A Novel Parametrical Approach to the Ribbed Element Slicing Process in Robotic Additive Manufacturing
Abstract
1. Introduction
2. Existing Work Discussion
2.1. Robots in Additive Manufacturing
2.2. Key Role of Slicing Process
3. A Novel Parametrical Approach to the Slicing Process in Robotic Additive Manufacturing
3.1. Objectives
3.2. Model of the Proposed Solution
- The Structure Points Calculation Module uses the basic geometrical parameters that describe the manufactured component and determines the basic point coordinates.
- The Vector Determination Module is responsible for the definition of geometrical data relations and vector calculations.
- The Toolpath Calculation Module allows for toolpath direction and changes to it based on the vectors generated.
- The Manufacturing Parameters Module is responsible for defining the robotic 3DP process parameters for the individual manufacturing steps.
- The Data Combining Module combines data resulting from the use of the system modules and presents it in the form of G-Code.
3.3. Experimental Verification
3.4. Verification of Proposed Approach
3.5. Practical Utilization of Proposed Solution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortunato, G.M.; Nicoletta, M.; Batoni, E.; Vozzi, G.; De Maria, C. A fully automatic non-planar slicing algorithm for the additive manufacturing of complex geometries. Addit. Manuf. 2023, 69, 103541. [Google Scholar] [CrossRef]
- Song, Y.; Yang, Z.; Liu, Y.; Deng, J. Function representation based slicer for 3D printing. Comput. Aided Geom. Des. 2018, 62, 276–293. [Google Scholar] [CrossRef]
- Barnett, E.; Gosselin, C. Large-scale 3D printing with a cable-suspended robot. Addit. Manuf. 2015, 7, 27–44. [Google Scholar] [CrossRef]
- Alkhatib, T. Robotic 3D Printing of Sustainable Structures. Bachelor Thesis, Linnaeus University, Småland, Sweden, 2023. [Google Scholar]
- Toshev, R.; Bengs, D.; Helo, P.; Zamora, M. Advancing free-form fabrication: Industrial robots’ role in additive manufacturing of thermoplastics. Procedia Comput. Sci. 2024, 232, 3131–3140. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, X.; Gao, W.; Wang, L.; Liang, X.; Liu, C.; Yao, Y.; Zhang, J. An Intelligent Robotic Wire Arc Additive Manufacturing System for Complex Metal Parts. Cybern. Syst. 2023, 2, 0105. [Google Scholar] [CrossRef]
- Li, Z.; Weng, D.; Chen, L.; Ma, Y.; Wang, Z.; Wang, J. Enhanced Digital Light Processing-Based One-Step 3-Dimensional Printing of Multifunctional Magnetic Soft Robot. Cyborg Bionic Syst. 2025, 6, 0215. [Google Scholar] [CrossRef]
- Cendrero, A.M.; Fortunato, G.M.; Munoz-Guijosa, J.M.; De Maria, C.; Lantada, A.D. Benefits of non-planar printing strategies towards eco-efficient 3D printing. Sustainability 2021, 13, 1599. [Google Scholar] [CrossRef]
- Li, S.; Nguyen-Xuan, H.; Tran, P. Digital design and parametric study of 3D concrete printing on non-planar surfaces. Autom. Constr. 2022, 145, 104624. [Google Scholar] [CrossRef]
- Tiryaki, M.E.; Zhang, X.; Pham, Q. Printing-while-moving: A new paradigm for large-scale robotic 3D Printing. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar] [CrossRef]
- Ondočko, Š.; Svetlík, J.; Šašala, M.; Bobovský, Z.; Stejskal, T.; Dobránsky, J.; Demeč, P.; Hrivniak, L. Inverse Kinematics Data Adaptation to Non-Standard Modular Robotic Arm Consisting of Unique Rotational Modules. Appl. Sci. 2021, 11, 1203. [Google Scholar] [CrossRef]
- McPherson, J.; Bliss, A.; Smith, F.; Hariss, E.; Zhou, W. A slicer and simulator for cooperative 3d printing. In Proceedings of the Solid Freeform Fabrication 2017: The 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 7–9 August 2017; Available online: https://repositories.lib.utexas.edu/handle/2152/89887 (accessed on 13 April 2025).
- Tamir, T.S.; Xiong, G.; Shen, Z.; Leng, J.; Fang, Q.; Yang, Y.; Jiang, J.; Lodhi, E.; Wang, F.Y. 3D printing in materials manufacturing industry: A realm of Industry 4.0. Heliyon 2023, 9, e19689. [Google Scholar] [CrossRef]
- McPherson, J.; Zhou, W. A chunk-based slicer for cooperative 3D printing. Rapid Prototyp. J. 2018, 24, 1436–1446. [Google Scholar] [CrossRef]
- Pelzer, L.; Hopmann, C. Additive manufacturing of non-planar layers with variable layer height. Addit. Manuf. 2020, 37, 101697. [Google Scholar] [CrossRef]
- Rodriguez-Padilla, C.; Cuan-Urquizo, E.; Roman-Flores, A.; Gordillo, J.L.; Vázquez-Hurtado, C. Algorithm for the conformal 3D printing on non-planar tessellated surfaces: Applicability in patterns and lattices. Appl. Sci. 2021, 11, 7509. [Google Scholar] [CrossRef]
- Lee, T. Hand Motion Based 3D Printing Slicer. Master’s Thesis, Seoul National University, Seoul, Republic of Korea, 2018. [Google Scholar]
- Nayyeri, P.; Zareinia, K.; Bougherara, H. Planar and nonplanar slicing algorithms for fused deposition modeling technology: A critical review. Int. J. Adv. Manuf. Technol. 2022, 119, 2785–2810. [Google Scholar] [CrossRef]
- Craveiro, F.; Bártolo, H.G.; Bártolo, P.J.; Duarte, J. Fabricating construction elements with varying material composition: A case study. In Proceedings of the MATADOR Conference, Manchester, UK, 5–7 July 2017. [Google Scholar]
- Werner, J.; Aburaia, M.; Raschendorfer, A.; Lackner, M. MeshSlicer: A 3D-Printing software for printing 3D-models with a 6-axis industrial robot. Procedia CIRP 2021, 99, 110–115. [Google Scholar] [CrossRef]
- Luu, Q.K.; La, H.M.; Ho, V.A. A 3-dimensional printing system using an industrial robotic arm. In Proceedings of the IEEE/SICE International Symposium on System Integration, Iwaki, Japan, 11–14 January 2021; Available online: https://ieeexplore.ieee.org/document/9382645 (accessed on 13 April 2025).
- Insero, F.; Furlan, V.; Giberti, H. A novel infill strategy to approach non-planar 3D-printing in 6-axis robotized FDM. In Proceedings of the 2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Taipei, Taiwan, 28–30 November 2022. [Google Scholar] [CrossRef]
- Bryła, J.; Martowicz, A. Study on the importance of a slicer selection for the 3D printing process parameters via the investigation of G-Code readings. Machines 2021, 9, 163. [Google Scholar] [CrossRef]
- Piedra-Cascón, W.; Krishnamurthy, V.R.; Att, W.; Revilla-León, M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J. Dent. 2021, 109, 103630. [Google Scholar] [CrossRef]
- Hong, Q.; Lin, L.; Li, Q.; Jiang, Z.; Fang, J.; Wang, B.; Liu, K.; Wu, Q.; Huang, C. A direct slicing technique for the 3D printing of implicitly represented medical models. Comput. Biol. Med. 2021, 135, 104534. [Google Scholar] [CrossRef]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah, N.; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Pires, J.D.A.C. Industrial Robot Based 3D printer. Master’s Thesis, Technico Lisboa, Lisbon, Portugal, 2021. Available online: https://fenix.tecnico.ulisboa.pt/downloadFile/563345090420150/Thesis_83403.pdf (accessed on 22 April 2025).
- Bhooshan, S.; Ladinig, J.; Van Mele, T.; Block, P. Function representation for robotic 3D printed concrete. In Robotic Fabrication in Architecture, Art and Design 2018; Springer: Cham, Switzerland, 2018; pp. 98–109. [Google Scholar] [CrossRef]
- Yu, L.; Huang, Y.; Zhongyuan, L.; Xiao, S.; Liu, L.; Song, G.; Wang, Y. Highly informed robotic 3D printed polygon mesh: A nobel strategy of 3D spatial printing. In Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Ann Arbor, MI, USA, 27–29 October 2016; pp. 298–307. [Google Scholar] [CrossRef]
- Wüthrich, M.; Gubser, M.; Elspass, W.J.; Jaeger, C. A novel slicing strategy to print overhangs without support material. Appl. Sci. 2021, 11, 8760. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Hu, Z.; He, C.; Ding, J.; Chen, W.; Wang, S.; Dong, W. Supportless 3D-printing of non-planar thin-walled structures with the multi-axis screw-extrusion additive manufacturing system. Mater. Des. 2024, 240, 112860. [Google Scholar] [CrossRef]
- Xu, Z.; Song, T.; Guo, S.; Peng, J.; Zeng, L.; Zhu, M. Robotics technologies aided for 3D printing in construction: A review. Int. J. Adv. Manuf. Technol. 2021, 118, 3559–3574. [Google Scholar] [CrossRef]
- Ariffin, M.K.A.M.; Sukindar, N.A.; Baharudin, B.H.T.; Jaafar, C.N.A.; Ismail, M.I.S. Slicer method comparison using open-source 3D printer. IOP Conf. Ser. Earth Environ. Sci. 2018, 114, 012018. [Google Scholar] [CrossRef]
- Eyercioğlu, Ö.; Aladağ, M. Non-planar toolpath for large scale additive manufacturing. Int. J. 3D Print. Technol. Digit. Ind. 2021, 5, 477–487. [Google Scholar] [CrossRef]
- Menges, A.; Sheil, B.; Glynn, R.; Skavara, M. Infundibuliforms: Kinetic Systems, Additive Manufacturing for Cable Nets and Tensile Surface Control. In Fabricate 2017; UCL Press: London, UK, 2017; Available online: https://www.jstor.org/stable/j.ctt1n7qkg7.15 (accessed on 13 April 2025).
- Nycz, A.; Noakes, M.W.; Masuo, C.J.; Love, L.J. Control system framework for using g-code-based 3d printing paths on a multi-degree of freedom robotic arm. In Proceedings of the Solid Freeform Fabrication 2018: The 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2018, Austin, TX, USA, 13–15 August 2018. [Google Scholar] [CrossRef]
- Senthil, T.S.; Vel, N.R.O.; Puviyarasan, M.; Babu, S.R.; Surakasi, R.; Sampath, B. Industrial robot-integrated fused deposition modelling for the 3D printing process. In Development, Properties, and Industrial Applications of 3D Printed Polymer Composites; Advances in Chemical and Materials Engineering Book Series; IGI Global: Hershey, PA, USA, 2023; pp. 188–210. [Google Scholar] [CrossRef]
- Ahlers, D.; Wasserfall, F.; Hendrich, N.; Zhang, J. 3D printing of nonplanar layers for smooth surface generation. In Proceedings of the IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019. [Google Scholar] [CrossRef]
- Bhatt, P.M.; Malhan, R.K.; Rajendran, P.; Gupta, S.K. Building free-form thin shell parts using supportless extrusion-based additive manufacturing. Addit. Manuf. 2020, 32, 101003. [Google Scholar] [CrossRef]
- Lazarev, Y.; Krotov, O.; Belyaeva, S.; Petrochenko, M. 3D environmentally friendly concrete printing model preparation. E3S Web Conf. 2020, 175, 11024. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Lim, J.H.; Weng, Y.; Tay, Y.W.D.; Pham, H.; Pham, Q. Large-scale 3D printing by a team of mobile robots. Autom. Constr. 2018, 95, 98–106. [Google Scholar] [CrossRef]
- Puzatova, A.; Shakor, P.; Laghi, V.; Dmitrieva, M. Large-scale 3D printing for construction application by means of robotic arm and gantry 3D printer: A review. Buildings 2022, 12, 2023. [Google Scholar] [CrossRef]
- Kulikov, A.A.; Sidorova, A.V.; Balanovskii, A.E. Programming industrial robots for wire arc additive manufacturing. In Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020), Lecture Notes in Mechanical Engineering 2021. Sochi, Russia, 18–22 May 2020; Springer: Cham, Switzerland, 2021; pp. 566–576. [Google Scholar] [CrossRef]
- Xiao, J.; Ji, G.; Zhang, Y.; Ma, G.; Mechtcherine, V.; Pan, J.; Wang, L.; Ding, T.; Duan, Z.; Du, S. Large-scale 3D printing concrete technology: Current status and future opportunities. Cem. Concr. Compos. 2021, 122, 104115. [Google Scholar] [CrossRef]
- Insero, F.; Furlan, V.; Giberti, H. Non-planar slicing for filled free-form geometries in robot-based FDM. J. Intell. Manuf. 2025, 36, 833–851. [Google Scholar] [CrossRef]
Problem/Application | Method/Slicing Tool | References |
---|---|---|
Hybrid slicing for complex 3DP | STL-based model slicing | [1] |
Sustainable wood fiber polymer printing | CAD, Cura Slicer, Robot Studio | [4] |
Direct G-code for ABB robot | STL-based model slicing | [5] |
Cooperative 3DP with mobile robots | Custom slicer and slicing scheme | [7,29] |
Robotic AM for personalized insoles | Notepad++, MATLAB, Excel, CAD, Slic3r | [9] |
Hybrid toolpath generation for 6-axis robot | CAD, MATLAB, Robot Studio | [14] |
Non-planar AM for better surface and strength | C# programming, Rhino-Common API | [15] |
Pattern transfer to curved surfaces | LabView, DLL | [16] |
Intuitive 3D modeling via hand motion | Custom slicer | [17] |
Impact of slicing on FDM quality | Multiple tools | [18] |
Gradient material extrusion | ROS, Slic3r | [19] |
Collision-aware code for robot | Custom contouring method | [20] |
Stair-stepping in correction AM | Java-based, variable layer height | [34] |
Hand motion-based slicing | Gesture-controlled slicer | [37] |
Collision-free non-planar FDM slicing | Parallel slicing algorithm in Slic3r | [38] |
Trajectory projection on tessellated surfaces | Mathematical algorithm | [39] |
Model slicing for concrete AM | CAD-based dual-software slicing | [40] |
Set of Parameters | Result |
---|---|
Structure length = 1946 [mm] Structure width = 290 [mm] Structure height = 240 [mm] Amount of ribs = 6 Layer height = 30 [mm] | |
Structure length = 1946 [mm] Structure width = 1000 [mm] Structure height = 240 [mm] Number of ribs = 10 Layer height = 30 [mm] | |
Structure length = 3475 [mm] Structure width = 424 [mm] Structure height = 240 [mm] Number of ribs = 16 Layer height = 10.7 [mm] | |
Structure length = 3475 [mm] Structure width = 424 [mm] Structure height = 3000 [mm] Number of ribs = 16 Layer height = 22.5 [mm] |
Sample | Material | [mm] | [mm/s] | [°C] |
---|---|---|---|---|
A | PETG | 2 | 25 | 215 |
B | ABS | 1.5 | 20 | 230 |
C | PP | 1.5 | 20 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdoš, I.; Sobaszek, Ł.; Štefčák, P.; Varga, J.; Slota, J. A Novel Parametrical Approach to the Ribbed Element Slicing Process in Robotic Additive Manufacturing. Polymers 2025, 17, 1965. https://doi.org/10.3390/polym17141965
Gajdoš I, Sobaszek Ł, Štefčák P, Varga J, Slota J. A Novel Parametrical Approach to the Ribbed Element Slicing Process in Robotic Additive Manufacturing. Polymers. 2025; 17(14):1965. https://doi.org/10.3390/polym17141965
Chicago/Turabian StyleGajdoš, Ivan, Łukasz Sobaszek, Pavol Štefčák, Jozef Varga, and Ján Slota. 2025. "A Novel Parametrical Approach to the Ribbed Element Slicing Process in Robotic Additive Manufacturing" Polymers 17, no. 14: 1965. https://doi.org/10.3390/polym17141965
APA StyleGajdoš, I., Sobaszek, Ł., Štefčák, P., Varga, J., & Slota, J. (2025). A Novel Parametrical Approach to the Ribbed Element Slicing Process in Robotic Additive Manufacturing. Polymers, 17(14), 1965. https://doi.org/10.3390/polym17141965