Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites
Abstract
1. Introduction
2. Experimental Procedures
2.1. Sample Preparation
2.2. Test Equipment Setup
2.3. Sample Dimension Design
2.4. Data Processing Methods
3. Experimental Results and Analysis
3.1. Free Surface Particle Velocity
3.2. Shock Velocity Versus Particle Velocity
3.3. Shock Stress Versus Particle Velocity
4. Mesoscale Numerical Simulation
4.1. Random Particle Generation
4.2. Numerical Simulation Model
4.3. Material Model
4.4. Numerical Simulation Results and Verification
5. Discussion
5.1. Particle Deformation and Matrix Flow
5.2. Analysis of Shock Wave Propagation Characteristics
5.3. Hugoniot Pressure Evolution Characteristics
6. Conclusions
- (1)
- The impact characteristics of the composites in terms of shock wave velocity, particle velocity, and impact stress were obtained. Experimental results show a linear relationship between shock wave velocity and particle velocity, with the C-80-S-400 and C-90-S-400 samples exhibiting very similar trends, which were fitted uniformly. Increasing tungsten content reduces ductility, thereby limiting overall plastic deformation capacity and increasing impact stiffness. As tungsten particle size increases, interface density significantly decreases. Larger tungsten particles reduce energy dissipation, resulting in an increase in the macroscopic wave speed of the material. Impact stress exhibits a nonlinear increase with particle velocity, while particle size variation has minimal influence on the pressure–particle velocity relationship. Compared to existing Al/PTFE composites (Al 26.5 wt%), tungsten particles dominate the composite response at high mass fractions, controlling the overall dynamic behavior under impact. This comparison highlights that the density, modulus, and interface compatibility of metal particles collectively determine the dynamic response of metal/polymer composites under extreme loading.
- (2)
- A full-scale two-dimensional finite element model was developed, wherein tungsten particles were randomly distributed within the PTFE matrix, consistent with experimental volume fractions, employing a multi-material Eulerian algorithm to handle severe deformation. Simulation results demonstrate good agreement between the particle velocity at the free surface of the target plate and experimental measurements, with the average relative error across conditions ranging from –0.66% to 4.96%, maintaining an overall error within 5%. Data dispersion primarily arises from discrepancies between the numerical model and actual composites in terms of particle size distribution and morphology, as well as simplifications regarding internal porosity effects in the finite element modeling.
- (3)
- Numerical analysis revealed the deformation of tungsten particles and the flow behavior of the matrix under impact compression. The impact interface region experienced initial compression, inducing plastic deformation of tungsten particles along the impact direction, with some particles penetrating into the copper target, which is consistent with experimental observations. The strong rarefaction unloading effect at the composite free surface caused matrix delamination and jetting. Moreover, alternating impacts between the PTFE matrix and tungsten particles generated multiple wave systems at the copper target interface whose interference coupled macroscopically to form a near-uniform pressure field. Near the impact end, the pressure exhibited a plateau, while internal material heterogeneity caused oscillations. At the mesoscale, small particle size and high tungsten content enhanced stress homogenization by increasing interface density; at the macroscale, the interaction between rarefaction waves and residual stresses dominated the evolution of pressure gradients.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baskin, T.W.; Holcomb, J.B. Bombs, mines, blast, fragmentation, and thermobaric mechanisms of injury. In Ballistic Trauma: A Practical Guide; Springer: London, UK, 2005; pp. 45–66. [Google Scholar]
- Walsh, J.I. Precision weapons, civilian casualties, and support for the use of force. Political Psychol. 2015, 36, 507–523. [Google Scholar] [CrossRef]
- Yao, W.J.; Wang, X.M.; Li, W.B. Effect of metal powder on blast power of the low collateral damage ammunition. Adv. Mater. Res. 2010, 97, 547–551. [Google Scholar] [CrossRef]
- Loiseau, J.; Pontalier, Q.; Milne, A.M.; Goroshin, S.; Frost, D.L. Terminal velocity of liquids and granular materials dispersed by a high explosive. Shock Waves 2018, 28, 473–487. [Google Scholar] [CrossRef]
- Kyner, A.; Dharmasena, K.; Williams, K.; Deshpande, V.; Wadley, H. High intensity impulsive loading by explosively accelerated granular matter. Int. J. Impact Eng. 2017, 108, 229–251. [Google Scholar] [CrossRef]
- Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D.L. Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids. Shock Waves 2018, 28, 489–511. [Google Scholar] [CrossRef]
- Koneru, R.B.; Rollin, B.; Durant, B.; Ouellet, F.; Balachandar, S. A numerical study of particle jetting in a dense particle bed driven by an air-blast. Phys. Fluids 2020, 32, 093301. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Yan, H.; Wang, X.; Miao, Y. Explosive compact-coating of tungsten–copper alloy to a copper surface. Mater. Res. Express 2017, 4, 036502. [Google Scholar] [CrossRef]
- Bai, C.H.; Chen, Y.H.; Li, J.P.; Wang, Z.Q.; Liu, Y. Charge forms for explosion dispersal of metal particles. Baozha Yu Chongji/Expolosion Shock Waves 2010, 30, 652–657. [Google Scholar]
- Li, W.; Yao, W.; Zhu, W.; Li, W.; Gao, D.; Tian, S.; Han, C.; Liu, Y. Penetration of ballistic gelatin by explosion-driven inert metal particles. Lat. Am. J. Solids Struct. 2024, 21, e535. [Google Scholar] [CrossRef]
- Feng, B.; Li, Y.C.; Wu, S.Z.; Wang, H.X.; Tao, Z.M.; Fang, X. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors. Mater. Des. 2016, 108, 411–417. [Google Scholar] [CrossRef]
- Ding, L.; Cui, X.; Tang, W.; Zhong, X.; Zhao, Y.; Huang, Y.; Shi, P.; Xue, X. Research on the constitutive model of PTFE/Al/Si reactive material. Polymers 2022, 14, 1358. [Google Scholar] [CrossRef]
- Li, W.; Yao, W.; Zhu, W.; Li, W.; Hong, B.; Wang, X. Mechanical Properties and Constitutive Model of High-Mass-Fraction Pressed Tungsten Powder /Polytetrafluoroethylene-Based Composites. Polymers 2025, 17, 323. [Google Scholar] [CrossRef] [PubMed]
- Millett, J.C.F.; Bourne, N.K.; Deas, D. The equation of state of two alumina-filled epoxy resins. J. Phys. D Appl. Phys. 2005, 38, 930. [Google Scholar] [CrossRef]
- Jordan, J.L.; Ferranti, L.; Austin, R.A.; Dick, R.D.; Foley, J.R.; Thadhani, N.N.; McDowell, D.L.; Benson, D.J. Equation of state of aluminum-iron oxide-epoxy composite. J. Appl. Phys. 2007, 101, 093520. [Google Scholar] [CrossRef]
- Bober, D.; Toyoda, Y.; Maddox, B.; Herbold, E.; Gupta, Y.; Kumar, M. Shock compression response of model polymer/metal composites. In Dynamic Behavior of Materials, Volume 1: Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics; Springer International Publishing: Cham, Switzerland, 2018; pp. 273–278. [Google Scholar]
- Rauls, M.B.; Ravichandran, G. Structure of shock waves in particulate composites. J. Appl. Phys. 2020, 127, 065902. [Google Scholar] [CrossRef]
- Herbold, E.B.; Nesterenko, V.F.; Benson, D.J.; Cai, J.; Vecchio, K.S.; Jiang, F.; Addiss, J.W.; Walley, S.M.; Proud, W.G. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials. J. Appl. Phys. 2008, 104, 103903. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, X.F.; He, Y.; Zhao, X.N.; Guan, Z.W. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials. J. Appl. Phys. 2013, 113, 173513. [Google Scholar] [CrossRef]
- Herbold, E.B.; Cai, J.; Benson, D.J.; Nesterenko, V.F. Simulation of particle size effect on dynamic properties and fracture of PTFE-W-AL composites. In AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA; Volume 955, pp. 785–788.
- Jordan, J.L.; Herbold, E.B.; Sutherland, G.; Fraser, A.; Borg, J.; Richards, D.W. Shock equation of state of multi-constituent epoxy-metal particulate composites. J. Appl. Phys. 2011, 109, 013531. [Google Scholar] [CrossRef]
- Vogler, T.J.; Borg, J.P.; Grady, D.E. On the scaling of steady structured waves in heterogeneous materials. J. Appl. Phys. 2012, 112, 123507. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, X.F.; He, Y.; Shi, A.S.; Guan, Z.W. Mesoscale simulation on the shock compression behavior of Al–W-Binder granular metal mixtures. Mater. Des. 2013, 47, 341–349. [Google Scholar] [CrossRef]
- Yang, X.L.; He, Y.; He, Y.; Wang, C.T.; Zhou, J. Investigation of the shock compression behaviors of Al/PTFE composites with experimental and a 3D mesoscale-model. Def. Technol. 2022, 18, 62–71. [Google Scholar] [CrossRef]
- Ravindran, S.; Gandhi, V.; Lawlor, B.; Ravichandran, G. Mesoscale shock structure in particulate composites. J. Mech. Phys. Solids 2023, 174, 105239. [Google Scholar] [CrossRef]
- Fu, H.; Tang, X.R.; Li, J.L.; Tan, D.W. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector. Rev. Sci. Instrum. 2014, 85, 045120. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, J. Shock and Spallation Behavior of a Compositionally Complex High-Strength Low-Alloy Steel under Different Impact Stresses. Appl. Sci. 2023, 13, 3375. [Google Scholar] [CrossRef]
- Jiang, G.P.; Huan, S.; Hao, H.; Du Yong-Feng, J.C.J. Performance of steel reinforced high strength concrete investigated in the gas gun experiment. Acta Phys. Sin. 2013, 62, 016201. [Google Scholar] [CrossRef]
- Davison, L.; Graham, R.A. Shock compression of solids. Phys. Rep. 1979, 55, 255–379. [Google Scholar] [CrossRef]
- Grady, D. Shock Equation of State Properties of Concrete; No. SAND-95-2215C; CONF-960774-1; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1996. [Google Scholar]
- Gebbeken, N.; Greulich, S.; Pietzsch, A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests. Int. J. Impact Eng. 2006, 32, 2017–2031. [Google Scholar] [CrossRef]
- Gebbeken, N.; Greulich, S.; Pietzsch, A. Equation of State Data For Concrete Determined by Full–Scale Experiments and Flyer–Plate–Impact Tests. In Proceedings of the 2nd European Conference on Computational Mechanics (ECCM), Cracow, Poland, 26–29 June 2001. [Google Scholar]
- Marsh, S.P. LASL Shock Hugoniot Data; University of California Press: Oakland, CA, USA, 1980; Volume 5. [Google Scholar]
- Zhang, J.; Zhang, Y.; Fang, Q. Numerical simulation of shock wave propagation in dry sand based on a 3D mesoscopic model. Int. J. Impact Eng. 2018, 117, 102–112. [Google Scholar] [CrossRef]
- Johnson, G.R. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Steinberg, D.J.; Cochran, S.G.; Guinan, M.W. A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 1980, 51, 1498. [Google Scholar] [CrossRef]
No. | Specimens | Tungsten Mass Fraction % | Tungsten Volume Fraction % | Particle Size (μm) | Ideal Density (g/cm3) | Average Measured Density (g/cm3) |
---|---|---|---|---|---|---|
1 | C-70-S-400 | 70 | 20 | 400 | 5.69 | 5.57 (±0.109) |
2 | C-80-S-200 | 80 | 30 | 200 | 7.44 | 7.32 (±0.098) |
3 | C-80-S-400 | 80 | 30 | 400 | 7.44 | 7.29 (±0.102) |
4 | C-80-S-600 | 80 | 30 | 600 | 7.44 | 7.35 (±0.134) |
5 | C-90-S-400 | 90 | 50 | 400 | 10.75 | 10.66 (±0.101) |
No. | Specimens | v0 (m/s) | Ufs (m/s) | Up2 (m/s) | Us2 (m/s) | σH (GPa) |
---|---|---|---|---|---|---|
001 | C-70-S-400 | 185 | 41.3 | 164.4 | 782.6 | 0.73 |
002 | 427 | 149.3 | 352.3 | 1348.1 | 2.70 | |
003 | 607 | 246.3 | 483.8 | 1648.3 | 4.53 | |
004 | 847 | 410.3 | 641.9 | 2131.0 | 7.78 | |
005 | C-80-S-200 | 277 | 91.7 | 231.1 | 955.2 | 1.64 |
006 | 419 | 176.9 | 330.5 | 1308.8 | 3.22 | |
007 | 623 | 314.3 | 465.8 | 1691.4 | 5.86 | |
008 | 772 | 435.4 | 554.3 | 2012.0 | 8.29 | |
009 | C-80-S-400 | 260 | 99.4 | 210.3 | 1138.7 | 1.78 |
010 | 425 | 195.3 | 327.4 | 1463.1 | 3.56 | |
011 | 630 | 330.7 | 464.7 | 1788.9 | 6.18 | |
012 | 825 | 492.5 | 578.7 | 2201.4 | 9.47 | |
013 | C-80-S-600 | 263 | 105.6 | 210.2 | 1212.6 | 1.90 |
014 | 449 | 217.4 | 340.3 | 1573.4 | 3.98 | |
015 | 633 | 346.8 | 459.6 | 1902.8 | 6.50 | |
016 | 827 | 496.0 | 579.0 | 2217.1 | 9.54 | |
017 | C-90-S-400 | 259 | 121.1 | 198.4 | 1022.0 | 2.18 |
018 | 443 | 252.7 | 316.7 | 1369.0 | 4.66 | |
019 | 623 | 402.6 | 421.7 | 1682.8 | 7.62 | |
020 | 797 | 560.2 | 516.9 | 1963.1 | 10.90 |
Material | A (MPa) | B (MPa) | n | C | m | Tmelt (K) |
---|---|---|---|---|---|---|
Tungsten [36] | 1200 | 1030 | 0.19 | 0.034 | 0.4 | 1723 |
PTFE [18] | 11 | 44 | 0.120 | 1.00 | 1.00 | 650 |
TU1 Copper [35] | 90 | 292 | 0.31 | 0.025 | 1.09 | 1356 |
Material | ρ0 (g/cm3) | c0 (m/s) | s | γ0 |
---|---|---|---|---|
Tungsten [33] | 8.93 | 4040 | 1.23 | 1.80 |
PTFE [33] | 2.152 | 1841 | 1.707 | 0.59 |
TU1 Copper [33] | 8.92 | 3940 | 1.45 | 2.04 |
No. | Specimens | v0 (m/s) | Experimental Ufs (m/s) | Numerical Simulation Ufs (m/s) | Error % | Average Error % |
---|---|---|---|---|---|---|
001 | C-70-S-400 | 185 | 41.3 | 47.1 | 14.04 | 4.96 |
002 | 427 | 149.3 | 150.8 | 1.00 | ||
003 | 607 | 246.3 | 248.6 | 0.93 | ||
004 | 847 | 410.3 | 426.1 | 3.85 | ||
005 | C-80-S-200 | 277 | 91.7 | 94.4 | 2.94 | 1.39 |
006 | 419 | 176.9 | 174.7 | −1.24 | ||
007 | 623 | 314.3 | 333.2 | 6.01 | ||
008 | 772 | 435.4 | 426.0 | −2.16 | ||
009 | C-80-S-400 | 260 | 99.4 | 95.5 | −3.92 | −0.66 |
010 | 425 | 195.3 | 190.1 | −2.66 | ||
011 | 630 | 330.7 | 345.4 | 4.45 | ||
012 | 825 | 492.5 | 490.1 | −0.49 | ||
013 | C-80-S-600 | 263 | 90.4 | 96.7 | 6.97 | 3.21 |
014 | 449 | 217.4 | 230.2 | 5.89 | ||
015 | 633 | 346.8 | 353.3 | 1.87 | ||
016 | 827 | 496.0 | 486.7 | −1.88 | ||
017 | C-90-S-400 | 259 | 121.1 | 117.3 | −3.14 | −0.21 |
018 | 443 | 252.7 | 248.1 | −1.82 | ||
019 | 623 | 402.6 | 407.9 | 1.32 | ||
020 | 797 | 560.2 | 575.8 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Li, W.; Li, W.; Wang, X.; Yao, W. Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites. Polymers 2025, 17, 2309. https://doi.org/10.3390/polym17172309
Zhu W, Li W, Li W, Wang X, Yao W. Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites. Polymers. 2025; 17(17):2309. https://doi.org/10.3390/polym17172309
Chicago/Turabian StyleZhu, Wei, Weihang Li, Wenbin Li, Xiaoming Wang, and Wenjin Yao. 2025. "Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites" Polymers 17, no. 17: 2309. https://doi.org/10.3390/polym17172309
APA StyleZhu, W., Li, W., Li, W., Wang, X., & Yao, W. (2025). Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites. Polymers, 17(17), 2309. https://doi.org/10.3390/polym17172309