Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend
Abstract
1. Introduction
Strategy ID | Method | Advantage | Disadvantage | Example | Ref. | |
---|---|---|---|---|---|---|
To Employ | To Utilize | |||||
A | Monomer–solvent system | Polymerization for phase separation. Matrix (non-solvent) to be removed. | Water or ordinary solvent can be utilized as the non-solvent; less waste solvents. | Biodegradable polymer options suitable for the principle are few. | Polymethyl Methacrylate | [11,12] |
B1 | Compatible polymer–solvent system | Quenching below UCST for phase separation. Matrix (non-solvent) to be removed. | High productivity and less waste solvents. | Spherical particles with smooth surfaces are generally difficult to obtain. | Polybutylene Succinate | [13] |
B2 | Incompatible polymer–solvent system | Emulsification followed by quenching to fix phase separation morphology. Matrix (non-solvent) to be removed. | Any solvent–soluble polymers assume potential as feedstock. | ibid. | Cellulose acetate | [14,15] |
C | Incompatible polymer–polymer system | Emulsification followed by quenching to fix dispersed/matrix morphology. Matrix (polymer) to be removed. | Spherical particles with smooth surfaces are relatively easy to obtain. | Polymers meeting criteria of solubility/insolubility and melting behavior are limited. Small particle size at high volume fraction (hence high productivity) requires rigorous design of process parameters. | Polyamide 12 Cellulose Acetate Butylate | [7,8] |
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose Acetate Spherical Particles
2.3. Calculation of Particle Size by Means of Semi-Theoretical Equation Established by Wu (1987) [18]
2.3.1. Surface Tension Components
2.3.2. Interfacial Tension
2.3.3. Spreading Coefficient
2.4. Characterization of CA Microparticles
2.4.1. Residual Amount of TA and PVA in Spherical Microparticles
2.4.2. Average Particle Size and Its Distribution
2.4.3. Determination of Melting Temperature and Glass Transition Temperature for CA, PVA and Blends
3. Results and Discussion
3.1. Preparation of CA Microparticles
3.2. Morphology of the Ternary System
3.3. Comparison Between Particle Sizes Calculated by Wu’s Equation and Observed
- The accuracy of γ calculated by means of group contribution methods has yet to be validated.
- The three interfacial tensions (γ12, γ13, and γ23) for the ternary system may not represent the actual interfacial tension to be incorporated in Wu’s equation.
- Migration of the plasticizer TA from CA dispersed phase to PVA matrix phase may take place affecting the viscosities of both phases changing the viscosity ratio from what was originally designed.
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Burnett, C.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Nylon as Used in Cosmetics. Int. J. Toxicol. 2014, 33, 47S–60S. [Google Scholar] [CrossRef]
- Olejnik, A.; Sztorch, B.; Brząkalski, D.; Przekop, R.E. Silsesquioxanes in the Cosmetics Industry—Applications and Perspectives. Materials 2022, 15, 1126. [Google Scholar] [CrossRef]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Final Report of the Cosmetic Ingredient Review Expert Panel Safety Assessment of Polymethyl Methacrylate (PMMA), Methyl Methacrylate Crosspolymer, and Methyl Methacrylate/Glycol Dimethacrylate Crosspolymer. Int. J. Toxicol. 2011, 30, 54S–65S. [Google Scholar] [CrossRef]
- Cendejas, C. Overview of Uses of Microspheres in Cosmetics and Personal Care. Cospheric LLC. 2020. Available online: https://www.cospheric.com/microspheres-in-cosmetics.htm (accessed on 6 October 2024).
- Alves, T.F.R.; Morsink, M.; Batain, F.; Chaud, M.V.; Almeida, T.; Fernandes, D.A.; da Silva, C.F.; Souto, E.B.; Severino, P. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics 2020, 7, 75. [Google Scholar] [CrossRef]
- EUR (2023/2055) of Lex (2023) Commission Regulation (EU) Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Synthetic Polymer Microparticles (Text with EEA Relevance). European Union Law. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2023_238_R_0003&qid=1695804976302 (accessed on 6 October 2024).
- Sugano, G. Prepn. of Spherical Fine Particles of Thermoplastic Resin Includes Melting Thermoplastic Resin with Component Which Is Incompatible Below m.pt. Patent JP S60-192728 A, 1985. Available online: https://www.j-platpat.inpit.go.jp/c1801/PU/JP-S60-192728/11/ja (accessed on 25 June 2025).
- Ito, H. Manufacture of Biodegradable Resin Particle Patent. JP 2004-269865 A, 2004. Available online: https://www.j-platpat.inpit.go.jp (accessed on 25 June 2025).
- Tachibana, Y.; Giang, N.T.T.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending: Mechanical properties, biomass carbon ratio, and control of biodegradability. Polym. Degrad. Stab. 2010, 95, 1406–1413. [Google Scholar] [CrossRef]
- Yadav, N.; Adolfsson, K.H.; Hakkarainen, M. Carbon Dot-Triggered Photocatalytic Degradation of Cellulose Acetate. Biomacromolecules 2021, 22, 2211–2223. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Arora, P.; Jain, R.; Mathur, K.; Sharma, A.; Gupta, A. Synthesis of polymethyl methacrylate (PMMA) by batch emulsion polymerization. Afr. J. Pure Appl. Chem. 2010, 4, 152–157. Available online: https://academicjournals.org/article/article1379499660_Arora%20et%20al.pdf (accessed on 25 June 2025).
- Kawasaki, T.; Berthier, L. Macroscopic Yielding in Jammed Solids Is Accompanied by a Nonequilibrium First-Order Transition in Particle Trajectories. Phys. Rev. E 2016, 94, 022615. [Google Scholar] [CrossRef] [PubMed]
- Soppimath, K.S.; Kulkarni, A.R.; Aminabhavi, T.M.; Bhaskar, C. Cellulose acetate microspheres prepared by o/w emulsification and solvent evaporation method. J. Microencapsul. 2001, 18, 811–817. [Google Scholar] [CrossRef]
- Carvalho, J.P.F.; Silva, A.C.Q.; Silvestre, A.J.D.; Freire, C.S.R.; Vilela, C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. Nanomaterials 2021, 11, 2744. [Google Scholar] [CrossRef]
- Sharifzadeh, E.; Ghasemi, I.; Safajou-Jahankhanemlou, M. Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach. Iran. Polym. J. 2015, 24, 735–746. [Google Scholar] [CrossRef]
- Sharifzadeh, E.; Cheraghi, K. Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mech. Mater. 2021, 160, 103990. [Google Scholar] [CrossRef]
- Wu, S. Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. Polym. Eng. Sci. 1987, 27, 335–343. [Google Scholar] [CrossRef]
- Bitinis, N.; Verdejo, R.; Cassagnau, P.; Lopez-Manchado, M.A. Structure and Properties of Polylactide/Natural Rubber Blends. Mater. Chem. Phys. 2011, 129, 823–831. [Google Scholar] [CrossRef]
- Wagner, J.R.; Mount, E.M.; Giles, H.F. Extrusion: The Definitive Processing Guide and Handbook, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 79–81. [Google Scholar]
- Ning, N.; Li, S.; Wu, H.; Tian, H.; Yao, P.; Hu, G.-H.; Tian, M.; Zhang, L. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. Prog. Polym. Sci. 2018, 79, 61–97. [Google Scholar] [CrossRef]
- Sundararaj, U.; Macosko, C.W. Drop breakup and coalescence in polymer blends: The effects of concentration and compatibilization. Macromolecules 1995, 28, 2647–2657. [Google Scholar] [CrossRef]
- Sugden, S. A Relation between Surface Tension, Density, and Chemical Composition. J. Chem. Soc. Trans. 1924, 125, 32–41. [Google Scholar] [CrossRef]
- Quayle, O.R. The parachors of organic compounds. An interpretation and catalogue. Chem. Rev. 1953, 53, 439–589. [Google Scholar] [CrossRef]
- van Krevelen, D.W.; Nijenhuis, K.T. Chapter 4—Volumetric Properties. In Properties of Polymers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 71–108. [Google Scholar] [CrossRef]
- Lee, L.H. Relationships between solubility parameters and surface tensions of liquids. J. Paint. Technol. 1970, 42, 365–370. [Google Scholar]
- van Krevelen, D.W.; Nijenhuis, K.T. Chapter 7—Cohesive Properties and Solubility. In Properties of Polymers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 189–227. [Google Scholar] [CrossRef]
- van Krevelen, D.W.; Nijenhuis, K.T. Chapter 8—Interfacial Energy Properties. In Properties of Polymers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 229–244. [Google Scholar] [CrossRef]
- Wu, S. Calculation of interfacial tension in polymer systems. J. Polym. Sci. Part C Polym. Symp. 1971, 34, 19–30. [Google Scholar] [CrossRef]
- Wu, S. Interfacial and surface tensions of polymer melts and liquids. In Polymer Interface and Adhesion; Routledge: Oxford, UK, 1982; pp. 67–132. [Google Scholar] [CrossRef]
- Hobbs, S.Y.; Dekkers, M.E.; Watkins, V.H. Effect of interfacial forces on polymer blend morphologies. Polymer 1988, 29, 1598–1602. [Google Scholar] [CrossRef]
- Kamide, K.; Saito, M. Thermal analysis of cellulose acetate solids with total degrees of substitution of 0.49, 1.75, 2.46, and 2.92. Polym. J. 1985, 17, 919–928. [Google Scholar] [CrossRef]
- Shibutani, M.; Kanda, T.; Yamamoto, T.; Tokumitsu, K. Characteristics of the amorphous polyvinyl alcohol resin derivative having side chain 1, 2-diol. J. Soc. Mater. Sci. Jpn. 2017, 66, 23–28. [Google Scholar] [CrossRef]
- Nakamura, M.; Inoue, T. Formation of Multiphase Structures in Ternary Polymer Blends and Neumann’s Triangle. Kobunshi Ronbunshu 1990, 47, 409–414. [Google Scholar] [CrossRef]
- Zuber, S.; Rusli, A.; Ismail, H. Effectiveness of triacetin and triethyl citrate as plasticizer in polyvinyl alcohol. Mater. Today Proc. 2019, 17, 560–567. [Google Scholar] [CrossRef]
- Deng, D.; Liu, X.; Cui, Y.; Jiang, Y. Investigation of SO2 solubilities in some biobased solvents and their thermodynamic properties. J. Chem. Thermodyn. 2018, 119, 84–91. [Google Scholar] [CrossRef]
Material | Role in Ternary System | Properties | ||||||
---|---|---|---|---|---|---|---|---|
Name | Abbreviation | Role | Suffix Assigned Where Required | Glass Transition Temperature (°C) | Melting Temperature (°C) | Number Average Molecular Weight (Mn) (103 g/mol) | Weight Average Molecular Weight (Mw) (103 g/mol) | Mw/Mn |
Cellulose acetate | CA | Dispersed component 1 | 1 | 194 | 227 | 124 | 372 | 3.0 |
Triacetin | TA | Dispersed component 2 Plasticizer for CA | 2 | — | — | — | — | — |
Polyvinyl alcohol with higher molecular weight | PVAH | Matrix a | 3 | 73 | 188 | 9.2 | 22 | 2.4 |
Polyvinyl alcohol with lower molecular weight | PVAL | Matrix a | 3 | 71 | 187 | 6.5 | 13 | 20 |
ID | Dispersed Phase Component CA/TA Ratio wt% | Matrix Phase Component PVA Type - | Dispersed/Matrix Ratio wt% | Viscosity Ratio | Shear Rate (S−1) | Particle Size |
---|---|---|---|---|---|---|
- | (μm) | |||||
RUN 1 | 80/20 | PVAH | 30/70 | 0.75 | 151 | 4.9 |
RUN 2 | 80/20 | PVAH | 30/70 | 0.72 | 303 | 4.4 |
RUN 3 | 80/20 | PVAH | 30/70 | 0.62 | 606 | 2.8 |
RUN 4 | 80/20 | PVAL | 30/70 | 1.67 | 303 | 6.7 |
RUN 5 | 80/20 | PVAL | 30/70 | 1.29 | 606 | 5.8 |
RUN 6 | 83/17 | PVAL | 30/70 | 2.87 | 151 | 7.7 |
RUN 7 | 83/17 | PVAL | 30/70 | 2.09 | 303 | 5.5 |
RUN 8 | 83/17 | PVAL | 30/70 | 1.51 | 606 | 4.8 |
Material | CA | TA | PVA | |
---|---|---|---|---|
ID | 1 | 2 | 3 | |
Surface tension and its components (mJ/m2) | γ | 18.8 | 11.4 | 36.5 |
γd | 9.4 | 6.4 | 8.6 | |
γp | 9.5 | 4.9 | 27.9 | |
Interfacial tension (mJ/m2) | γ12 | 2.0 | N.A. | |
γ13 | 9.1 | N.A. | 9.1 | |
γ23 | N.A. | 16.4 | ||
Spreading coefficient (mJ/m2) | λ12 | 5.3 | ||
λ21 | −9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omura, M.; Kobayashi, K.; Nagai, K.; Shimamoto, S. Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend. Polymers 2025, 17, 2118. https://doi.org/10.3390/polym17152118
Omura M, Kobayashi K, Nagai K, Shimamoto S. Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend. Polymers. 2025; 17(15):2118. https://doi.org/10.3390/polym17152118
Chicago/Turabian StyleOmura, Masaya, Keiko Kobayashi, Kanji Nagai, and Shu Shimamoto. 2025. "Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend" Polymers 17, no. 15: 2118. https://doi.org/10.3390/polym17152118
APA StyleOmura, M., Kobayashi, K., Nagai, K., & Shimamoto, S. (2025). Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend. Polymers, 17(15), 2118. https://doi.org/10.3390/polym17152118