Recycling Continuous Glass Fibre-Reinforced Polyamide 6 Laminates via Compression Moulding
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Recycling by Reprocessing via Compression Moulding
2.3. Test Methods
2.3.1. Density
2.3.2. Fibre Volume Fraction and Void Content
2.3.3. X-Ray Diffraction (XRD)
2.3.4. Dynamic Mechanical Analysis (DMA)
2.3.5. Flexural Testing
2.3.6. Microscopy
2.3.7. Statistical Analysis
3. Results
3.1. Density, Fibre Volume Fractions (FVF) and Void Content
3.2. X-Ray Diffraction Analysis of Crystalline Morphology
3.3. Dynamic Mechanical Analysis (DMA)
3.4. Influence of Reprocessing on Flexural Properties
3.5. Microstructural Analysis of Fractured Flexure Specimens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De, B.; Bera, M.; Bhattacharjee, D.; Ray, B.C.; Mukherjee, S. A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management. Prog. Mater. Sci. 2024, 146, 101326. [Google Scholar] [CrossRef]
- Waghmare, S.; Shelare, S.; Aglawe, K.; Khope, P. A mini review on fibre reinforced polymer composites. Mater. Today Proc. 2022, 54, 682–689. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Karataş, M.A.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Ouarhim, W.; Zari, N.; Bouhfid, R.; Qaiss, A.E.K. 3-Mechanical performance of natural fibers-based thermosetting composites. Mech. Phys. Test. Biocomposites Fibre-Reinf. Compos. Hybrid Compos. 2019, 3, 43–60. [Google Scholar] [CrossRef]
- Phiri, R.; Rangappa, S.M.; Siengchin, S.; Oladijo, O.P.; Ozbakkaloglu, T. Advances in lightweight composite structures and manufacturing technologies: A comprehensive review. Heliyon 2024, 10, e39661. [Google Scholar] [CrossRef]
- Reis, J.P.; de Moura, M.; Samborski, S. Thermoplastic Composites and Their Promising Applications in Joining and Repair Composites Structures: A Review. Materials 2020, 13, 5832. [Google Scholar] [CrossRef]
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Valente, M.; Rossitti, I.; Sambucci, M. Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Processes Parameter. Polymers 2023, 15, 242. [Google Scholar] [CrossRef]
- Miller, A.H.; Dodds, N.; Hale, J.M.; Gibson, A.G. High speed pultrusion of thermoplastic matrix composites. Compos. Part A Appl. Sci. Manuf. 1998, 29, 773–792. [Google Scholar] [CrossRef]
- Campos, B.M.; Bourbigot, S.; Fontaine, G.; Bonnet, F. Thermoplastic matrix-based composites produced by resin transfer molding: A review. Polym. Compos. 2022, 43, 2485–2506. [Google Scholar] [CrossRef]
- Metol. A Complete Commercial Solution. Available online: https://metol.co.uk/Products/ (accessed on 19 June 2025).
- Dhakal, S.; Minx, J.C.; Abdel-Aziz, A.; Meza, M.J.F.; Hubacek, K.; Jonckheere, I.G.C.; Kim, Y.-G.; Nemet, G.F.; Pachauri, S.; Tan, X.C.; et al. Emissions Trends and Drivers. In Climate Change 2022—Mitigation of Climate Change; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2023; Volume 2, pp. 215–294. [Google Scholar] [CrossRef]
- Ragonnaud, G.; Maran, P.S.; Ricci, M.S.; Pfe, I.F.T.; Pfe, S.S.; Vondra, I.A. Briefing EU Legislation in Progress Proposal for a Regulation of the European Parliament and of the Council on Circularity Requirements for Vehicle Design and on Management of End-of-Life Vehicles, Amending Regulations (EU) 2018/858 and 2019/1020 and Repealing Directives 2000/53/EC and 2005/64/EC Committees responsible Ordinary legislative Procedure (COD) (Parliament and Council on Equal Footing-Formerly ’co-Decision’). Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/754627/EPRS_BRI (accessed on 19 June 2025).
- Yan, L.Q.; Xu, H.T. Lightweight composite materials in automotive engineering: State-of-the-art and future trends. Alex. Eng. J. 2025, 118, 1–10. [Google Scholar] [CrossRef]
- Lanxess, A.G. High-Tech Thermoplastics for the Vehicles of the Future. Available online: https://lanxess.com/en/media/press-releases/2020/06/high-tech-thermoplastics-for-the-vehicles-of-the-future#:~:text=The%20unreinforced%20and%20impact-resistant%20modified%20polyamide%206%20is,cost-effectively%20in%20large%20quantities%20despite%20their%20complex%20geometries (accessed on 31 March 2025).
- Halsband, A.; Chen, J.; Miloaga, D. Structural PA-6 Organosheets-based High Voltage Battery Enclosure Concept Development. Available online: https://speautomotive.com/wp-content/uploads/2022/10/Structural-PA-6-Organosheets-based-High-Voltage-Battery-Enclosure-Concept-Development_SIMON.pdf (accessed on 31 March 2025).
- Nakamoto, Y.; Nishijima, D.; Kagawa, S. The role of vehicle lifetime extensions of countries on global CO2 emissions. J. Clean Prod. 2019, 207, 1040–1046. [Google Scholar] [CrossRef]
- Ksouri, I.; De Almeida, O.; Haddar, N. Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: Physicochemical, mechanical and morphological characterization. J. Polym. Res. 2017, 24. [Google Scholar] [CrossRef]
- Robust Recycled Content for Plastics in Vehicles Essential to Drive Plastic Recycling in Europe. Available online: https://euric.org/images/Press-releases/Statements/EPRB_Statement_-_Robust_recycled_content_for_plastics_FINAL.pdf (accessed on 21 May 2025).
- End-of-Life Vehicles–Revised Proposal for a Regulation. Available online: https://www.eurometaux.eu/media/1dhbpo3o/elv-regulation_eurometaux_comments-on-the-legislative-proposal_final_2023-12-04.pdf (accessed on 21 May 2025).
- Tian, J.; Chen, M. Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles. Waste Manag. 2014, 34, 458–467. [Google Scholar] [CrossRef]
- Hirschberg, V.; Rodrigue, D. Recycling of polyamides: Processes and conditions. J. Polymer. Sci. 2023, 61, 1937–1958. [Google Scholar] [CrossRef]
- Morales, J.; Rodrigue, D. The Effect of Reprocessing and Moisture on Polyamide Recycling: A Focus on Neat, Composites, and Blends. Macromol. Mater. Eng. 2024, 310, 2400304. [Google Scholar] [CrossRef]
- Wang, W.; Meng, L.; Huang, Y. Hydrolytic degradation of monomer casting nylon in subcritical water. Polym. Degrad. Stabil. 2014, 110, 312–317. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamamoto, S. A novel depolymerization of nylons in ionic liquids. Polym. Adv. Technol. 2008, 19, 1391–1395. [Google Scholar] [CrossRef]
- Wursthorn, L.; Beckett, K.; Rothbaum, J.O.; Cywar, R.M.; Lincoln, C.; Kratish, Y.; Marks, T.J. Selective Lanthanide-Organic Catalyzed Depolymerization of Nylon-6 to ϵ-Caprolactam. Angew. Chem. Int. Ed. 2023, 62, e202212543. [Google Scholar] [CrossRef]
- Toray Industries, Inc Toray and Honda Start Jointly Validating Chemical Nylon 6 Recycling for Automotive Applications. Available online: https://www.env.go.jp/press/press_01945.html (accessed on 21 May 2025).
- Haddar, M.; Koubaa, S.; Issaoui, M.; Frikha, A. Optimization in the reprocessing of recycled polyamide 6 reinforced with 30 wt% Glass Fiber (PA6/GF30) using mixture design. Polym. Adv. Technol. 2024, 35, e6240. [Google Scholar] [CrossRef]
- Gültürk, C.; Berber, H. Effects of mechanical recycling on the properties of glass fiber-reinforced polyamide 66 composites in automotive components. e-Polymers 2023, 23, 230129. [Google Scholar] [CrossRef]
- Pietroluongo, M.; Padovano, E.; Frache, A.; Badini, C. Mechanical recycling of an end-of-life automotive composite component. Sustain. Mater. Technol. 2020, 23, e00143. [Google Scholar] [CrossRef]
- Dehghani, S.; Salehiyan, R.; Srithep, Y. Mechanical recycling of polyamide 6 and polypropylene for automotive applications. Polym. Eng. Sci. 2024, 65, 250–257. [Google Scholar] [CrossRef]
- Hermassi, N.; Ejday, M.; Grohens, Y.; Guermazi, N.; Corre, Y.M. Investigation on mechanical, physico-chemical and thermal properties of recycled polyamide 6 reinforced with continuous glass fibers. J. Compos. Mater. 2024, 59, 1013–1034. [Google Scholar] [CrossRef]
- Wu, J.; Li, A.; Lyu, Y.; Yang, B.; Fu, K.; Yang, D. Dual-composite additive manufacturing of glass fibre and recycled carbon fibre reinforced thermoplastic composites with customised fibre layout. Compos. Struct. 2025, 354, 118815. [Google Scholar] [CrossRef]
- Lohr, C.; Trauth, A.; Schukraft, J.; Leher, S.; Weidenmann, K.A. Investigation on the recycling potential of additively manufactured carbon fiber reinforced PA 6.6. Compos. Struct. 2025, 352, 118683. [Google Scholar] [CrossRef]
- Wilhelm, M.; Kummert, H.; Suratkar, A.; Rosenberg, P.; Henning, F. A study on the mechanical recycling of continuous glass fibre reinforced Nylon 6 profiles produced by In-situ pultrusion. In Proceedings of the SAMPE Europe Conference, Madrid, Spain, 10 October 2023. [Google Scholar]
- Moritzer, E.; Heiderich, G. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets. In Proceedings of the 31st International Conference of the Polymer Processing Society, Jeju Island, Republic of Korea, 7–11 June 2015. [Google Scholar]
- Johns, M. Advanced Composites Portfolio Overview. 2021. Available online: https://publish-p45436-e208643.adobeaemcloud.com/content/dam/jm/global/en/advanced-composites/Neomera%20Advanced%20Composites%20Portfolio%20Overview.pdf (accessed on 27 May 2025).
- Zhang, M.; Gleich, K.F.; Yohannes, A.; Block, M.J.; Asrar, J. Fiber Reinforced Composites Made with Coupling-Activator Treated Fibers and Activator Containing Reactive Resin. 2021. Available online: https://patents.google.com/patent/US10954349B2/en (accessed on 5 August 2025).
- Raju, A.; Babu, N.M.; Madhuri, D.; Rao, B.S.; Madhukar, K. Spectroscopic, Thermal and Morphological Properties of Pa6 Copolymers. Res. Rev. J. Phys. 2018, 7, 56–62. [Google Scholar]
- ASTM D792-20; Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM D3171-22; Test Methods for Constituent Content of Composite Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Merz, J.; Cuskelly, D.; Gregg, A.; Studer, A.; Richardson, P. On the complex synthesis reaction mechanisms of the MAB phases: High-speed in-situ neutron diffraction and ex-situ X-ray diffraction studies of MoAlB. Ceram. Int. 2023, 49, 38789–38802. [Google Scholar] [CrossRef]
- Freitas, D.d.F.d.S.; Mendes, L.C. Water resistance, mechanical, and morphological characteristics in polyamide-6/zirconium phosphate nanocomposites. J. Compos. Mater. 2020, 54, 259–269. [Google Scholar] [CrossRef]
- Al Juhaiman, L.A.; Aljaghwani, A.A.; Mekhamer, W.K. Preparation and Characterization of Polyamide6/Organic Clay Nanocomposite as protective coating for Carbon Steel. Int. J. Electrochem. Sci. 2020, 15, 6938–6954. [Google Scholar] [CrossRef]
- Skorupska, M.; Kulczyk, M.; Denis, P.; Grzęda, D.; Czajka, A.; Ryszkowska, J. Structural Hierarchy of PA6 Macromolecules after Hydrostatic Extrusion. Materials 2023, 16, 3435. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, L.; Bezerédi, Á.; Petrény, R. Modifying the properties of polyamide 6 with high-performance environmentally friendly nano- and microsized reinforcing materials. Polym. Compos. 2024, 45, 6404–6413. [Google Scholar] [CrossRef]
- BS EN ISO14125:2011; Fibre-Reinforced Plastic Composites: Determination of Flexural Properties. British Standards Institution: London, UK, 2011. Available online: https://www.iso.org/standard/23637.html#amendment (accessed on 27 May 2025).
- O’Rourke, K.; Wurzer, C.; Murray, J.; Doyle, A.; Doyle, K.; Griffin, C.; Christensen, B.; Brádaigh, C.M.Ó.; Ray, D. Diverted from Landfill: Reuse of Single-Use Plastic Packaging Waste. Polymers 2022, 14, 5485. [Google Scholar] [CrossRef]
- Saenz-Castillo, D.; Martín, M.I.; Calvo, S.; Rodriguez-Lence, F.; Güemes, A. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 308–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liu, S.; Huang, A.; Chi, Z.; Xu, J.; Economy, J. Phase stability and melting behavior of the α and γ phases of nylon 6. J. Appl. Polym. Sci. 2011, 120, 1885–1891. [Google Scholar] [CrossRef]
- Uematsu, H.; Kawasaki, T.; Koizumi, K.; Yamaguchi, A.; Sugihara, S.; Yamane, M.; Kawabe, K.; Ozaki, Y.; Tanoue, S. Relationship between crystalline structure of polyamide 6 within carbon fibers and their mechanical properties studied using Micro-Raman spectroscopy. Polymer 2021, 223, 123711. [Google Scholar] [CrossRef]
- Zaldua, N.; Maiz, J.; de la Calle, A.; García-Arrieta, S.; Elizetxea, C.; Harismendy, I.; Tercjak, A.; Müller, A.J. Nucleation and crystallization of PA6 composites prepared by T-RTM: Effects of carbon and glass fiber loading. Polymers 2019, 11, 1680. [Google Scholar] [CrossRef]
- Dan, F.; Vasiliu-Oprea, C. Anionic polymerization of caprolactam in organic media. Morphological aspects. Colloid Polym. Sci. 1998, 276, 483–495. [Google Scholar] [CrossRef]
- Rahman, M.A.; Renna, L.A.; Venkataraman, D.; Desbois, P.; Lesser, A.J. High crystalline, porous polyamide 6 by anionic polymerization. Polymer 2018, 138, 8–16. [Google Scholar] [CrossRef]
- Kim, G.M.; Michler, G.H.; Ania, F.; Calleja, F.J.B. Temperature dependence of polymorphism in electrospun nanofibres of PA6 and PA6/clay nanocomposite. Polymer 2007, 48, 4814–4823. [Google Scholar] [CrossRef]
- Kolesov, I.; Androsch, R. The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer 2012, 53, 4770–4777. [Google Scholar] [CrossRef]
- Galeski, A.; Argon, A.S.; Cohen, R.E. Morphology of Bulk Nylon 6 Subjected to Plane Strain Compression. Macromolecules 1991, 24, 3953–3961. [Google Scholar] [CrossRef]
- Sperling, L.H. Introduction to Physical Polymer Science, 4th ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Wu, H.; Guo, S.; Qiu, J. Constructing highly aligned crystalline structure to enhance sliding wear performance of bulk polyamide 6. Polymer 2021, 237, 124353. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, Y.; Jin, F.; Hou, Z. Influence of Polymer Matrices on the Tensile and Impact Properties of Long Fiber-Reinforced Thermoplastic Composites. Polymers 2023, 15, 408. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, L.; Li, C. Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting, infiltration and crystallization. Polymer 2019, 172, 253–264. [Google Scholar] [CrossRef]
Specifications | Laminate | |
---|---|---|
cGF/APA6_vr_RS | cGF/APA6_vr_nRS | |
Sizing agent | Reactive sizing agent | Non-reactive sizing agent |
Weave pattern in glass fabric | 2/2 twill | 2/2 twill |
Fibre area weight (g/m2) | 1200 | 1200 |
Yarn/Yarn count (Tex) | 2400 | 2400 |
Weight rate (longitudinal/transverse) % | 50/50 | 50/50 |
Thickness (mm) | 2 ± 0.2 | 2 ± 0.2 |
Step | Reprocessing at 180 °C | Reprocessing at 230 °C |
---|---|---|
Step 1 | Heating from 25 °C to 180 °C at a rate of 5 °C/min and at 5 bar pressure | Heating from 25 °C to 230 °C at a rate of 5 °C/min and at 5 bar pressure |
Step 2 | Holding at 180 °C for 5 min at 5 bar pressure | Holding at 230 °C for 5 min at 5 bar pressure |
Step 3 | Cooling from 180 °C to 25 °C at a rate of 5 °C/min and at 5 bar pressure | Cooling from 230 °C to 25 °C at a rate of 5 °C/min and at 5 bar pressure |
Laminate Code | Woven Fabric Based on Roving | Processing Condition | Laminate Description | |
---|---|---|---|---|
Virgin | Reprocessed | |||
cGF/APA6_RS_vr_RP180 | Reactive sizing | ✅ | - | Virgin reference for cGF/APA6_RS_RP180 |
cGF/APA6_RS_RP180 | Reactive sizing | - | ✅ | cGF/APA6_RS reprocessed at 180 °C |
cGF/APA6_RS_vr_RP230 | Reactive sizing | ✅ | - | Virgin reference for cGF/APA6_RS_RP230 |
cGF/APA6_RS_RP230 | Reactive sizing | - | ✅ | cGF/APA6_RS reprocessed at 230 °C |
cGF/APA6_nRS_vr_RP180 | Non-reactive sizing | ✅ | - | Virgin reference for cGF/APA6_nRS_RP180 |
cGF/APA6_nRS_RP180 | Non-reactive sizing | - | ✅ | cGF/APA6_nRS reprocessed at 180 °C |
cGF/APA6_nRS_vr_RP230 | Non-reactive sizing | ✅ | - | Virgin reference for cGF/APA6_nRS_RP230 |
cGF/APA6_nRS__RP230 | Non-reactive sizing | - | ✅ | cGF/APA6_nRS reprocessed at 230 °C |
Laminate ID | Density dl (g/cm3) | Fibre (Vol.%) VcGF (%) | Matrix (Vol.%) Vm (%) | Void (Vol.%) Vv (%) |
---|---|---|---|---|
cGF/APA6_RS_vr_RP180 | 1.71 | 43.41 | 50.66 | 5.93 |
cGF/APA6_RS_RP180 | 1.71 | 42.78 | 52.01 | 5.21 |
cGF/APA6_nRS_vr_RP180 | 1.66 | 40.76 | 53.44 | 5.80 |
cGF/APA6_nRS_RP180 | 1.67 | 39.94 | 54.73 | 5.33 |
cGF/APA6_RS_vr_RP230 | 1.71 | 43.43 | 50.85 | 5.72 |
cGF/APA6_RS_RP230 | 1.74 | 43.80 | 52.70 | 3.50 |
cGF/APA6_nRS_vr_RP230 | 1.66 | 40.75 | 52.89 | 6.35 |
cGF/APA6_nRS_RP230 | 1.70 | 41.12 | 55.69 | 3.19 |
Laminate ID | (%) | α-Phase | γ-Phase | ||||
---|---|---|---|---|---|---|---|
α(200) | α(002/202) | γ(100) | |||||
Fraction | Lhkl (Å) | Fraction | Lhkl (Å) | Fraction | Lhkl (Å) | ||
cGF/APA6_RS_vr_RP180 | 31.25 | 0.38 | 100.8 | 0.62 | 125.3 | - | - |
cGF/APA6_RS_RP180 | 37.24 | 0.40 | 96.4 | 0.59 | 94.8 | 0.01 | 141.9 |
cGF/APA6_nRS_vr_RP180 | 30.95 | 0.22 | 78.0 | 0.78 | 101.9 | - | - |
cGF/APA6_nRS_RP180 | 33.73 | 0.26 | 66.1 | 0.74 | 97.3 | - | - |
cGF/APA6_RS_vr_RP230 | 33.74 | 0.38 | 87.9 | 0.62 | 68.1 | - | - |
cGF/APA6_RS_RP230 | 41.56 | 0.39 | 107.6 | 0.54 | 98.0 | 0.07 | 97.3 |
cGF/APA6_nRS_vr_RP230 | 31.26 | 0.26 | 98.9 | 0.74 | 103.5 | - | - |
cGF/APA6_nRS_RP230 | 35.70 | 0.24 | 91.2 | 0.75 | 105.5 | 0.01 | 173.1 |
Laminate | Average Storage Modulus at 30 °C (MPa) | Average Loss Modulus at 30 °C (MPa) | Average tan δ Peak Value | Average Tg from tan δ Peak Value (°C) |
---|---|---|---|---|
cGF/APA6_RS_vr_RP180 | 9802 ± 87 | 243.1 ± 26.5 | 0.024 ± 0.0015 | 71.9 |
cGF/APA6_RS_RP180 | 9796 ± 884 | 222.9 ± 18.0 | 0.023 ± 0.0015 | 79.7 |
cGF/APA6_nRS_vr_RP180 | 10,829 ± 416 | 441.7 ± 76.0 | 0.037 ± 0.0005 | 79.0 |
cGF/APA6_nRS_RP180 | 10,141 ± 2582 | 324.7 ± 110.1 | 0.033 ± 0.0026 | 85.7 |
cGF/APA6_RS_vr_RP230 | 11,457 ± 284 | 353.9 ± 86.3 | 0.035 ± 0.0075 | 79.5 |
cGF/APA6_RS_RP230 | 10,771 ± 332 | 244.7 ± 35.8 | 0.026 ± 0.0022 | 83.9 |
cGF/APA6_nRS_vr_RP230 | 10,021 ± 335 | 318.1 ± 4.1 | 0.033 ± 0.0008 | 79.5 |
cGF/APA6_nRS_RP230 | 9660 ± 350 | 263 ± 14.28 | 0.029 ± 0.0012 | 86.2 |
Laminate ID | Average Flexural Strength (F.S.) (MPa) | p-Value F.S. | Average Flexural Modulus (F.M.) (GPa) | p-Value F.M. |
---|---|---|---|---|
cGF/APA6_RS_vr_RP180 | 216.7 ± 16.1 | 0.3001 | 12.21 ± 0.83 | 0.8244 |
cGF/APA6_RS_RP180 | 204.6 ± 18.3 | 12.32 ± 0.60 | ||
cGF/APA6_nRS_vr_RP180 | 215.1 ± 32.5 | 0.9299 | 11.13 ± 0.34 | 0.2082 |
cGF/APA6_nRS_RP180 | 213.6 ± 11.8 | 10.87 ± 0.26 | ||
cGF/APA6_RS_vr_RP230 | 255.6 ± 26.6 | 0.0085 | 12.11 ± 0.83 | 0.4001 |
cGF/APA6_RS_RP230 | 307.2 ± 17.5 | 12.48 ± 0.37 | ||
cGF/APA6_nRS_vr_RP230 | 220.5 ± 15.7 | 0.1544 | 10.40 ± 0.65 | 0.6377 |
cGF/APA6_nRS_RP230 | 233.6 ± 9.3 | 10.23 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shembekar, A.P.; Yu, J.; Zhang, M.; Griffin, C.; Ray, D. Recycling Continuous Glass Fibre-Reinforced Polyamide 6 Laminates via Compression Moulding. Polymers 2025, 17, 2160. https://doi.org/10.3390/polym17152160
Shembekar AP, Yu J, Zhang M, Griffin C, Ray D. Recycling Continuous Glass Fibre-Reinforced Polyamide 6 Laminates via Compression Moulding. Polymers. 2025; 17(15):2160. https://doi.org/10.3390/polym17152160
Chicago/Turabian StyleShembekar, Aditya Prakash, Jason Yu, Mingfu Zhang, Chris Griffin, and Dipa Ray. 2025. "Recycling Continuous Glass Fibre-Reinforced Polyamide 6 Laminates via Compression Moulding" Polymers 17, no. 15: 2160. https://doi.org/10.3390/polym17152160
APA StyleShembekar, A. P., Yu, J., Zhang, M., Griffin, C., & Ray, D. (2025). Recycling Continuous Glass Fibre-Reinforced Polyamide 6 Laminates via Compression Moulding. Polymers, 17(15), 2160. https://doi.org/10.3390/polym17152160