Radiation Shielding Evaluation of Carbohydrate Hydrogel Radiotherapy Pads Containing High-Z Fillers: A Geant4 Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Simulation Geometry and Phantom Construction
2.3. Hydrogel Pad Material Definitions
2.3.1. Base Hydrogel Composition
2.3.2. High-Z Dopants
2.4. Beam Source and Irradiation Conditions
3. Results
3.1. Energy Deposition in the Epidermis
3.1.1. Gamma Irradiation
3.1.2. Electron Irradiation
3.2. Energy Deposition in the Dermis
3.2.1. Gamma Irradiation
3.2.2. Electron Irradiation
3.3. Subcutaneous Layer Deposition of Energy
3.3.1. Gamma Irradiation
3.3.2. Electron Irradiation
3.4. Energy Deposition in Muscle Layer
3.4.1. Gamma Irradiation
3.4.2. Electron Irradiation
3.5. Heatmap Analysis and Thickness Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, Y.; Cui, H.; Yang, C.; Li, L.; Xu, F.; Gao, J.; Zhang, W. Hydrogels for the treatment of radiation-induced skin and mucosa damages: An up-to-date overview. Front. Mater. 2022, 9, 1018815. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Islam, M.; Hasan, M.K.; Nam, K.-W. A comprehensive review of radiation-induced hydrogels: Synthesis, properties, and multidimensional applications. Gels 2024, 10, 381. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Ding, Y.; Li, W.; Zhang, Y.; Luo, S.; Xiang, Q. The Use of Hydrogel-Based Materials for Radioprotection. Gels 2023, 9, 301. [Google Scholar] [CrossRef]
- Azab, A.K.; Azab, F.; de la Puente, P. Hydrogels for Localized Radiotherapy. Patent WO2015149070A1. 2015. Available online: https://patents.google.com/patent/WO2015149070A1 (accessed on 14 August 2025).
- Xu, N.; Wang, J.; Liu, L.; Gong, C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chin. Chem. Lett. 2023, 35, 109225. [Google Scholar] [CrossRef]
- Alrowaili, Z.A.; Echeweozo, E.O.; Kırkbınar, M.; Çalışkan, F.; Alzahrani, J.S.; Al-Buriahi, M.S. Effect of bismuth oxide on radiation shielding and interaction characteristics of polyvinyl alcohol-based polymer: Potential use in medical apron design. J. Radiat. Res. Appl. Sci. 2024, 17, 101162. [Google Scholar] [CrossRef]
- Hedaya, A.; Elsafi, M.; Al-Saleh, W.M.; Saleh, I.H. Effect of Bi2O3 Particle Size on the Radiation-Shielding Performance of Free-Lead Epoxide Materials against Ionizing Radiation. Polymers 2024, 16, 2125. [Google Scholar] [CrossRef]
- Alshipli, M.; Altaim, T.A.; Aladailah, M.W.; Oglat, A.A.; Alsenany, S.A.; Tashlykov, O.L.; Abdelaliem, S.M.F.; Marashdeh, M.W.; Banat, R.; Pyltsova, D.O.; et al. High-density polyethylene with ZnO and TiO2 nanoparticle filler: Computational and experimental studies of radiation-protective characteristics of polymers. J. Radiat. Res. Appl. Sci. 2023, 16, 100720. [Google Scholar] [CrossRef]
- Apostolakis, J.; Arce, P.; Burkhardt, H.; Chytracek, R.; Cosmo, G.; Dell’Acqua, A.; Folger, G.; Giani, S.; Ivanchenko, V.; Lara, V.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Heikkinen, A. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Akhdar, H.; Alotaibi, R. Geant4 Simulation of the Effect of Different Composites on Polyimide Photon and Neutron Shielding Properties. Polymers 2023, 15, 1973. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L.; Owrangi, A.M. Solid Water as phantom material for dosimetry of electron backscatter using low-energy electron beams: A Monte Carlo evaluation. Med. Phys. 2009, 36, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Mohd Shah, S.R.; Asan, N.B.; Velander, J.; Ebrahimizadeh, J.; Perez, M.D.; Mattsson, V.; Blokhuis, T.; Augustine, R. Analysis of Thickness Variation in Biological Tissues Using Microwave Sensors for Health Monitoring Applications. IEEE Access 2019, 7, 156033–156043. [Google Scholar] [CrossRef]
- Nachman, M.; Franklin, S.E. Artificial Skin Model simulating dry and moist in vivo human skin friction and deformation behaviour. Tribol. Int. 2016, 97, 431–439. [Google Scholar] [CrossRef]
- Cassemiro, A.; Motta, L.J.; Fiadeiro, P.; Fonseca, E. Predictive Model of the Effects of Skin Phototype and Body Mass Index on Photobiomodulation Therapy for Orofacial Disorders. Photonics 2024, 11, 1038. [Google Scholar] [CrossRef]
- Arce, P.; Bolst, D.; Cutajar, D.; Guatelli, S.; Le, A.; Rosenfeld, A.B.; Sakata, D.; Bordage, M.; Brown, J.M.C.; Cirrone, P.; et al. Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group. Med. Phys. 2020, 48, 19–56. [Google Scholar] [CrossRef]
- Arce, P.; Archer, J.W.; Arsini, L.; Bagulya, A.; Bolst, D.; Brown, J.M.C.; Caccia, B.; Chacon, A.; Cirrone, G.A.P.; Cortés-Giraldo, M.A.; et al. Results of a Geant4 benchmarking study for bio-medical applications, performed with the G4-Med system. Med. Phys. 2025, 52, 2707–2761. [Google Scholar] [CrossRef]
- Tomić, S.L.; Babić Radić, M.M.; Vuković, J.S.; Filipović, V.V.; Nikodinovic-Runic, J.; Vukomanović, M. Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar. Drugs 2023, 21, 177. [Google Scholar] [CrossRef]
- Savić Gajić, I.M.; Savić, I.M.; Svirčev, Z. Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity. Polymers 2023, 15, 2592. [Google Scholar] [CrossRef]
- Tan, J.; Luo, Y.; Guo, Y.; Zhou, Y.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int. J. Biol. Macromol. 2023, 239, 124275. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Cömez, B.; Özbaş, S. Alginate–chitosan hydrogels containing shRNA plasmid for inhibition of CTNNB1 expression in breast cancer cells. Gels 2023, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Taokaew, S.; Kaewkong, W.; Kriangkrai, W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023, 9, 277. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Qiu, P.; Wang, Y.; Ren, P.; Liu, J.; Zhao, J.; Gou, D. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem. X 2023, 21, 101095. [Google Scholar] [CrossRef]
- Thirupathi, K.; Raorane, C.J.; Ramkumar, V.; Ulagesan, S.; Santhamoorthy, M.; Raj, V.; Krishnakumar, G.S.; Phan, T.T.V.; Kim, S.-C. Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications. Gels 2022, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Aderibigbe, B.A. Chitosan and cellulose-based hydrogels for wound management: Review of the state-of-the-art. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef]
- Mozalewska, W.; Czechowska-Biskup, R.; Olejnik, A.; Wach, R.A.; Rosiak, J.M. Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiat. Phys. Chem. 2017, 137, 1–7. [Google Scholar] [CrossRef]
- Fu, L.-H.; Qi, C.; Ma, M.-G.; Wan, P. Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B 2019, 7, 1541–1562. [Google Scholar] [CrossRef]
- Ghorbani, S.; Eyni, H.; Bazaz, S.R.; Nazari, H.; Asl, L.S.; Zaferani, H.; Kiani, V.; Mehrizi, A.A.; Soleimani, M. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. Polym. Sci. Ser. A 2018, 60, 707–722. [Google Scholar] [CrossRef]
- Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2009, 2, 353–373. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of Cellulose-based Hydrogel: A Review. J. Mater. Res. Technol. 2020, 10, 935–952. [Google Scholar] [CrossRef]
- Adlienė, D.; Gilys, L.; Griškonis, E. Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 467, 21–26. [Google Scholar] [CrossRef]
- Sriwongsa, K.; Pasuwan, P.; Glumglomchit, P.; Pattakummee, A.; Boonchim, K.; Howong, T.; Ravangvong, S. The X-/Gamma-Rays, Proton and Alpha Particles Shielding Properties for Tungsten Oxide Polymer Composites. Suranaree J. Sci. Technol. 2025, 32, 030273. [Google Scholar] [CrossRef]
- Ogul, H. Radiation attenuation properties of polymer composites mixed with tantalum carbide. Radiat. Eff. Defects Solids 2022, 177, 531–544. [Google Scholar] [CrossRef]
Hydrogel | Density (g/cm3) | Polymer Formula | Key Properties |
---|---|---|---|
Chitosan | 1.05 | C6H11NO4 | Rigid, antimicrobial, biocompatible |
Alginate | 1.05 | C6H7NaO6 | Soft, hydrophilic, moisture-retentive |
Cellulose | 1.10 | C6H10O5 | Structurally robust, widely used in biomedicine |
Filler | Density (g/cm3) | Chemical Formula | Functionality |
---|---|---|---|
Bi2O3 | 8.90 | Bi2O3 | High photon attenuation efficiency |
ZnO | 5.60 | ZnO | Moderate shielding with improved flexibility |
Clinical Goal | Recommended Polymer and Filler | Filler (%) |
---|---|---|
Minimize surface (epidermal) dose in electron therapy | Alginate + ZnO | 0–10% |
Reduce mid-depth (dermis/subcut) dose in electron therapy | Chitosan or Cellulose + ZnO | 5–10% |
Improve deep-tissue attenuation (muscle) in photon therapy | Cellulose + Bi2O3 | 10% |
Balance surface dose control with photon shielding at low energies | Cellulose + ZnO | 5–10% |
Maintain comfort/weight with moderate shielding | Alginate or Chitosan + ZnO | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhdar, H.; Alghamdi, S. Radiation Shielding Evaluation of Carbohydrate Hydrogel Radiotherapy Pads Containing High-Z Fillers: A Geant4 Study. Polymers 2025, 17, 2234. https://doi.org/10.3390/polym17162234
Akhdar H, Alghamdi S. Radiation Shielding Evaluation of Carbohydrate Hydrogel Radiotherapy Pads Containing High-Z Fillers: A Geant4 Study. Polymers. 2025; 17(16):2234. https://doi.org/10.3390/polym17162234
Chicago/Turabian StyleAkhdar, Hanan, and Samar Alghamdi. 2025. "Radiation Shielding Evaluation of Carbohydrate Hydrogel Radiotherapy Pads Containing High-Z Fillers: A Geant4 Study" Polymers 17, no. 16: 2234. https://doi.org/10.3390/polym17162234
APA StyleAkhdar, H., & Alghamdi, S. (2025). Radiation Shielding Evaluation of Carbohydrate Hydrogel Radiotherapy Pads Containing High-Z Fillers: A Geant4 Study. Polymers, 17(16), 2234. https://doi.org/10.3390/polym17162234