Towards Greener Polymers: Poly(octamethylene itaconate-co-succinate) Synthesis Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polyester Synthesis
2.3. Titration Analysis
2.4. Fourier Transform Infrared (FT-IR) Analysis
2.5. Nuclear Magnetic Resonance (NMR) Analysis
2.6. Gel Permeation Chromatography (GPC) Analysis
2.7. Thermal Analysis
2.8. Rheological Analysis
2.9. Viscosity-Visual-Utility (VVU) Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Statistical Analysis
3.2. FT-IR Spectroscopy and NMR Analysis
3.3. Thermal Analysis
3.4. Rheology Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
%convCOOH tit | Conversion of carboxyl groups (by titration) |
%C=C IN tit | Percentage of unreacted C=C double bonds (by titration) |
%C=C 1H NMR | Percentage of unreacted C=C double bonds (by 1H NMR) |
1,8-OD | 1,8-octanediol |
ANOVA | Analysis of variance |
ANtit | Acid number (by titration) |
BHT | Butylated hydroxytoluene |
CA | Citraconic acid |
DI | Dispersity index |
DIW | Direct ink writing |
DLP | Digital light processing |
DMSO-d6 | Dimethyl sulfoxide |
DSC | Differential scanning calorimetry |
DTG | Derivative thermogravimetry |
EDtit | Esterification degree (by titration) |
EDNMR | Esterification degree (by NMR) |
ENtit | Ester number (by titration) |
FT-IR | Fourier transform infrared |
G′ | Elastic modulus |
G″ | Loss modulus |
GPC | Gel permeation chromatography |
IA | Itaconic acid |
INtit | Iodine number (by titration) |
LVE | Linear viscoelasticity |
MA | Mesaconic acid |
MEHQ | 4-metoxyphenol |
Mn | Number-average molecular weight |
Mw | Weight-average molecular weight |
NMR | Nuclear magnetic resonance |
PBAT | poly(butylene adipate-co-terephthalate) |
PBItc | Poly(tetramethylene itaconate) |
PBS | Polybutyrate succinate |
PIDDOL | poly(ester thioether) based on 1,12-dodecanediyl bis(methyl itaconate) and linalool |
POItcSc | Poly(octamethylene itaconate-co-succinate) |
SA | Succinic acid |
SAn | Succinic anhydride |
SEC | Size exclusion chromatography |
t-BuOH | Tert-butanol |
TG | Thermogravimetry |
Tcc1 | Crystallization temperature |
Tcch1 | Cold crystallization temperature during the first heating |
Td5% | 5% decomposition temperature |
Td30% | 30% decomposition temperature |
Td50% | 50% decomposition temperature |
Td85% | 85% decomposition temperature |
Tgh1 | Glass transition temperature during the first heating |
Tgh2 | Glass transition temperature during second heating |
Tmh1 | Melting temperature during first heating |
Tmh2 | Melting temperature during second heating |
VVU | Viscosity-Visual-Utility |
References
- Shou, Y.; Campbell, S.B.; Lam, A.; Lausch, A.J.; Santerre, J.P.; Radisic, M.; Davenport Huyer, L. Toward Renewable and Functional Biomedical Polymers with Tunable Degradation Rates Based on Itaconic Acid and 1,8-Octanediol-SI. ACS Appl. Polym. Mater. 2021, 3, 1943–1955. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Pezzana, L.; Malitowski, N.M.; Sangermano, M.; Bikiaris, D.N.; Robert, T. UV-Curing Additive Manufacturing of Bio-Based Thermosets: Effect of Diluent Concentration on Printing and Material Properties of Itaconic Acid-Based Materials. ACS Omega 2023, 8, 31009–31020. [Google Scholar] [CrossRef]
- Karimi, A.; Rahmatabadi, D.; Baghani, M. Direct Pellet Three-Dimensional Printing of Polybutylene Adipate-co-Terephthalate for a Greener Future. Polymers 2024, 16, 267. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green and Sustainable Manufacture of Chemicals from Biomass: State of the Art. Green Chem. 2014, 16, 950–963. [Google Scholar] [CrossRef]
- Renganathan, R.R.A.; Rai, V.R. Molecular Docking and Molecular Dynamics Evaluation of Aspergillus sp., Itaconic Acid Isolated from Garcinia Indica for Anticancer Potential. Biointerface Res. Appl. Chem. 2023, 13, 247. [Google Scholar] [CrossRef]
- Chongcharoenchaikul, T.; Thamyongkit, P.; Poompradub, S. Synthesis, Characterization and Properties of a Bio-Based Poly(Glycerol Azelate) Polyester. Mater. Chem. Phys. 2016, 177, 485–495. [Google Scholar] [CrossRef]
- Wei, B.T.; Lei, L.; Kang, H.; Qiao, B.; Wang, Z.; Zhang, L.; Coates, P.; Hua, K.; Kulig, J. Tough Bio-Based Elastomer Nanocomposites with High Performance for Engineering Applications. Adv. Eng. Mater. 2012, 14, 112–118. [Google Scholar] [CrossRef]
- Brännström, S.; Malmström, E.; Johansson, M. Biobased UV-Curable Coatings Based on Itaconic Acid. J. Coat. Technol. Res. 2017, 14, 851–861. [Google Scholar] [CrossRef]
- Gowsika, J.; Nanthini, R. Synthesis, Characterization and In Vitro Anticancer Evaluation of Itaconic Acid Based Random Copolyester. J. Chem. 2014, 2014, 173814. [Google Scholar] [CrossRef]
- Birajdar, M.S.; Joo, H.; Koh, W.G.; Park, H. Natural Bio-Based Monomers for Biomedical Applications: A Review. Biomater. Res. 2021, 25, 8. [Google Scholar] [CrossRef]
- Sindhu, M.; Mehta, S.; Kumar, S.; Saharan, B.S.; Malik, K.; Kayasth, M.; Nagar, S. Itaconic Acid: Microbial Production Using Organic Wastes as Cost-Effective Substrates. Microb. Org. Acids Prod. Util. Waste Feedstocks 2024, 9, 125–147. [Google Scholar] [CrossRef]
- Zuo, X.; Yu, R.; Li, R.; Xu, M.; Liu, C.; Hao, K.; Zhou, Y.; Huang, A.; Wu, C.; Cao, Z.; et al. Itaconic Acid/Cellulose-Based Hydrogels with Fire-Resistant and Anti-Freezing Properties via Vat Photopolymerization 3D Printing. Int. J. Biol. Macromol. 2024, 283, 137911. [Google Scholar] [CrossRef]
- Pezzana, L.; Melilli, G.; Sangermano, M.; Sbirrazzuoli, N.; Guigo, N. Sustainable Approach for Coating Production: Room Temperature Curing of Diglycidyl Furfuryl Amine and Itaconic Acid with UV-Induced Thiol-Ene Surface Post-Functionalization. React. Funct. Polym. 2023, 182, 105486. [Google Scholar] [CrossRef]
- Perković, I.; Beus, M.; Schols, D.; Persoons, L.; Zorc, B. Itaconic Acid Hybrids as Potential Anticancer Agents. Mol. Divers. 2022, 26, 1–14. [Google Scholar] [CrossRef]
- Kandil, H.; Ekram, B.; Abo-Zeid, M.A.M.; Abd El-Hady, B.M.; Amin, A. Hydroxyapatite/Hyperbranched Polyitaconic Acid/Chitosan Composite Scaffold for Bone Tissue Engineering. Polym. Compos. 2023, 44, 5633–5646. [Google Scholar] [CrossRef]
- Corici, L.; Pellis, A.; Ferrario, V.; Ebert, C.; Cantone, S.; Gardossi, L. Understanding Potentials and Restrictions of Solvent-Free Enzymatic Polycondensation of Itaconic Acid: An Experimental and Computational Analysis. Adv. Synth. Catal. 2015, 357, 1763–1774. [Google Scholar] [CrossRef]
- Brännström, S.; Finnveden, M.; Johansson, M.; Martinelle, M.; Malmström, E. Itaconate Based Polyesters: Selectivity and Performance of Esterification Catalysts. Eur. Polym. J. 2018, 103, 370–377. [Google Scholar] [CrossRef]
- Maturi, M.; Pulignani, C.; Locatelli, E.; Vetri Buratti, V.; Tortorella, S.; Sambri, L.; Comes Franchini, M. Phosphorescent Bio-Based Resin for Digital Light Processing (DLP) 3D-Printing. Green Chem. 2020, 22, 6212–6224. [Google Scholar] [CrossRef]
- Schoon, I.; Kluge, M.; Eschig, S.; Robert, T. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates. Polymers 2017, 9, 693. [Google Scholar] [CrossRef]
- Robert, T.; Eschig, S.; Biemans, T.; Scheifler, F. Bio-Based Polyester Itaconates as Binder Resins for UV-Curing Offset Printing Inks. J. Coat. Technol. Res. 2019, 16, 689–697. [Google Scholar] [CrossRef]
- Robert, T.; Friebel, S. Itaconic Acid-a Versatile Building Block for Renewable Polyesters with Enhanced Functionality. Green Chem. 2016, 18, 2922–2934. [Google Scholar] [CrossRef]
- Chanda, S.; Ramakrishnan, S. Poly(Alkylene Itaconate)s-An Interesting Class of Polyesters with Periodically Located Exo-Chain Double Bonds Susceptible to Michael Addition. Polym. Chem. 2015, 6, 2108–2114. [Google Scholar] [CrossRef]
- Chen, C.W.; Hsu, T.S.; Huang, K.W.; Rwei, S.P. Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(Butylene Adipate-Co-Butylene Itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties. Polymers 2020, 12, 1160. [Google Scholar] [CrossRef]
- Yang, J.; Webb, A.R.; Ameer, G.A. Novel Citric Acid-Based Biodegradable Elastomers for Tissue Engineering. Adv. Mater. 2004, 16, 511–516. [Google Scholar] [CrossRef]
- Dey, J.; Xu, H.; Shen, J.; Thevenot, P.; Gondi, S.R.; Nguyen, K.T.; Sumerlin, B.S.; Tang, L.; Yang, J. Biomaterials Development of Biodegradable Crosslinked Urethane-Doped Polyester Elastomers. Biomaterials 2008, 29, 4637–4649. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.G.; Hollister, S.J. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-Co-Citrate) Scaffolds for Soft Tissue Engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Feng, G.; Shen, F.H.; Balian, G.; Laurencin, C.T.; Li, X. Novel Biodegradable Poly(1,8-Octanediol Malate) for Annulus Fibrosus Regeneration. Macromol. Biosci. 2007, 7, 1217–1224. [Google Scholar] [CrossRef]
- Bettinger, C.J. Biodegradable Elastomers for Tissue Engineering and Cell-Biomaterial Interactions. Macromol. Biosci. 2011, 11, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Yeshwant, K.; Ghaffari, R. A Biodegradable Wireless Blood-Flow Sensor. Nat. Biomed. Eng. 2019, 3, 7–8. [Google Scholar] [CrossRef]
- Chu, X.; Han, B.; Kuang, M.; Hou, S.; Zhao, H.; Xu, Q.; Zhang, X. Synthesis and Characterization of Biodegradable Poly(1,8-Octanediol-Co-Citrate)/Poly(ε-Caprolactone) Copolyester with Robust Resilience and Low Hysteresis. Macromol. Chem. Phys. 2025, 226, 2500038. [Google Scholar] [CrossRef]
- Prabakaran, R.; Marie, J.M.; Xavier, A.J.M. Biobased Unsaturated Polyesters Containing Castor Oil-Derived Ricinoleic Acid and Itaconic Acid: Synthesis, In Vitro Antibacterial, and Cytocompatibility Studies. ACS Appl. Bio Mater. 2020, 3, 5708–5721. [Google Scholar] [CrossRef]
- Giacobazzi, G.; Gioia, C.; Colonna, M.; Celli, A. Thia-Michael Reaction for a Thermostable Itaconic-Based Monomer and the Synthesis of Functionalized Biopolyesters. ACS Sustain. Chem. Eng. 2019, 7, 5553–5559. [Google Scholar] [CrossRef]
- Song, H.; Lee, S.Y. Production of Succinic Acid by Bacterial Fermentation. Enzym. Microb. Technol. 2006, 39, 352–361. [Google Scholar] [CrossRef]
- Tatara, A.M.; Watson, E.; Satish, T.; Scott, D.W.; Kontoyiannis, D.P.; Engel, P.S.; Mikos, A.G. Synthesis and Characterization of Diol-Based Unsaturated Polyesters: Poly(Diol Fumarate) and Poly(Diol Fumarate-Co-Succinate). Biomacromolecules 2017, 18, 1724–1735. [Google Scholar] [CrossRef]
- Floriańczyk, Z.; Penczek, S. Chemia Polimerów Tom II; Wydawnictwo Oficyna Wydawnicza Politechniki Warszawskiej: Warschau, Poland, 1997. [Google Scholar]
- Mahapatro, A.; Kumar, A.; Kalra, B.; Gross, R.A. Solvent-Free Adipic Acid/1,8-Octanediol Condensation Polymerizations Catalyzed by Candida Antartica Lipase B. Macromolecules 2004, 37, 35–40. [Google Scholar] [CrossRef]
- dos Santos, W.N.L.; Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Miętus, M.; Cegłowski, M.; Gołofit, T.; Gadomska-Gajadhur, A. Enhanced Synthesis of Poly(1,4-Butanediol Itaconate) via Box–Behnken Design Optimization. Polymers 2024, 16, 2708. [Google Scholar] [CrossRef]
- Guarneri, A.; Cutifani, V.; Cespugli, M.; Pellis, A.; Vassallo, R.; Asaro, F.; Ebert, C.; Gardossi, L. Functionalization of Enzymatically Synthesized Rigid Poly(Itaconate)s via Post-Polymerization Aza-Michael Addition of Primary Amines. Adv. Synth. Catal. 2019, 361, 2559–2573. [Google Scholar] [CrossRef]
- Farmer, T.J.; Comerford, J.W.; Pellis, A.; Robert, T. Post-Polymerization Modification of Bio-Based Polymers: Maximizing the High Functionality of Polymers Derived from Biomass. Polym. Int. 2018, 67, 775–789. [Google Scholar] [CrossRef]
- Barrett, D.G.; Merkel, T.J.; Luft, J.C.; Yousaf, M.N. One-Step Syntheses of Photocurable Polyesters Based on a Renewable Resource. Macromolecules 2010, 43, 9660–9667. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Malitowski, N.M.; Bikiaris, D. Bio-Based Additive Manufacturing Materials: An in-Depth Structure-Property Relationship Study of UV-Curing Polyesters from Itaconic Acid. Eur. Polym. J. 2023, 186, 111872. [Google Scholar] [CrossRef]
- Melilli, G.; Guigo, N.; Robert, T.; Sbirrazzuoli, N. Radical Oxidation of Itaconic Acid-Derived Unsaturated Polyesters under Thermal Curing Conditions. Macromolecules 2022, 55, 9011–9021. [Google Scholar] [CrossRef]
- Maturi, M.; Spanu, C.; Maccaferri, E.; Locatelli, E.; Benelli, T.; Mazzocchetti, L.; Sambri, L.; Giorgini, L.; Franchini, M.C. (Meth)Acrylate-Free Three-Dimensional Printing of Bio-Derived Photocurable Resins with Terpene- and Itaconic Acid-Derived Poly(Ester-Thioether)S. ACS Sustain. Chem. Eng. 2023, 11, 17285–17298. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Leng, Y.M.; Fan, C.J.; Xu, Z.Y.; Li, L.; Shi, L.Y.; Yang, K.K.; Wang, Y.Z. 4D Printing of a Fully Biobased Shape Memory Copolyester via a UV-Assisted FDM Strategy. ACS Sustain. Chem. Eng. 2022, 10, 6304–6312. [Google Scholar] [CrossRef]
- Wang, G.; Hao, X.; Dong, Y.; Zhang, L. Bio-Based Poly(Butylene Succinate-Co-Dodecylene Succinate) Derived from 1,12-Dodecanediol: Synthesis and Characterization. J. Polym. Environ. 2023, 31, 4990–5002. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Pezzana, L.; Malitowski, N.; Sangermano, M.; Bikiaris, D.N.; Robert, T. Influence of Reactive Diluent Composition on Properties and Bio-Based Content of Itaconic Acid-Based Additive Manufacturing Materials. Discov. Appl. Sci. 2024, 6, 290. [Google Scholar] [CrossRef]
- Mahdavi, R.; Zahedi, P.; Goodarzi, V. Application of Poly(Glycerol Itaconic Acid) (PGIt) and Poly(ε-Caprolactone) Diol (PCL-Diol) as Macro Crosslinkers Containing Cloisite Na+ to Application in Tissue Engineering. J. Polym. Environ. 2024, 32, 3392–3406. [Google Scholar] [CrossRef]
- Barrioni, B.R.; De Carvalho, S.M.; Oréfice, R.L.; De Oliveira, A.A.R.; Pereira, M.D.M. Synthesis and Characterization of Biodegradable Polyurethane Films Based on HDI with Hydrolyzable Crosslinked Bonds and a Homogeneous Structure for Biomedical Applications. Mater. Sci. Eng. C 2015, 52, 22–30. [Google Scholar] [CrossRef]
- Ghaffari-Bohlouli, P.; Golbaten-Mofrad, H.; Najmoddin, N.; Goodarzi, V.; Shavandi, A.; Chen, W.H. Reinforced Conductive Polyester Based on Itaconic Acids, Glycerol and Polypyrrole with Potential for Electroconductive Tissue Restoration. Synth. Met. 2023, 293, 117238. [Google Scholar] [CrossRef]
- Golbaten-Mofrad, H.; Seyfi Sahzabi, A.; Seyfikar, S.; Salehi, M.H.; Goodarzi, V.; Wurm, F.R.; Jafari, S.H. Facile Template Preparation of Novel Electroactive Scaffold Composed of Polypyrrole-Coated Poly(Glycerol-Sebacate-Urethane) for Tissue Engineering Applications. Eur. Polym. J. 2021, 159, 110749. [Google Scholar] [CrossRef]
- Mondal, S.; Martin, D. Hydrolytic Degradation of Segmented Polyurethane Copolymers for Biomedical Applications. Polym. Degrad. Stab. 2012, 97, 1553–1561. [Google Scholar] [CrossRef]
- Anjum, S.; Li, T.; Arya, D.K.; Ali, D.; Alarifi, S.; Yulin, W.; Hengtong, Z.; Rajinikanth, P.S.; Ao, Q. Biomimetic Electrospun Nanofibrous Scaffold for Tissue Engineering: Preparation, Optimization by Design of Experiments (DOE), in-Vitro and in-Vivo Characterization. Front. Bioeng. Biotechnol. 2023, 11, 1288539. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour-Ataei, S.; Tabatabaei-Yazdi, Z. Heat resistant polymers. In Encyclopedia of Polymer Science and Technology; John Wiley and Sons: Hoboken, NJ, USA, 2015; ISBN 0471440264. [Google Scholar]
- Sahu, P.; Sharma, L.; Dawsey, T.; Gupta, R.K. Insight into the Synthesis and Thermomechanical Properties of “Short-Long” Type Biobased Aliphatic Polyesters. J. Appl. Polym. Sci. 2024, 141, e54972. [Google Scholar] [CrossRef]
- Pérocheau Arnaud, S.; Malitowski, N.M.; Meza Casamayor, K.; Robert, T. Itaconic Acid-Based Reactive Diluents for Renewable and Acrylate-Free UV-Curing Additive Manufacturing Materials. ACS Sustain. Chem. Eng. 2021, 9, 17142–17151. [Google Scholar] [CrossRef]
- Ouyang, L.; Highley, C.B.; Rodell, C.B.; Sun, W.; Burdick, J.A. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomater. Sci. Eng. 2016, 2, 1743–1751. [Google Scholar] [CrossRef]
Structure | Consistency | Transparency | Ability to Spread the Sample on the Table | Viscosity [Pa∙s] | |||||
---|---|---|---|---|---|---|---|---|---|
1 | Hard and brittle | 1 | Wax | 1 | None | 1 | Yes | 1 | η < 10 or η > 1000 |
2 | Incompressible and sticky | 2 | Wax/Resin | 2 | Partial | 2 | Partial | 2 | 500 < η < 1000 |
3 | Compressible and sticky | 3 | Resin | 3 | Full | 3 | No | 3 | 100 < η < 500 |
4 | 10 < η < 100 |
No. | Coded Variable | %convCOOH tit [%] | %C=C 1H NMR [%] | %vvu [%] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | Exp. 1 | Calc. 2 | Diff. 3 | Exp. | Calc. | Diff. | Exp. | Calc. | Diff. | |
1 | −1 | −1 | 0 | 60.2 | 63.5 | −3.3 | 70.9 | 73.3 | −2.4 | 78.1 | 78.5 | −0.4 |
2 | 1 | −1 | 0 | 73.3 | 70.5 | 2.7 | 73.7 | 73.7 | 0.0 | 84.4 | 83.2 | 1.2 |
3 | −1 | 1 | 0 | 81.0 | 83.7 | −2.7 | 70.0 | 69.9 | 0.0 | 71.9 | 73.0 | −1.2 |
4 | 1 | 1 | 0 | 75.9 | 72.6 | 3.3 | 74.9 | 72.5 | 2.4 | 90.6 | 90.2 | 0.4 |
5 | −1 | 0 | −1 | 70.8 | 68.9 | 1.9 | 70.5 | 65.3 | 5.3 | 65.6 | 64.5 | 1.2 |
6 | 1 | 0 | −1 | 62.6 | 66.7 | −4.1 | 74.3 | 71.4 | 2.9 | 78.1 | 78.5 | −0.4 |
7 | −1 | 0 | 1 | 82.7 | 78.7 | 4.1 | 80.0 | 82.9 | −2.9 | 68.8 | 68.4 | 0.4 |
8 | 1 | 0 | 1 | 74.9 | 76.8 | −1.9 | 74.5 | 79.8 | −5.3 | 75.0 | 76.2 | −1.2 |
9 | 0 | −1 | −1 | 65.9 | 64.5 | 1.3 | 72.7 | 75.5 | −2.9 | 78.1 | 78.9 | −0.8 |
10 | 0 | 1 | −1 | 76.0 | 75.2 | 0.8 | 59.7 | 65.0 | −5.3 | 78.1 | 78.1 | 0.0 |
11 | 0 | −1 | 1 | 73.3 | 74.1 | −0.8 | 85.7 | 80.3 | 5.3 | 78.1 | 78.1 | 0.0 |
12 | 0 | 1 | 1 | 84.3 | 85.6 | −1.3 | 89.2 | 86.3 | 2.9 | 81.3 | 80.5 | 0.8 |
13 | 0 | 0 | 0 | 72.4 | 73.5 | −1.1 | 77.9 | 79.0 | −1.2 | 81.3 | 80.2 | 1.0 |
14 | 0 | 0 | 0 | 74.8 | 73.5 | 1.4 | 77.1 | 79.0 | −2.0 | 78.1 | 80.2 | −2.1 |
15 | 0 | 0 | 0 | 73.2 | 73.5 | −0.3 | 82.2 | 79.0 | 3.2 | 81.3 | 80.2 | 1.0 |
Result | %convCOOH tit [%] | %C=C 1H NMR [%] | %VVU [%] |
---|---|---|---|
Calculated | 85.6 | 86.3 | 80.5 |
Experimental | 83.3 | 88.7 | 87.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miętus, M.; Gołofit, T.; Gadomska-Gajadhur, A. Towards Greener Polymers: Poly(octamethylene itaconate-co-succinate) Synthesis Parameters. Polymers 2025, 17, 2220. https://doi.org/10.3390/polym17162220
Miętus M, Gołofit T, Gadomska-Gajadhur A. Towards Greener Polymers: Poly(octamethylene itaconate-co-succinate) Synthesis Parameters. Polymers. 2025; 17(16):2220. https://doi.org/10.3390/polym17162220
Chicago/Turabian StyleMiętus, Magdalena, Tomasz Gołofit, and Agnieszka Gadomska-Gajadhur. 2025. "Towards Greener Polymers: Poly(octamethylene itaconate-co-succinate) Synthesis Parameters" Polymers 17, no. 16: 2220. https://doi.org/10.3390/polym17162220
APA StyleMiętus, M., Gołofit, T., & Gadomska-Gajadhur, A. (2025). Towards Greener Polymers: Poly(octamethylene itaconate-co-succinate) Synthesis Parameters. Polymers, 17(16), 2220. https://doi.org/10.3390/polym17162220