Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Development
2.3. Physicochemical Characterization, Mechanical Properties, Gravimetric Analysis, and Sensory Evaluation of Films
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. Gravimetric Analysis and Optical Images
2.3.3. Metal-Oxide Sensors
2.3.4. Near-Infrared (NIR) Spectroscopy
2.3.5. Sensory Evaluation
2.3.6. Hardness Tests
2.3.7. Gel-Electrophoresis
2.4. Statistical Analysis
3. Results
3.1. Film Surfaces and Impact of Preparation Method
3.2. D-Limonene Stability and Rate of Evaporation, Protease-C Tests
3.3. Physicochemical Analysis of Bio-Films
3.3.1. FTIR Analysis
3.3.2. Gel-Electrophoresis
3.4. D-Limonene Release from Bio-Films
3.4.1. Release Kinetics
3.4.2. Daily NIR Analysis
3.4.3. Gravimetric Analysis for Film Weight Loss
3.4.4. Sensory Analysis
3.5. Mechanical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Olawade, D.B.; Wada, O.Z.; Ige, A.O. Advances and Recent Trends in Plant-Based Materials and Edible Films: A Mini-Review. Front. Chem. 2024, 12, 1441650. [Google Scholar] [CrossRef]
- Machucho, R.; Ortiz, D. The Impacts of Artificial Intelligence on Business Innovation: A Comprehensive Review of Applications, Organizational Challenges, and Ethical Considerations. Systems 2025, 13, 264. [Google Scholar] [CrossRef]
- Periyasamy, T.; Asrafali, S.P.; Lee, J. Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging. Polymers 2025, 17, 1257. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Gilardi, E. Corporate Environmental, Social, and Governance Performance: The Impacts on Financial Returns, Business Model Innovation, and Social Transformation. Sustainability 2025, 17, 1286. [Google Scholar] [CrossRef]
- Sivasubramani, S.; Prodromakis, T. Reaching New Frontiers in Nanoelectronics through Artificial Intelligence. Front. Nanotechnol. 2025, 7, 1627210. [Google Scholar] [CrossRef]
- Xu, K.; Xiao, X.; Wang, L.; Lou, M.; Wang, F.; Li, C.; Ren, H.; Wang, X.; Chang, K. Data-Driven Materials Research and Development for Functional Coatings. Adv. Sci. 2024, 11, e2405262. [Google Scholar] [CrossRef]
- Mattos, L.H.S.; Speziali, M.G. Patent Landscape: Technology Development behind Science in the Flavor and Fragrances (F&F) Area. World Pat. Inf. 2017, 51, 57–65. [Google Scholar] [CrossRef]
- de Farias, B.S.; Rizzi, F.Z.; Ribeiro, E.S.; Diaz, P.S.; Sant’Anna Cadaval Junior, T.R.; Dotto, G.L.; Khan, M.R.; Manoharadas, S.; de Almeida Pinto, L.A.; dos Reis, G.S. Influence of Gelatin Type on Physicochemical Properties of Electrospun Nanofibers. Sci. Rep. 2023, 13, 15195. [Google Scholar] [CrossRef]
- Pirzadi, Z.; Meshkani, F. From Glycerol Production to Its Value-Added Uses: A Critical Review. Fuel 2022, 329, 125044. [Google Scholar] [CrossRef]
- Eslami, Z.; Elkoun, S.; Robert, M.; Adjallé, K. A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules 2023, 28, 6637. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, Z.; Sun, Y.; Zhang, Y.; Wang, S.; Zhang, Q.; Cai, T.; Xiang, W.; Zeng, C.; Tang, J. D-Limonene: Promising and Sustainable Natural Bioactive Compound. Appl. Sci. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Lindberg, D.; Kristoffersen, K.A.; Wubshet, S.G.; Hunnes, L.M.G.; Dalsnes, M.; Dankel, K.R.; Høst, V.; Afseth, N.K. Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products. Molecules 2021, 26, 5280. [Google Scholar] [CrossRef]
- Di Cera, E. Serine Proteases. IUBMB Life 2009, 61, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Foong, H.L. Effect of Homogenization Rates on the Properties and Stability of Fish Gelatin Films with Cinnamon Essential Oil. J. Renew. Mater. 2025, 13, 433–447. [Google Scholar] [CrossRef]
- Hidajat, M.J.; Jo, W.; Kim, H.; Noh, J. Effective Droplet Size Reduction and Excellent Stability of Limonene Nanoemulsion Formed by High-Pressure Homogenizer. Colloids Interfaces 2020, 4, 5. [Google Scholar] [CrossRef]
- Cuevas-Acuña, D.A.; Plascencia-Jatomea, M.; Santacruz-Ortega, H.d.C.; Torres-Arreola, W.; Ezquerra-Brauer, J.M. Development of Chitosan/Squid Skin Gelatin Hydrolysate Films: Structural, Physical, Antioxidant, and Antifungal Properties. Coatings 2021, 11, 1088. [Google Scholar] [CrossRef]
- Lin, J.; Pan, D.; Sun, Y.; Ou, C.; Wang, Y.; Cao, J. The Modification of Gelatin Films: Based on Various Cross-linking Mechanism of Glutaraldehyde at Acidic and Alkaline Conditions. Food Sci. Nutr. 2019, 7, 4140–4146. [Google Scholar] [CrossRef]
- Fan, H.Y.; Dumont, M.-J.; Simpson, B.K. Preparation and Physicochemical Characterization of Films Prepared with Salmon Skin Gelatin Extracted by a Trypsin-Aided Process. Curr. Res. Food Sci. 2020, 3, 146–157. [Google Scholar] [CrossRef]
- Henry’s Law Constants. Available online: https://henrys-law.org/henry/casrn/5989-27-5 (accessed on 15 July 2025).
- Pang, J.Y.S.; Novelli, A.; Kaminski, M.; Acir, I.-H.; Bohn, B.; Carlsson, P.T.M.; Cho, C.; Dorn, H.-P.; Hofzumahaus, A.; Li, X.; et al. Investigation of the Limonene Photooxidation by OH at Different NO Concentrations in the Atmospheric Simulation Chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a Large Reaction Chamber). Atmos. Chem. Phys. 2022, 22, 8497–8527. [Google Scholar] [CrossRef]
- Tang, Y.; Park, H.; Scher, H.B.; Jeoh, T. The Role of a Moisture-Barrier Latex in Controlling Retention, Stability and Release of D-Limonene from Complex Coacervated Matrix Microparticles Formed during Spray Drying. Front. Nutr. 2022, 9, 979656. [Google Scholar] [CrossRef]
- Pawar, K.S.; Singh, P.N.; Singh, S.K. Fungal Alkaline Proteases and Their Potential Applications in Different Industries. Front. Microbiol. 2023, 14, 1138401. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kaur, B.; Srivastava, R.; Sangwan, R.S. Isolation and Immobilization of Alkaline Protease on Mesoporous Silica and Mesoporous ZSM-5 Zeolite Materials for Improved Catalytic Properties. Biochem. Biophys. Rep. 2015, 2, 108–114. [Google Scholar] [CrossRef]
- Elchinger, P.-H.; Delattre, C.; Faure, S.; Roy, O.; Badel, S.; Bernardi, T.; Taillefumier, C.; Michaud, P. Immobilization of Proteases on Chitosan for the Development of Films with Anti-Biofilm Properties. Int. J. Biol. Macromol. 2015, 72, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Estrella-Osuna, D.E.; Ruiz-Cruz, S.; Rodríguez-Félix, F.; Figueroa-Enríquez, C.E.; González-Ríos, H.; Fernández-Quiroz, D.; Márquez-Ríos, E.; Tapia-Hernández, J.A.; Pérez-Álvarez, J.Á.; Suárez-Jiménez, G.M. Rheological Properties and Antioxidant Activity of Gelatin-Based Edible Coating Incorporating Tomato (Solanum lycopersicum L.) Extract. Gels 2024, 10, 624. [Google Scholar] [CrossRef]
- Koochakzaei, A. Determination of Sulfuric Acid Effects on Degradation and Structural Changes of Gelatin Using Fourier-Transform Infrared Spectroscopy and Peak Deconvolution Analysis. Spectroscopy 2023, 38, 5–11. [Google Scholar] [CrossRef]
- Dumancas, G.G.; Carreto, N.; Generalao, O.; Ke, G.; Bello, G.; Lubguban, A.; Malaluan, R. Chemometrics for Quantitative Determination of Terpenes Using Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy: A Pedagogical Laboratory Exercise for Undergraduate Instrumental Analysis Students. J. Chem. Educ. 2023, 100, 3050–3060. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Eskildsen, C.E.; Akkerman, M.; Johansen, L.B.; Hansen, M.S.; Hansen, P.W.; Skov, T.; Larsen, L.B. Predicting Hydrolysis of Whey Protein by Mid-Infrared Spectroscopy. Int. Dairy J. 2016, 61, 44–50. [Google Scholar] [CrossRef]
- Kristoffersen, K.A.; van Amerongen, A.; Böcker, U.; Lindberg, D.; Wubshet, S.G.; de Vogel-van Den Bosch, H.; Horn, S.J.; Afseth, N.K. Fourier-Transform Infrared Spectroscopy for Monitoring Proteolytic Reactions Using Dry-Films Treated with Trifluoroacetic Acid. Sci. Rep. 2020, 10, 7844. [Google Scholar] [CrossRef]
- Nahas, E.O.; Furtado, G.F.; Lopes, M.S.; Silva, E.K. From Emulsions to Films: The Role of Polysaccharide Matrices in Essential Oil Retention Within Active Packaging Films. Foods 2025, 14, 1501. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Korntner, S.H.; Olijve, J.; Mullen, A.M.; Zeugolis, D.I. The Influence of Bloom Index, Endotoxin Levels and Polyethylene Glycol Succinimidyl Glutarate Crosslinking on the Physicochemical and Biological Properties of Gelatin Biomaterials. Biomolecules 2021, 11, 1003. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Szymanowska, U.; Skrzypek, T.; Basiura-Cembala, M.; Bartkowiak, A.; Łupina, K. A Comprehensive Study on Gelatin- and Whey Protein Isolate-Based Edible Films as Carriers of Fireweed (Epilobium angustifolium L.) Extract. Food Bioprocess Technol. 2022, 15, 2547–2561. [Google Scholar] [CrossRef]
- Schulz, H.; Schrader, B.; Quilitzsch, R.; Steuer, B. Quantitative Analysis of Various Citrus Oils by ATR/FT-IR and NIR-FT Raman Spectroscopy. Appl. Spectrosc. 2002, 56, 117–124. [Google Scholar] [CrossRef]
- Bergo, P.; Moraes, I.C.F.; Sobral, P.J.A. Effects of Plasticizer Concentration and Type on Moisture Content in Gelatin Films. Food Hydrocoll. 2013, 32, 412–415. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties of Arrowroot (Maranta arundinacea) Starch Biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef]
- Alvarado, S.; Sandoval, G.; Palos, I.; Tellez, S.; Aguirre-Loredo, Y.; Velazquez, G. The Effect of Relative Humidity on Tensile Strength and Water Vapor Permeability in Chitosan, Fish Gelatin and Transglutaminase Edible Films. Food Sci. Technol. 2015, 35, 690–695. [Google Scholar] [CrossRef]
- Drazin, A.; Kuechler, S. The Science of Sensory Evaluation: An Ethnographic Critique. Available online: https://centreforsensorystudies.org/occasional-papers/the-science-of-sensory-evaluation/ (accessed on 15 July 2025).
- Rygg, A.D.; Van Valkenburgh, B.; Craven, B.A. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity. Chem. Senses 2017, 42, 683–698. [Google Scholar] [CrossRef]
- Liu, F.; Chiou, B.-S.; Avena-Bustillos, R.J.; Zhang, Y.; Li, Y.; McHugh, T.H.; Zhong, F. Study of Combined Effects of Glycerol and Transglutaminase on Properties of Gelatin Films. Food Hydrocoll. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Fahrullah, F.; Basriani, B.; Anita, C.; Febryanti, F.; Fitri, F. Modification of Protein-Based Edible Film Characteristics with Different Glycerol Concentrations: A Study on Thickness, Gelation, and Microstructure. J. Biol. Trop. 2024, 24, 952–960. [Google Scholar] [CrossRef]
- Kurek, M.; Descours, E.; Galic, K.; Voilley, A.; Debeaufort, F. How Composition and Process Parameters Affect Volatile Active Compounds in Biopolymer Films. Carbohydr. Polym. 2012, 88, 646–656. [Google Scholar] [CrossRef]
- Vanin, F.M.; Sobral, P.J.A.; Menegalli, F.C.; Carvalho, R.A.; Habitante, A.M.Q.B. Effects of Plasticizers and Their Concentrations on Thermal and Functional Properties of Gelatin-Based Films. Food Hydrocoll. 2005, 19, 899–907. [Google Scholar] [CrossRef]
- Jridi, M.; Nasri, R.; Ben Slama-Ben Salem, R.; Lassoued, I.; Barkia, A.; Nasri, M.; Souissi, N. Chemical and Biophysical Properties of Gelatins Extracted from the Skin of Octopus (Octopus vulgaris). LWT Food Sci. Technol. 2015, 60, 881–889. [Google Scholar] [CrossRef]
Film Name | Gelatin | D-Limonene | Water | Glycerol | Protease-C | Extra Water |
---|---|---|---|---|---|---|
L@Gel | 10 g | 10 mL | 10 mL | - | - | - |
L@Gel/0.5Gl | 10 g | 10 mL | 10 mL | 0.5 mL | - | - |
L@Gel/0.5Gl/PT | 10 g | 10 mL | 10 mL | 0.5 mL | 0.5 mL (3 K U mL−1) | - |
L@Gel/0.5Gl/PTxW | 10 g | 10 mL | 10 mL | 0.5 mL | 0.5 mL (3 K U mL−1) | 10 mL |
L@Gel/2Gl | 10 g | 10 mL | 10 mL | 2 mL | - | - |
L@Gel/2Gl/PT | 10 g | 10 mL | 10 mL | 2 mL | 0.5 mL (3 K U mL−1) | - |
L@Gel/2Gl/PTxW | 10 g | 10 mL | 10 mL | 2 mL | 0.5 mL (3 K U mL−1) | 10 mL |
Sample | Total % Weight Loss | Glycerol Content |
---|---|---|
L@Gel | 1.26 ± 0.24 (a) | 0% |
L@Gel/0.5Gl | 4.94 ± 0.20 (b) | 5% |
L@Gel/0.5Gl/PT | 4.63 ± 0.14 (b) | 5% |
L@Gel/0.5Gl/PTxW | 8.46 ± 0.39 (c) | 5% |
L@Gel/2Gl | 2.73 ± 0.22 (d) | 20% |
L@Gel/2Gl/PT | 1.86 ± 0.14 (a) | 20% |
L@Gel/2Gl/PTxW | 5.44 ± 0.46 (e) | 20% |
Sample | Mean ± SD |
---|---|
L@Gel | 83.3 ± 1.53 (c) |
L@Gel/0.5Gl | 75.0 ± 2.65 (b) |
L@Gel/0.5Gl/PT | 55.2 ± 2.75 (c) |
L@Gel/0.5Gl/PTxW | 52.1 ± 1.68 (c) |
L@Gel/2Gl | 50.0 ± 2.65 (c) |
L@Gel/2Gl/PT | 45.5 ± 3.0 (d) |
L@Gel/2Gl/PTxW | 41.0 ± 1.7 (d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakonechnyi, V.; Havryliak, V.; Lubenets, V. Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment. Polymers 2025, 17, 2238. https://doi.org/10.3390/polym17162238
Nakonechnyi V, Havryliak V, Lubenets V. Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment. Polymers. 2025; 17(16):2238. https://doi.org/10.3390/polym17162238
Chicago/Turabian StyleNakonechnyi, Viktor, Viktoriia Havryliak, and Vira Lubenets. 2025. "Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment" Polymers 17, no. 16: 2238. https://doi.org/10.3390/polym17162238
APA StyleNakonechnyi, V., Havryliak, V., & Lubenets, V. (2025). Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment. Polymers, 17(16), 2238. https://doi.org/10.3390/polym17162238