Comparative Micro-CT Analysis of Internal Adaptation and Closed Porosity of Conventional Layered and Thermoviscous Bulk-Fill Resin Composites Using Total-Etch or Universal Adhesives
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Restorative Procedures
2.2. Micro-Computed Tomography Measurement—3D Internal Adaptation and Porosity
2.3. Statistical Analysis
3. Results
3.1. Micro-Computed Tomography Measurement—3D Internal Adaptation
3.2. Micro-Computed Tomography Measurement—3D Closed Porosity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RBC | Resin-based composite |
IA | Internal adaptation |
CP | Closed porosity |
Micro-CT | Micro-computed tomography |
BisGMA | Bisphenol-A diglycidyl ether dimethacrylate |
BisEMA | Bisphenol-A polyethylene glycol diether dimethacrylate |
DMA | Dimethacrylate |
HEMA | Hydroxyethyl methacrylate |
PENTA | Dipentaerythritol pentacrylate phosphate |
TEGDMA | Triethylene glycol dimethacrylate |
UDMA | Urethane dimethacrylate |
10-MDP | 10-methacryloyloxydecyl dihydrogen phosphate |
wt% | Weight% |
SE | Self-etch adhesive |
TE | Total-etch adhesive |
FZ_SE | Filtek Z250 layered_self-etch adhesive |
FZ_TE | Filtek Z250 layered_total-etch adhesive |
FZF_SE | Filtek Z250 layered + Filtek Supreme Flowable base_self-etch adhesive |
FZF_TE | Filtek Z250 layered + Filtek Supreme Flowable base_total-etch adhesive |
VC_SE | Preheated VisCalor Bulk_self-etch adhesive |
VC_TE | Preheated VisCalor Bulk_total-etch adhesive |
ROI | Region of interest |
ANOVA | One-way analysis of variance |
CI | Confidence interval |
References
- Sadeghi, M.; Lynch, C.D. The effect of flowable materials on the microleakage of Class II composite restorations that extend apical to the cemento-enamel junction. Oper. Dent. 2009, 34, 306–311. [Google Scholar] [CrossRef]
- Han, S.H.; Sadr, A.; Shimada, Y.; Tagami, J.; Park, S.H. Internal adaptation of composite restorations with or without an intermediate layer: Effect of polymerization shrinkage parameters of the layer material. J. Dent. 2019, 80, 41–48. [Google Scholar] [CrossRef]
- Ferracane, J.L. Buonocore Lecture. Placing dental composites—A stressful experience. Oper. Dent. 2008, 33, 247–257. [Google Scholar] [CrossRef]
- Wang, Z.; Chiang, M.Y. System compliance dictates the effect of composite filler content on polymerization shrinkage stress. Dent. Mater. 2016, 32, 551–560. [Google Scholar] [CrossRef]
- Pratap, B.; Gupta, R.K.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef]
- Pałka, K.; Janiczuk, P.; Kleczewska, J. Polymerization shrinkage of resin mixtures used in dental composites. Eng. Biomater. 2020, 154, 16–21. [Google Scholar]
- Yamamoto, T.; Nishide, A.; Swain, M.V.; Ferracane, J.L.; Sakaguchi, R.L.; Momoi, Y. Contraction stresses in dental composites adjacent to and at the bonded interface as measured by crack analysis. Acta Biomater. 2011, 7, 417–423. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Kwon, Y.; Ferracane, J.L.; Lee, I.B. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent. Mater. 2012, 28, 801–809. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Hilton, T.J. Polymerization stress—Is it clinically meaningful? Dent. Mater. 2016, 32, 1–10. [Google Scholar] [CrossRef]
- Kim, M.E.; Park, S.H. Comparison of premolar cuspal deflection in bulk or in incremental composite restoration methods. Oper. Dent. 2011, 36, 326–334. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Troconis, C.C.M.; Moreno, M.B.P.; Murillo-Gómez, F.; De Goes, M.F. Depth of cure of bulk fill resin composites: A systematic review. J. Esthetic. Restor. Dent. 2018, 30, 492–501. [Google Scholar] [CrossRef]
- Reis, A.F.; Vestphal, M.; Amaral, R.C.; Rodrigues, J.A.; Roulet, J.F.; Roscoe, M.G. Efficiency of polymerization of bulk-fill composite resins: A systematic review. Braz. Oral Res. 2017, 31, e59. [Google Scholar] [CrossRef]
- Yu, P.; Xu, Y.X.; Liu, Y.S. Polymerization shrinkage and shrinkage stress of bulk-fill and non-bulk-fill resin-based composites. J. Dent. Sci. 2022, 17, 1212–1216. [Google Scholar] [CrossRef]
- McHugh, L.E.J.; Politi, I.; Al-Fodeh, R.S.; Fleming, G.J.P. Implications of resin-based composite (RBC) restoration on cuspal deflection and microleakage score in molar teeth: Placement protocol and restorative material. Dent. Mater. 2017, 33, e329–e335. [Google Scholar] [CrossRef]
- Duarte, R.; Somacal, D.; Braga, L.; Borges, G.; Spohr, A. Cuspal deflection and marginal integrity of Class II cavities restored with bulk-fill resin composites. Open. Dent. J. 2023, 17, e187421062309180. [Google Scholar] [CrossRef]
- Al-Harbi, F.; Kaisarly, D.; Bader, D.; El Gezawi, M. Marginal integrity of bulk versus incremental fill Class II composite restorations. Oper. Dent. 2016, 41, 146–156. [Google Scholar] [CrossRef]
- Baroudi, K.; Saleh, A.M.; Silikas, N.; Watts, D.C. Shrinkage behaviour of flowable resin-composites related to conversion and filler-fraction. J. Dent. 2007, 35, 651–655. [Google Scholar] [CrossRef]
- Anatavara, S.; Sitthiseripratip, K.; Senawongse, P. Stress relieving behaviour of flowable composite liners: A finite element analysis. Dent. Mater. J. 2016, 35, 369–378. [Google Scholar] [CrossRef]
- Baroudi, K.; Mahmoud, S. Improving composite resin performance through decreasing its viscosity by different methods. Open. Dent. J. 2015, 9, 235–242. [Google Scholar] [CrossRef]
- Blalock, J.S.; Holmes, R.G.; Rueggeberg, F.A. Effect of temperature on unpolymerized composite resin film thickness. J. Prosthet. Dent. 2006, 96, 424–432. [Google Scholar] [CrossRef]
- Fróes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, e51–e59. [Google Scholar] [CrossRef]
- da Costa, J.; McPharlin, R.; Hilton, T.; Ferracane, J. Effect of heat on the flow of commercial composites. Am. J. Dent. 2009, 22, 92–96. [Google Scholar]
- Dunavári, E.K.; Kőházy, A.; Vecsernyés, M.; Szalma, J.; Lovász, B.V.; Berta, G.; Lempel, E. Does preheating influence the cytotoxic potential of dental resin composites? Polymers 2024, 16, 174. [Google Scholar] [CrossRef]
- Yang, J.N.C.; James, D.R.; Herald, S. Effects of preheated composite on micro leakage-An in-vitro study. J. Clin. Diagn. Res. 2016, 10, 36–38. [Google Scholar] [CrossRef]
- Wagner, W.C.; Aksu, M.N.; Neme, A.M.; Linger, J.B.; Pink, F.E.; Walker, S. Effect of pre-heating resin composite on restoration microleakage. Oper. Dent. 2008, 33, 72–78. [Google Scholar] [CrossRef]
- dos Santos, R.E.; Lima, A.F.; Soares, G.P.; Ambrosano, G.M.; Marchi, G.M.; Lovadino, J.R.; Aguiar, F.H. Effect of preheating resin composite and light-curing units on the microleakage of Class II restorations submitted to thermocycling. Oper. Dent. 2011, 36, 60–65. [Google Scholar] [CrossRef]
- Karaarslan, E.S.; Usumez, A.; Ozturk, B.; Cebe, M.A. Effect of cavity preparation techniques and different preheating procedures on microleakage of class v resin restorations. Eur. J. Dent. 2012, 6, 87–94. [Google Scholar] [CrossRef]
- Lotfy, M.; Mahmoud, N.A.; Riad, M.I. Effect of preheating on polymerization shrinkage strain of BIS-GMA free and containing resin composite restorative materials (in vitro study). Bull. Natl. Res. Cent. 2022, 46, 74. [Google Scholar] [CrossRef]
- Hordones Ribeiro, M.T.; Felipe de Bragança, G.; Sales Oliveira, L.R.; Lourenço Braga, S.S.; Quirino de Oliveira, H.L.; Price, R.B.; Soares, C.J. Effect of pre-heating methods and devices on the mechanical properties, post-gel shrinkage, and shrinkage stress of bulk-fill materials. J. Mech. Behav. Biomed. Mater. 2023, 138, 105605. [Google Scholar] [CrossRef]
- Soares, B.M.; Barbosa, M.P.; de Almeida, R.V.; Jardim, R.N.; da Silva, E.M. Marginal integrity and physicomechanical properties of a thermoviscous and regular bulk-fill resin composites. Clin. Oral Investig. 2024, 28, 496. [Google Scholar] [CrossRef]
- Demirel, G.; Orhan, A.I.; Irmak, O.; Aydın, F.; Büyüksungur, A.; Bilecenoğlu, B.; Orhan, K. Effects of preheating and sonic delivery techniques on the internal adaptation of bulk-fill resin composites. Oper. Dent. 2021, 46, 226–233. [Google Scholar] [CrossRef]
- Sá, V.A.; Bittencourt, H.R.; Burnett Júnior, L.H.; Spohr, A.M. Preheated and injected bulk-fill resin composites: A micro-CT analysis of internal voids and marginal adaptation in Class II restorations. Materials 2025, 18, 327. [Google Scholar] [CrossRef]
- Dunavári, E.; Berta, G.; Kiss, T.; Szalma, J.; Fráter, M.; Böddi, K.; Lempel, E. Effect of pre-heating on the monomer elution and porosity of conventional and bulk-fill resin-based dental composites. Int. J. Mol. Sci. 2022, 23, 16188. [Google Scholar] [CrossRef]
- Ismail, H.S.; Ali, A.I.; Mehesen, R.E.; Juloski, J.; Garcia-Godoy, F.; Mahmoud, S.H. Deep proximal margin rebuilding with direct esthetic restorations: A systematic review of marginal adaptation and bond strength. Restor. Dent. Endod. 2022, 47, e15. [Google Scholar] [CrossRef]
- Néma, V.; Kunsági-Máté, S.; Őri, Z.; Kiss, T.; Szabó, P.; Szalma, J.; Fráter, M.; Lempel, E. Relation between internal adaptation and degree of conversion of short-fiber reinforced resin composites applied in bulk or layered technique in deep MOD cavities. Dent. Mater. 2024, 40, 581–592. [Google Scholar] [CrossRef]
- Padam, S. Sample size for experimental studies. J. Clin. Prev. Card. 2012, 1, 88–93. [Google Scholar]
- Lohbauer, U.; Zinelis, S.; Rahiotis, C.; Petschelt, A.; Eliades, G. The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dent. Mater. 2009, 25, 514–519. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef]
- Yang, J.; Silikas, N.; Watts, D.C. Pre-heating time and exposure duration: Effects on post-irradiation properties of a thermo-viscous resin-composite. Dent. Mater. 2020, 36, 787–793. [Google Scholar] [CrossRef]
- Loumprinis, N.; Maier, E.; Belli, R.; Petschelt, A.; Eliades, G.; Lohbauer, U. Viscosity and stickiness of dental resin composites at elevated temperatures. Dent. Mater. 2021, 37, 413–422. [Google Scholar] [CrossRef]
- Poubel, D.L.D.N.; da Silva, R.C.; Ribeiro, A.P.D.; Garcia, F.C.P. Effect of preheating on the viscosity of composite resins. J. Conserv. Dent. Endod. 2024, 27, 360–365. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Hall, G.; De Goes, M.F. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 2007, 23, 1283–1288. [Google Scholar] [CrossRef]
- Kincses, D.; Böddi, K.; Őri, Z.; Lovász, B.V.; Jeges, S.; Szalma, J.; Kunsági-Máté, S.; Lempel, E. Pre-heating effect on monomer elution and degree of conversion of contemporary and thermoviscous bulk-fill resin-based dental composites. Polymers 2021, 13, 3599. [Google Scholar] [CrossRef]
- Ferracane, J.L. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent. Mater. 2005, 21, 36–42. [Google Scholar] [CrossRef]
- Prasanna, N.; Pallavi Reddy, Y.; Kavitha, S.; Lakshmi Narayanan, L. Degree of conversion and residual stress of preheated and room-temperature composites. Ind. J. Dent. Res. 2007, 18, 173–176. [Google Scholar] [CrossRef]
- Watts, D.C.; Issa, M.; Ibrahim, A.; Wakiaga, K.; Al-Samadini, M.; Silikas, N. Edge strength of resin-composite margins. Dent. Mater. 2008, 24, 129–133. [Google Scholar] [CrossRef]
- El-Korashy, D.I. Post-gel shrinkage strain and degree of conversion of preheated resin composite cured using different regimens. Oper. Dent. 2010, 35, 172–179. [Google Scholar] [CrossRef]
- Yollar, M.; Karaoglanoglu, S.; Altiparmak, E.T.; Aybala Oktay, E.; Aydin, N.; Ersoz, B. The effects of dental adhesives total etch; self-etch and selective etch application procedures on microleakage in Class II composite restorations. Eur. Oral Res. 2023, 57, 151–158. [Google Scholar] [CrossRef]
- Signore, A.; Solimei, L.; Arakelyan, M.G.; Arzukanyan, A.V.; De Angelis, N.; Amaroli, A. Marginal quality of a full-body bulk-fill composite placed with an universal adhesive system in etch-and-rinse and self-etch mode: An in vitro study. J. Clin. Exp. Dent. 2021, 13, e835–e844. [Google Scholar] [CrossRef]
- de Souza, J.; Ñaupari-Villasante, R.; Hass, V.; Arana-Gordillo, L.A.; Gutiérrez, M.F.; Gomes, G.M.; Loguercio, A.D.; Gomes, J.C. Optimizing phosphoric acid etching times across different formulations: Impact on dentin structure, roughness, and adhesive performance after 4 years. Dent. Mater. 2025, 41, 850–861. [Google Scholar] [CrossRef]
- Giannini, M.; Vermelho, P.M.; de Araújo Neto, V.G.; Soto-Montero, J. An update on universal adhesives: Indications and limitations. Curr. Oral Health Rep. 2022, 9, 57–65. [Google Scholar] [CrossRef]
- Ismail, H.S.; Soliman, H.A.N. Short dentin etching with universal adhesives: Effect on bond strength and gingival margin adaptation. BMC Oral Health 2025, 25, 128. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dent. Mater. 2018, 34, 1072–1081. [Google Scholar] [CrossRef]
- Salz, U.; Mücke, A.; Zimmermann, J.; Tay, F.R.; Pashley, D.H. pKa value and buffering capacity of acidic monomers commonly used in self-etching primers. J. Adhes. Dent. 2006, 8, 143–150. [Google Scholar]
- Ekambaram, M.; Yiu, C.K.Y.; Matinlinna, J.P. An overview of solvents in resin–dentin bonding. Int. J. Adhes. Adhes. 2015, 57, 22–33. [Google Scholar] [CrossRef]
- Kenshima, S.; Reis, A.; Uceda-Gomez, N.; Tancredo Lde, L.; Filho, L.E.; Nogueira, F.N.; Loguercio, A.D. Effect of smear layer thickness and pH of self-etching adhesive systems on the bond strength and gap formation to dentin. J. Adhes. Dent. 2005, 7, 117–126. [Google Scholar]
- Ferracane, J.L.; Lawson, N.C. Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restorations using current materials. J. Esthet. Restor. Dent. 2021, 33, 39–50. [Google Scholar] [CrossRef]
- Suzuki, T.; Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Endo, H.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. Influence of etching mode on enamel bond durability of universal adhesive systems. Oper. Dent. 2016, 41, 520–530. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C.E. Bond strength of universal adhesives to dentin: A systematic review and meta-analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Reis, A.; Bortoli, G.; Patzlaft, R.; Kenshima, S.; Rodrigues Filho, L.E.; Accorinte Mde, L.; van Dijken, J.W. Influence of adhesive systems on interfacial dentin gap formation in vitro. Oper. Dent. 2006, 31, 431–441. [Google Scholar] [CrossRef]
- Kim, R.J.; Kim, Y.J.; Choi, N.S.; Lee, I.B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef]
- Cidreira Boaro, L.C.; Pereira Lopes, D.; de Souza, A.S.C.; Lie Nakano, E.; Ayala Perez, M.D.; Pfeifer, C.S.; Gonçalves, F. Clinical performance and chemical-physical properties of bulk fill composites resin —A systematic review and meta-analysis. Dent. Mater. 2019, 35, e249–e264. [Google Scholar] [CrossRef]
- Han, S.H.; Park, S.H. Incremental and bulk-fill techniques with bulk-fill resin composite in different cavity configurations. Oper. Dent. 2018, 43, 631–641. [Google Scholar] [CrossRef]
- Alqudaihi, F.S.; Cook, N.B.; Diefenderfer, K.E.; Bottino, M.C.; Platt, J.A. Comparison of internal adaptation of bulk-fill and increment-fill resin composite materials. Oper. Dent. 2019, 44, E32–E44. [Google Scholar] [CrossRef]
- Kaisarly, D.; Meierhofer, D.; El Gezawi, M.; Rösch, P.; Kunzelmann, K.H. Effects of flowable liners on the shrinkage vectors of bulk-fill composites. Clin. Oral Investig. 2021, 25, 4927–4940. [Google Scholar] [CrossRef]
- Ramadan, N.A.; Hasan, M.M.A.; Abdalla, A.I. Marginal adaptation of thermoviscous bulk-fill composite in class II cavities. Tanta Dent. J. 2023, 20, 77–83. [Google Scholar] [CrossRef]
- Saikaew, P.; Sattabanasuk, V.; Harnirattisai, C.; Chowdhury, A.F.M.A.; Carvalho, R.; Sano, H. Role of the smear layer in adhesive dentistry and the clinical applications to improve bonding performance. Jpn. Dent. Sci. Rev. 2022, 58, 59–66. [Google Scholar] [CrossRef]
- Marques, M.S.; Kenshima, S.; Muench, A.; Ballester, R.Y.; Rodrigues Filho, L.E. Effect of the C-factor and dentin preparation method in the bond strength of a mild self-etch adhesive. Oper. Dent. 2009, 34, 452–459. [Google Scholar] [CrossRef]
- Eichler, E.; Vach, K.; Schlueter, N.; Jacker-Guhr, S.; Luehrs, A.K. Dentin adhesion of bulk-fill composites and universal adhesives in class I cavities with high C-factor. J. Dent. 2024, 142, 104852. [Google Scholar] [CrossRef]
- Sarna-Boś, K.; Skic, K.; Sobieszczański, J.; Boguta, P.; Chałas, R. Contemporary approach to the porosity of dental materials and methods of its measurement. Int. J. Mol. Sci. 2021, 22, 8903. [Google Scholar] [CrossRef]
- Özdemir, S.; Ayaz, İ.; Çetin Tuncer, N.; Barutçugil, Ç.; Dündar, A. Evaluation of polymerization shrinkage, microhardness, and depth of cure of different types of bulk-fill composites. J. Esthet. Restor. Dent. 2025, 37, 1920–1929. [Google Scholar] [CrossRef]
- Demirel, G.; Orhan, A.I.; Irmak, O.; Aydin, F.; Buyuksungur, A.; Bilecenoğlu, B.; Orhan, K. Micro-computed tomographic evaluation of the effects of pre-heating and sonic delivery on the internal void formation of bulk-fill composites. Dent. Mater. J. 2021, 40, 525–531. [Google Scholar] [CrossRef]
- Buelvas, D.D.A.; Besegato, J.F.; Vicentin, B.L.S.; Jussiani, E.I.; Hoeppner, M.G.; Andrello, A.C.; Di Mauro, E. Impact of light-cure protocols on the porosity and shrinkage of commercial bulk fill resin composites with different flowability. J. Polym. Res. 2020, 27, 292. [Google Scholar] [CrossRef]
- Gigova, R.; Hristov, K. Micro-CT assessment of internal and external void formation in Class II restorations of primary molars using bulk-fill composites. Materials 2025, 18, 2621. [Google Scholar] [CrossRef]
- Koenig, A.; Schmohl, L.; Scheffler, J.; Fuchs, F.; Schulz-Siegmund, M.; Doerfler, H.-M.; Jankuhn, S.; Hahnel, S. Is Micro X-ray Computer Tomography a Suitable Non-Destructive Method for the Characterisation of Dental Materials? Polymers 2021, 13, 1271. [Google Scholar] [CrossRef]
- Ghavami-Lahiji, M.; Davalloo, R.T.; Tajziehchi, G.; Shams, P. Micro-computed tomography in preventive and restorative dental research: A review. Imaging Sci. Dent. 2021, 51, 341–350. [Google Scholar] [CrossRef]
- Campioni, I.; Pecci, R.; Bedini, R. Ten Years of Micro-CT in Dentistry and Maxillofacial Surgery: A Literature Overview. Appl. Sci. 2020, 10, 4328. [Google Scholar] [CrossRef]
- Nagdalian, A.A.; Rzhepakovsky, I.V.; Siddiqui, S.A.; Piskov, S.I.; Oboturova, N.P.; Timchenko, L.D.; Lodygin, A.D.; Blinov, A.V.; Ibrahim, S.A. Analysis of the content of mechanically separated poultry meat in sausage using computing microtomography. J. Food Compos. Anal. 2021, 100, 103918. [Google Scholar] [CrossRef]
Type of the Material | Brand Name | Manufacturer | Matrix | Filler | Filler Load |
---|---|---|---|---|---|
Conventional high-viscosity resin composite | Filtek Z250 | 3M ESPE, St. Paul, MN, USA | BisGMA, BisEMA, TEGDMA, UDMA | 0.01–3.5 µm (mean 0.6) Zr-silica | 80 wt% |
Conventional low-viscosity resin composite | Filtek Supreme Flowable Restorative | 3M ESPE, St. Paul, MN, USA | BisGMA, TEGDMA, Procrylat resin | 20–75 nm silica, 0.6–10 µm cluster Zr-silica, 0.1–5 µm YbF3 | 65 wt% |
Thermoviscous bulk-fill resin composite | VisCalor Bulk | Voco, Cuxhaven, Germany | BisGMA, aliphatic DMA | nano-hybrid (not detailed by the company) | 83 wt% |
One-step self-etch universal dental adhesive | Prime & Bond Universal | Dentsply Sirona, Charlotte, NC, USA | PENTA, 10-MDP, Active Guard TM crosslinker, isopropanol, water | unfilled | |
Two-step total-etch dental adhesive | Adper Single Bond 2 | 3M ESPE, St. Paul, MN, USA | BisGMA, HEMA, dimethacrylates, ethanol, water, polyacrylic, polyitaconic acids | 5 nm silica | 10 wt% |
Group | Subgroup | Adhesive | Materials | Group Code | Sample Size |
---|---|---|---|---|---|
Group 1. | A | Prime & Bond Universal | 2 mm thick oblique layers of Filtek Z250 | FZ_SE | n = 10 |
B | Adper Single Bond 2 | FZ_TE | n = 10 | ||
Group 2. | A | Prime & Bond Universal | 1 mm thick Filtek Supreme Flow base at the gingival floor + 1.5 mm thick oblique layers of Filtek Z250 | FZF_SE | n = 10 |
B | Adper Single Bond 2 | FZF_TE | n = 10 | ||
Group 3. | A | Prime & Bond Universal | 4 mm thick bulk-filled preheated (68 °C) VisCalor Bulk | VC_SE | n = 10 |
B | Adper Single Bond 2 | VC_TE | n = 10 |
Comparison | Mean Difference | S.D. | p Value | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
FZ_SE vs. FZF_SE | −0.02 | 0.02 | 0.94 | −0.09 | 0.05 |
FZ_SE vs. FZF_TE | 0.35 | 0.02 | <0.01 | −0.28 | 0.42 |
FZ_SE vs. FZ_TE | 0.22 | 0.02 | <0.01 | 0.15 | 0.29 |
FZ_SE vs. VC_SE | −0.18 | 0.03 | <0.01 | −0.25 | −0.11 |
FZ_SE vs. VC_TE | 0.06 | 0.01 | 0.18 | −0.01 | 0.13 |
FZ_TE vs. FZF_SE | −0.25 | 0.02 | <0.01 | −0.32 | −0.17 |
FZ_TE vs. FZF_TE | 0.12 | 0.03 | <0.01 | 0.05 | 0.19 |
FZ_TE vs. VC_SE | −0.40 | 0.02 | <0.01 | −0.45 | −0.33 |
FZ_TE vs. VC_TE | −0.17 | 0.02 | <0.01 | −0.24 | −0.09 |
FZF_SE vs. FZF_TE | 0.37 | 0.03 | <0.01 | 0.29 | 0.44 |
FZF_SE vs. VC_SE | −0.15 | 0.02 | <0.01 | −0.22 | −0.08 |
FZF_SE vs. VC_TE | 0.08 | 0.02 | 0.02 | 0.01 | 0.15 |
FZF_TE vs. VC_SE | −0.52 | 0.03 | <0.01 | −0.59 | −0.45 |
FZF_TE vs. VC_TE | −0.29 | 0.02 | <0.01 | −0.36 | −0.22 |
VC_SE vs. VC_TE | −0.23 | 0.03 | <0.01 | −0.31 | −0.16 |
Comparison | Mean Difference | S.D. | p Value | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
FZ_SE vs. FZF_SE | −0.01 | 0.04 | 1 | −0.12 | 0.11 |
FZ_SE vs. FZF_TE | −0.01 | 0.04 | 0.99 | −0.13 | 0.1 |
FZ_SE vs. FZ_TE | −0.02 | 0.04 | 0.99 | −0.13 | 0.09 |
FZ_SE vs. VC_SE | 0.15 | 0.04 | <0.01 | 0.04 | 0.26 |
FZ_SE vs. VC_TE | 0.11 | 0.02 | 0.06 | −0.01 | 0.22 |
FZ_TE vs. FZF_SE | 0.01 | 0.04 | 0.99 | −0.09 | −0.17 |
FZ_TE vs. FZF_TE | 0.01 | 0.03 | 1 | −0.01 | 0.12 |
FZ_TE vs. VC_SE | 0.17 | 0.04 | <0.01 | 0.06 | 0.28 |
FZ_TE vs. VC_TE | 0.13 | 0.04 | 0.01 | 0.02 | 0.25 |
FZF_SE vs. FZF_TE | −0.01 | 0.04 | 1 | −0.12 | 0.11 |
FZF_SE vs. VC_SE | 0.16 | 0.04 | <0.01 | 0.04 | 0.27 |
FZF_SE vs. VC_TE | 0.12 | 0.04 | 0.03 | 0.01 | 0.23 |
FZF_TE vs. VC_SE | 0.16 | 0.04 | <0.01 | 0.05 | 0.28 |
FZF_TE vs. VC_TE | 0.12 | 0.04 | 0.02 | 0.01 | 0.24 |
VC_SE vs. VC_TE | −0.04 | 0.03 | 0.92 | −0.08 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordáki, D.; Veress, V.; Kiss, T.; Szalma, J.; Fráter, M.; Lempel, E. Comparative Micro-CT Analysis of Internal Adaptation and Closed Porosity of Conventional Layered and Thermoviscous Bulk-Fill Resin Composites Using Total-Etch or Universal Adhesives. Polymers 2025, 17, 2049. https://doi.org/10.3390/polym17152049
Jordáki D, Veress V, Kiss T, Szalma J, Fráter M, Lempel E. Comparative Micro-CT Analysis of Internal Adaptation and Closed Porosity of Conventional Layered and Thermoviscous Bulk-Fill Resin Composites Using Total-Etch or Universal Adhesives. Polymers. 2025; 17(15):2049. https://doi.org/10.3390/polym17152049
Chicago/Turabian StyleJordáki, Dóra, Virág Veress, Tamás Kiss, József Szalma, Márk Fráter, and Edina Lempel. 2025. "Comparative Micro-CT Analysis of Internal Adaptation and Closed Porosity of Conventional Layered and Thermoviscous Bulk-Fill Resin Composites Using Total-Etch or Universal Adhesives" Polymers 17, no. 15: 2049. https://doi.org/10.3390/polym17152049
APA StyleJordáki, D., Veress, V., Kiss, T., Szalma, J., Fráter, M., & Lempel, E. (2025). Comparative Micro-CT Analysis of Internal Adaptation and Closed Porosity of Conventional Layered and Thermoviscous Bulk-Fill Resin Composites Using Total-Etch or Universal Adhesives. Polymers, 17(15), 2049. https://doi.org/10.3390/polym17152049