation of Multilayer Platforms for Advanced Wound Care Management" Polymers 17, no. 17: 2393. https://doi.org/10.3390/polym17172393
APA StyleSharafi, A. M., Pakkhesal, S., Monajjemzadeh, F., Alipour, N., & Hamidi, S. (2025). Preparation of Multilayer Platforms for Advanced Wound Care Management. Polymers, 17(17), 2393. https://doi.org/10.3390/polym17172393

